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ABSTRACT

A novel method for estimating the Angles Of Arrival
(AOA) of multiple plane waves with a narrow-band
array of sensors is presented here. This method is
based on the cooperation of two Multi-Layer Percep-
trons (MLP). The elements of the covariance matrix
of the signals are input to the ¯rst MLP (a classical
three-layer perceptron). Then, taking pro¯t of the
gross estimations provided by this ¯rst neural net, we
re¯ne them by using a new kind of perceptron: the
Constrained Structured Weights (CSW) perceptron,
which we demonstrate ¯nds the Maximum Likeli-
hood Estimation (MLE) of the AOA. Unlike the clas-
sical MLE approach, this method presents the great
advantage of being computationally inexpensive. Fi-
nally some results and comparisons are presented.

INTRODUCTION

The Angles of Arrival problem has raised and is still
raising considerable interest in the array-processing
community Schmidt (1), Stoica and Nehorai (2) and
(3).
The signals impinging upon the antenna may be ei-
ther the waves re°ected by some objects around a
radar or a sonar, or the waves emitted by active
sources (if we are dealing with radio-astronomy, for
instance).
Consider a linear array of m equi-spaced sensors (see
¯gure (1)). Due to the planar properties of the waves
we consider, the phase delay between two successive
sensors induced by a wave arriving at angle µ is:

! =
2¼d

¸
sin µ (1)

where ¸ is the wavelength. By chosing the inter-
sensor distance d such that d = ¸

2 , we ¯nally get:
! = ¼ sin µ. Let n be the number of sources, and N
the number of snapshots (or observations). Using the
narrow-band assumption, the AOA problem reduces
to the parameters estimation of the following model:

yt = A(­)xt + bt (2)

where

² yt is the m£1 vector received on the m-sensor
antenna,

d sensor 1

line of the array

plane wave
incident

the array
normal to

sensor 2

d sin 
spacial delay

Figure 1: Phase delay induced by a plane wave im-
pinging upon a linear antenna

² t 2 [1; N ] is the index of the snapshot,
² bt is the m£1 noise vector, and xt is the n£1
source vector,

² A(­) is the m £ n matrix of the n steering-
vectors: A(­) = [a(!1); : : : ;a(!n)], and
a(!k) = [1; e

j!k ; : : : ; ej(m¡1)!k ]T

We wish to estimate parameter ­ given by ­ =
[!1; : : : ; !n]

T , where !k determines the k-th angle of
arrival. We will consider bt and xt as unknowns, and
we make the following usual hypotheses: N > m >
n; bt is a white gaussian noise vector; the sources are
complex variables, independent from the noise, but
might be correlated to each other; the number of
sources, n, is assumed to be known. Various meth-
ods for estimating n are provided in the literature
(see for instance Wax and Kailath (4)).
The paper is organized as follows: we ¯rst present
the classical methods used to solve this type of prob-
lem, their advantages and limitations. Thereafter,
a novel method using the cooperation of a classi-
cal multi-layer perceptron and a CSW perceptron is
presented. It is shown how the results provided by
the ¯rst perceptron can be used as a starting point
to our novel MLE-like method. Finally, the results
given by both methods are compared to those of clas-
sical methods, then analysed and discussed before a
conclusion is eventually drawn.

