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Abstract| In many signal processing applica-
tions, signals are received on an array of sensors,
and the problem consists in estimating the Direc-
tions Of Arrival (DOA) of the signals, and/or in
estimating the sources. Basically, the techniques
proposed for its solution use either information
about the geometry of the array, or information
about the statistics of the sources.
E±cient neural-based approaches for both kinds of
situations are proposed in this paper. When ge-
ometrical knowledge is available, the weights and
structure of the neural networks are constrained
according to the geometry of the array. When sta-
tistical information is available, neural networks
which optimize a statistical criterion (namely the
measure of dependence) are developed. Further-
more, neural networks provide the opportunity to
fuse both approaches in a uni¯ed framework, and
to take pro¯t simultaneously of both kind of infor-
mation.

Keywords| Array Processing, Blind Separation
of Sources, Higher Order Moments, Neural Net-
works, Backpropagation.

I. Introduction

The localization or estimation of radiating sources by pas-
sive sensor arrays has received considerable attention in
the last 30 years because it is one of the central problems
in radar, sonar, radio-astronomy, and seismology [7]. De-
pending on the kind of a priori knowledge, two classes of
approaches have been proposed: when the geometry of the
array is known, a Maximum Likelihood Estimator (MLE)
can be used [5]; when the sources are statistically indepen-
dent, blind separation methods can be employed [1] [2],
without need of geometrical knowledge (e.g. long under-

water antennas which are being deformed by streams).

In this paper, neural based approaches are developed. The
formulation of the problem is recalled in section 2, and the
principles of neural networks are summarized in section 3.
In section 4, it is shown that use of geometrical informa-
tion can be realized via constraints on the weights of the
neural network. The neural approach provides a dramatic
reduction of computation time for the same precision than
MLE. In section 5, an unsupervised neural network which
minimizes a statistical measure of dependence is proposed.
This neural network is able to realize blind estimation of
the sources, without any geometrical knowledge. Then, in
section 6, it is shown that both approaches can be fused
in a uni¯ed framework, and the interest of taking pro¯t
simultaneously of geometrical and statistical information
is stressed. Finally, section 7 provides some experimental
results.

II. Problem formulation

Consider an array composed of m sensors with arbitrary
locations and arbitrary directional characteristics [7], and
assume that n narrow-band sources centered around a
known frequency º0 impinge on the array from locations
µ1; :::; µn. Let us note:

² ½i(µk) the amplitude response of the ith sensor to a
wavefront impinging from location µk

² ¿i(µk) the propagation delay between a reference
point and the ith sensor for a wavefront impinging
from location µk

² bi(t) the complex envelope of the noise at the ith
sensor

² xk(t) the complex envelope of the signal emitted by
the kth source and received at the reference point

² yi(t) the complex envelope of the signal received at
the ith sensor
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The signal emitted by the kth source and received at the
ith sensor is:

Yik(t) = Re
n
xk(t¡ ¿i(µk))½i(µk)ej2¼º0(t¡¿i(µk))

o
Because of the narrow-band assumption xk(t ¡ ¿i(µk)) '
xk(t), hence:

yi(t) =
nX
k=1

½i(µk)e
¡j2¼º0¿i(µk)xk(t) + bi(t)

Using matrix notation, we can write:0BBBBBBBB@

y1
:
:
:
:
:
ym

1CCCCCCCCA
=

0BBBBBBBB@

a1(µ1) ::: a1(µn)
: :
: :
: :
: :
: :

am(µ1) ::: am(µn)

1CCCCCCCCA

0BBBB@
x1
:
:
:
xn

1CCCCA+
0BBBBBBBB@

b1
:
:
:
:
:
bm

1CCCCCCCCA
or more compactly:

y = A(£)x+ b

The problem is to estimate the sources x(1); :::; x(N)
and/or the directions of arrival £, on the basis of a set
of snapshots y(1); :::; y(N). In the following, it will be as-
sumed that the number of sources has been determined
(see [6]).