A VIEW OVER PREVIOUS APPROACHES

The most quoted AOA estimation method is proba-
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bly the MUltiple SIgnal Classi¯cation (MUSIC, see
Schmidt (1), Stoika and Nehorai (2) and (3), Xu and
Buckley (5)). MUSIC is indeed quick and e±cient;
it is nonetheless limited in precision and resolution
when a small amount of data only is available (N too
small), and, most of all, it is ine±cient in the case
of correlated signals (see for instance Stoika and Ne-
horai (2)). Basically, the MUSIC method consists in
computing the m£m correlation matrix of the sig-
nals, in order to extract the m eigenvectors and their
associated eigenvalues. Assuming n, the number of
sources is known, the n eigenvectors associated to
the n largest eigenvalues de¯ne the so-called \signal
subspace", while the m ¡ n remaining eigenvectors
span the so-called \noise subspace". The orthogonal-
ity properties of these eigenvectors lead to consider
a real function of the variable !, which is de¯ned
as the norm of the projection of the steering vector
a(!) onto the \noise subspace". The inverse of this
function is spotted for all !. The n maxima are the
estimation of the !i; i 2 [1; n].
Another sub-optimal method, namely ESPRIT (for
Estimation of Signal Parameters via Rotational In-
variance Techniques), was developped shortly after
MUSIC, and is also based on eigenvalue decomposi-
tions of the correlation matrix of the signals (see Roy
et al (6) and Roy (7) for more details). ESPRIT,
though superior to MUSIC in most cases, cannot
easily handle the AOA problem when dealing with
correlated signals.
On the other hand, the MLE method is known (see
Stoica and Nehorai (2) and (3)) as an excellent es-
timator, and it is not handicapped in the case of
partially correlated signals. Unfortunately, MLE
presents the serious drawback of being computation-
ally intensive. Indeed, the MLE method roughly
consists in building a statistical model of the be-
havior of the signals; a criterion is de¯ned, that is
the log-likelihood of this model. All possible values
for the unknown parameters are tested, and the esti-
mate is the parameter vector that maximizes the log-
likelihood. It is this compulsory test of all possible
values that makes MLE a time consuming method.
Therefore, though sub-optimal, the MUSIC method
is generally preferred to MLE.

A NEW METHOD

A rough estimation

The ¯rst neural net (see ¯gure (2) receives exactly
the same data as a MUSIC or an ESPRIT estima-
tor, that is to say the m £ m covariance matrix of
the signals R = EfytyHt g. In practice, this matrix
is unknown and we use an estimate of the covariance
matrix R̂ = 1

N

PN
t=1 yty

H
t : Matrix R is hermitian,

thus it can be represented by m2 reals. This leads
us to create an MLP with m2 inputs and n outputs.
Finally, the hidden layer possesses L neurons, with L
being a \nice" compromise between n and m2. The

output layerhidden layer
input layer

1

R

w

2w

Figure 2: The structure of the ¯rst MLP

network is trained (see Burel (8)) to provide an es-
timation ~!k of !k at the k-th output neuron. It
has to be noted that the ¯rst part of the system is
composed of, say, q three-layer perceptrons, each of
which is speci¯cally adapted to the n-source estima-
tion problem (where n 2 [1; q]). These q networks
are trained separately, in such a way that the out-
puts !k are sorted into strict increasing order within
the training set. It is the estimation n̂ of the num-
ber of sources (we remind that this estimation is not
exposed here) that decides which neural net (namely
the n̂-output network) is to be utilized. The training
base is computed for angles µk varying from -60 to
60 degrees. For example here, in the case of the 2-
source network, angle !1 = ¼ sin µ1 is computed for
µ1 varying from ¡60o to 59o, and !2 for µ2 varying
from µ1+1 to 60

o. Therefore, 60£(2£60+1) = 7260
couples are needed to describe the whole training set.
In order to facilitate learning, the training data are
computed for \high" SNR (25 dB) and number of
snapshots (N = 40) parameter values.
In the sequel, the estimations of the true AOA com-
ing out of this ¯rst MLP will be denoted ~­ =
[~!1; : : : ; ~!n]

T .

A re¯ned estimation

The original idea is to re¯ne the gross estimation
~­ through the optimization of a likelihood criterion
on a gradient descent neural network: a maximum
likelihood criterion is optimal in the sense of perfor-
mance, but it is slow. The velocity is enhanced here,
through a gradient descent algorithm. Furthermore,
the initialization at a point close to the solution (us-
ing the rough estimate ~­ from the ¯rst MLP) brings
two advantages: (1) the way to the solution is short,
thus the system is even quicker; (2) it avoids being
trapped in local minima. A general view of this sec-
ond network is shown on ¯gure (3). The network is
a three-layer perceptron, where weights and neurons
can take complex values. The N snapshots taken
from the array outputs are presented randomly one
after the other to the input layer. The input and out-
put layers are both composed ofm units. The output
layer is forced to reproduce the m £ 1 input vector
as closely as possible. We would like to point out
that the hidden layer contains n neurons and that
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Figure 3: The Constrained Structured Weights
(CSW) MLP

we called x̂t the hidden layer vector, so as to show
the similarities between ŷt = Âx̂t = A(­̂)x̂t and
equation (2), where Â is constrained to represent the
steering matrixA(­̂) corresponding to the parameter
vector ­̂. x̂t is generated out of observation vector
yt, using a linear transformation: x̂t = Byt.
The error criterion to minimize is de¯ned as:

eMS =
1

2
Efjŷt ¡ yt j2g; (3)

where yt and ŷt are the m£1 input and output vec-
tors respectively, and t 2 [1; N ]. We prove (see ap-
pendix A) that minimizing eMS is equivalent to op-
timizing the Maximum Likelihood criterion. There-
fore, the second part of our system is theoretically
equivalent to an MLE search.
In this CSW perceptron, the output layer does not
provide any estimation of ­, but a means to compute
an error criterion. What is new in this network, is
that it is the weights that contain the wanted infor-
mation; the structure of the network can be speci-
¯ed as follows: the matrix of the weights joining the
hidden layer to the output layer is constrained to
take the form of a matrix of steering vectors a(!̂k),
k 2 [1; N ], where only the !̂k may vary. This output
matrix Â = A(­̂) is initialized with the ~­ previously
estimated, and the matrix of the weights joining the
¯rst layer to the hidden layer (the input matrix B) is
simply initialized as the pseudo-inverse of the output
matrix A(~­). During learning, the output matrix
A(­̂) will be updated with respect to the constrained
structure of the weights.
The simpli¯ed version of a complex-valued neuron
is presented in ¯gure (4). Moreover, the following

b

aba
X W

X

Figure 4: The complex-valued neuron

equation yields the propagation rule from neurons a
to neuron b:

Xb =
X
a

WabXa (4)

Classically, the minimization of the error criterion
eMS requires the computation of a gradient in order
to renew the weights after each iteration, as:

¢Wab = ¡®@eMS

@Wab
; (5)

where Wab is the weight from neuron a to neuron b.
For the input matrix weights, equation (5) is easy to
use and the result of the computation (see Appendix

B) of
@eMS

@Wab
is:

@eMS

@Wab
= ±bX

¤
a ; (6)

where

±b =
@eMS

@Xb
=

X
k2succ(b)

±kW
¤
bk; (7)

where succ(b) is the set of neurons on the layer suc-
ceeding to b and z¤ stands for the complex conjugate
of z.
Computing the gradient of the output matrix is a
bit more delicate, because of the special constrained
structure. It should be noted that, as far as the
output matrix is concerned, the only parameters are
the !̂a; thus the output gradient can be expressed as
(see Appendix C):

@eMS

@!̂a
= Re

ÃX
b

µ
@eMS

@Wab

¶µ
@Wab

@!̂a

¶¤!
; (8)

where
@eMS

@Wab
follows equation (6) and ±b

¢
=
@eMS

@Xb
is

calculated using equation (3) with Xb = ytb. We get
±b = ŷtb ¡ ytb here, where ytb (resp. ŷtb) stands for
the b-th component of yt (resp. ŷt). Thus, for the
output neuron b:

@eMS

@Wab
= (ŷtb ¡ ytb)X¤

a (9)

Moreover, the speci¯c shape of the antenna gives
Wab = e

j(b¡1)!̂a , thus we can write:

@Wab

@!̂a
= j(b¡ 1)Wab (10)

Eventually, equations (8), (9) and (10) are combined
to give the ¯nal expression for the output gradient:

@eMS

@!̂a
= Re

ÃX
b

(ŷtb ¡ ytb)X¤
aj(1¡ b)W ¤

ab

!
(11)

After each iteration, the !̂a are renewed as:

¢!̂a = ¡®@eMS

@!̂a
; (12)

Then, all the steering-vectors a(!̂a) forming the con-
strained structured output matrix are renewed in
their turn. For our experiments, we used the same ®
as in equation (5).
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Before reviewing the results, we would like to stress
the fact that, as for the ¯rst MLP, this CSW percep-
tron uses only the information present in the covari-
ance matrix. Thus, all the methods exposed there-
after are provided with the same information and the
di®erence in the performances simply lies in a better
or lesser use of it.

EXPERIMENTAL RESULTS

In order to underline the performances of this novel
AOA system, experiments are carried out by the cas-
caded real-neuron-MLP + CSW-perceptron pair, as
well as by MUSIC, ESPRIT and MLE. In the ex-
periments above, the parameters are set as follows:
n = 2 sources, m = 5 sensors, N = 15 snapshots,
and SNR = 10dB for each signal. µ2 varies from
¡50o to 50o, while µ1 is ¯xed at 0o, but unknown.
The ¯rst perceptron is a 25-input, 2-output MLP,
with 10 hidden neurons. The CSW-perceptron has
5 inputs, 5 outputs, and 2 hidden neurons. The net-
works are very small, therefore their use does not re-
quire much computing power: for one run, the net-
works need no more time than a MUSIC run: 0.4
seconds on a Sun workstation against 30 minutes for
MLE (the MLE method requires the sampling of the
whole working space). The number of iterations for
the gradient descent of the CSW perceptron is 20.
To illustrate the two-source case, the discrep-

ancy 1
2

³p
Ef(!̂1 ¡ !1)2g+

p
Ef(!̂2 ¡ !2)2g

´
is de-

picted as a function of µ2 (µ1 is ¯xed at 0o).
Each point of the average discrepancy is statisti-
cally computed over 60 runs. Figure (5) shows
the discrepancies obtained for uncorrelated signals.

MLP1
MLP1 + MLP2
MUSIC
ESPRIT
MLE

discrepancy
(radians)

theta20

0.22

-40 -20 0 20 40 (degrees)50-50

Figure 5: Discrepancies for MUSIC, ESPRIT,
MLP1, MLP1+MLP2, and MLE (uncorrelated sig-
nals)

When the angles are quite apart, it can be noticed
that all methods are alike: MUSIC, ESPRIT and
the CSW-perceptron almost reach the performances
of MLE. However, when µ2 comes closer and closer
to µ1, MUSIC soon fails and ¯nds only one angle (in
our experiments, MUSIC maxima merge for angles

closer than 12 degrees). Then, ESPRIT fails in its
turn and provide spurious angles. Finally, for angles
closer than 5 degrees, only MLE and our ¯ne esti-
mation MLP can still locate the angles. Moreover, it
is important to note that (1) the CSW-perceptron
improves dramatically the estimations established
by the preeceding MLP, except in the case where
the interval between µ1 and µ2 is smaller than two
degrees: in this region, the CSW perceptron only
slightly improves the performances of the ¯rst MLP;
(2) the performances of the networks pair are always
very comparable to those of MLE. Figure (6) repre-

MLP1
MLP1 + MLP2
MUSIC
ESPRIT
MLE

discrepancy
(radians)

theta2

0.17

-40 -20 0 20 40-50 50 (degrees)

Figure 6: Discrepancies for MUSIC, ESPRIT,
MLP1, MLP1+MLP2, and MLE (strongly correlated
signals)

sents the discrepancies obtained when the signals are
strongly correlated: the correlation of the sources is:

EfxxHg =
µ

1 0:9
0:9 1

¶
(13)

All other parameters are kept alike. It is interesting
to note that the failure of MUSIC and ESPRIT in
the case of close angles is more obvious here. On the
other hand, the cooperation of neural networks still
shows low discrepancies, even when µ1 and µ2 are
extremely close together (at a 0:3o distance interval,
for instance).

CONCLUSION

A neural system for Angles Of Arrival Estimation
has been presented in this paper. The system is com-
posed of two MLPs: a three-layer perceptron is ¯rst
fed with the normalized correlation matrix of the re-
ceived signals, assuming that the number of sources
is known. It outputs a \rough" estimation of the
parameters to estimate, which are the AOA. There-
after, a complex-weight complex-neuron perceptron
is initialized with the preceeding rough estimation,
and is trained during a limited number of iterations
so as to minimize an output error criterion. This
MLP is dedicated in the sense that its weights are
constrained to take the form of a steering matrix,
thus following closely the mathematical model of the
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problem. It implies that the error to minimize is the-
oretically the same as the minimization involved by
the MLE algorithm. Called the Constrained Struc-
tured Weights (CSW) perceptron, this ¯ne estima-
tion MLP proves experimentally to perform as ex-
pected, that is to say in a very comparable way to
MLE, while its speed is comparable to that of MU-
SIC.
Experiments where angles are very close together or
when signals are strongly correlated to each other
(where both MUSIC and ESPRIT approaches fail)
can however be handled by the CSW approach, and
show the interest of the approach.
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APPENDIX A

MLE estimator

The equation ruling our antenna is y = Ax + b,
where A represents A(­), the matrix of the steering-
vectors. Let us consider the noise b = y¡Ax. b is a
gaussian variable with zero mean and its covariance

matrix is ¡ = ¾2I by de¯nition. Thus the conditional
probability of the noise vector is:

p(b=Â; x̂; ¾̂) =
exp

³
¡1
2 (y ¡ Âx̂)H¡¡1(y ¡ Âx̂)

´
(2¼)m=2

pj¡j
(14)

The de¯nition of ¡ yields ¡¡1 =
1

¾̂2
I and j¡j = ¾̂2m.

Thence:

p(b=Â; x̂; ¾̂) =
1

(2¼)m=2¾̂m
exp

µ
¡ 1

2¾̂2
jy ¡ Âx̂j2

¶
(15)

Thus the log-likelihood is de¯ned as:

L1 = log p(b=Â; x̂; ¾̂) (16)

= ¡m
2
log(2¼)¡m log ¾̂ ¡ 1

2¾̂2
jy ¡ Âx̂j2

We wish to maximize the log-likelihood of the noise;
that is, to maximize:

L2 = ¡m log ¾̂ ¡ 1

2¾̂2
jy ¡ Âx̂j2 (17)

Since the maximization should be reached for all val-
ues of ¾̂, the optimization reduces to the minimiza-
tion of:

L3 = jy ¡ Âx̂j2 (18)

which should be applied to the whole set of N snap-
shots yt , t 2 [1; N ]. Finally it appears that MLE
consists in the minimization of:

L =
NX
t=1

jyt ¡ Âx̂tj2 (19)

Vector Âx̂t belongs to the subspace generated by Â,
called spanfÂg. Hence the best choice for x̂t is such
that Âx̂t is the projection of yt on spanfÂg. To
conclude, MLE is equivalent to the minimization of:

NX
t=1

jyt ¡ PÂ(yt)j2 (20)

where PÂ = Â(Â
HÂ)¡1ÂH is the matrix of orthogo-

nal projection on spanfÂg, and Â is the estimation
of A.

Constrained-structured MLP

The MLP depicted on ¯gure (3) is such that ŷt =
Âx̂t where Â presents the same shape as the steering-
vectors; thus ŷt 2 spanfÂg. As previously said, the
network tries to minimize

eMS =
1

2
Efjŷt ¡ yt j2g; (21)

which proves that the best solution is to chose ŷt =
PÂ(yt).
This demonstrates that MLE and the constrained-
structured MLP search for the minimum of the same
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criterion. Hence they lead to the same solution in
theory.

APPENDIX B

By convention the derivation of a real r by a complex
z is chosen as:

@r

@z
=

@r

@zR
+ j

@r

@zI
; (22)

where zR and zI are the real and imaginary parts of
z, respectively.
Property 1: if a real eMS depends upon a complex
z according to the structure presented on ¯gure (7),
where x1; :::; xn are complex, function h is derivable
with respect to the real and the imaginary parts of its
argument and g1; :::; gn are holomorphic functions,
then we have:

@eMS

@z
=
X
k

@eMS

@xk

µ
@xk
@z

¶¤
(23)

xnx1

MS

n1 gg

z

h

e

Figure 7: Dependence relation between eMS and z

Demonstration: eMS is such that:

deMS =
X
k

µ
@eMS

@xRk
dxRk +

@eMS

@xIk
dxIk

¶
=

X
k

Re

½
@eMS

@xk
dx¤k

¾

= Re

(X
k

@eMS

@xk
dx¤k

)
(24)

Therefore we can also write:

deMS = Re

½
@eMS

@z
dz¤
¾

(25)

Functions gk are holomorphic, hence:

dxk =
@xk
@z
dz (26)

which, combined to (24), leads to:

deMS = Re

(X
k

@eMS

@xk

µ
@xk
@z

¶¤
dz¤
)

(27)

Identi¯cation with (25) gives:

Re

("
@eMS

@z
¡
X
k

@eMS

@xk

µ
@xk
@z

¶¤#
dz¤
)
= 0 (28)

Thus property 1 is proved, since:

Refabg = 0 8b =) Ref1:ag = 0 and Refj:ag = 0
=) a = 0

(29)

Using the notation ±b =
@eMS

@Xb
, the gradient of the

complex neuron presented in ¯gure (4) can be ex-
pressed as:

@eMS

@Wab
=
@eMS

@Xb

µ
@Xb
@Wab

¶¤
= ±bX

¤
a (30)

since Xb =
P
aWabXa, and using property 1 (z =

Wab; n = 1; x1 = Xb here).
Finally, z = Xb, xk = Xk and property 1 yield to:

@eMS

@Xb
=

X
k2succ(b)

@eMS

@Xk

µ
@Xk
@Xb

¶¤
(31)

which gives, with Xk =
P
bWbXb:

±b =
@eMS

@Xb
=

X
k2succ(b)

±kW
¤
bk (32)

APPENDIX C

The constraints imposed on the CVW perceptron
lead us to introduce some modi¯cations in the re-
freshment rule of the weights of the output matrix.
These weights having the form Wab = ej(b¡1)!̂a ,
or more generally Wab = efb(!̂a), they depend only
upon the !̂a. Thus, we can write:

@eMS

@!̂a
=
X
b

µ
@eMS

@WR
ab

@WR
ab

@!̂a
+
@eMS

@W I
ab

@W I
ab

@!̂a

¶
(33)

Convention (22) yields to:

@eMS

@Wab
=
@eMS

@WR
ab

+ j
@eMS

@W I
ab

(34)

Thence we have:X
b

µ
@eMS

@Wab

¶µ
@Wab

@!̂a

¶¤
= (35)

X
b

µ
@eMS

@WR
ab

+ j
@eMS

@W I
ab

¶µ
@WR

ab

@!̂a
¡ j @W

I
ab

@!̂a

¶
Developing the second term of equation (35) reveals
that its real part is identical to the right term of
equation (33). The gradient of the output matrix
thus reduces to:

@eMS

@!̂a
= Re

ÃX
b

µ
@eMS

@Wab

¶µ
@Wab

@!̂a

¶¤!
(36)
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