III. Principles of neural networks

Neural networks have gained popularity among the scien-
ti¯c community during the last decade because of their
success as non-linear adaptative systems [3]. Many neural
networks models can be described as a non-linear para-
metric function s = Gw(e), where e is the input vector, s
the output vector, and Gw a function parameterized by a
vector w. The entries of w are the weights of the network.
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W

Figure 1: A 3-layer perceptron

Let us consider for instance the well known multilayer
perceptron (MLP). The output vector of the 3-layer per-
ceptron depicted on ¯gure 1 is given by:

s = f [W2f (W1e+ b1) + b2]

where f is a function, W1 and W2 are matrices, and b1
and b2 are bias vectors. The learning algorithm, known
as \backpropagation" [4], updates the components of the
matrices and of the bias vectors according to the gradient
of the mean-square error eMS = Efjjs¡ sdesiredjj2g.

IV. Taking profit of geometrical information

The ¯rst class of techniques uses information about the
geometry of the array. By way of illustration, let us con-
sider the case of a uniform linear array (¯g 2). Let us note
c the celerity of the wave, and ¸ the wavelength. The ar-
ray is composed of n sensors equispaced by d = ¸=2, and
the sensors have uniform directional response.

d sensor 1

line of the array

plane wave
incident

the array
normal to

sensor 2

d sin 
spacial delay

Figure 2: Uniform Linear Array

Taking the ¯rst sensor as the reference point, the delay is:

¿i(µk) =
(1¡ i)d sin µk

c

Hence, ai(µk) = e
j(i¡1)!k with !k = ¼ sin µk

Usually, the noise is assumed to be a white gaussian noise
with zero mean and correlation matrix Efb(t)bH(t)g =
¾2I, where H stands for the hermitian transpose, and I
stands for the identity matrix. The noise is also assumed
to be independent from the sources. The log-likelihood
function of the observations is then:

L = const¡mN ln ¾̂ ¡ 1

2¾̂2

NX
t=1

jjy(t)¡ Âx̂(t)jj2

Maximizing the log-likelihood function is equivalent to
minimizing

CMLE =
NX
t=1

jjy(t)¡ Âx̂(t)jj2

For a given Â, the best choice for Âx̂(t) is the orthogonal
projection of y(t) on the subspace spanned by the columns

IEEE Int. Conf. on Systems, Man and Cybernetics, Vol. 2, pp. 601-606, October 17-20th, 1993, Le Touquet, France (invited)

©1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material 
for advertising or promotional purposes or for creating new collective works for resale or redistribution to 
servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 



of Â. Hence:

x̂(t) = (ÂHÂ)¡1ÂHy(t)

The MLE of £ is then given by the £̂ which minimizes

NX
t=1

jj(I ¡ PÂ(£̂))y(t)jj2

where PÂ(£̂) is the projection operator. It should be
pointed out that estimation of £ can be performed only
if m ¸ n+ 1 (otherwise, PÂ(£̂) would be always equal to
identity).

Let us consider the MLP depicted on ¯gure 3 (mlp2). It
receives on input a snapshot y(t), and it tries to minimize

eMS =
PN
t=1 jjy(t)¡ ŷ(t)jj2. The structure of the MLP is

such that x̂(t) = By(t) and ŷ(t) = Âx̂(t)

A

B

y

y

x

Figure 3: MLP constrained by geometrical information

Matrix Â is constrained by geometrical information:

Â =

0BBBBBB@
1 ::: 1
ej!̂1 ej!̂n

: :
: :
: :

ej(m¡1)!̂1 ::: ej(m¡1)!̂n

1CCCCCCA
The result is an implicit constraint on matrix B, because,
for any Â, the matrix B which minimizes eMS is the
pseudo-inverse B = (ÂHÂ)¡1ÂH . Hence, it becomes ob-
vious that the neural network minimizes the same crite-
rion as MLE.

The interest of the neural network in comparison with
MLE is its speed. MLE requires the computation of CMLE

for each possible value of £ (with some quanti¯cation
step) in order to ¯nd the minimum. Since £ is multi-
dimensional, the number of possible values is huge. The
neural network directly goes to the minimum via gradient
descent. However, it should be stressed that the neural
network might be trapped in a local minimum. To avoid

this problem, a rough estimation of DOA is computed be-
fore activation of this MLP.

The rough estimation is provided by another neural net-
work, depicted on ¯gure 4 (mlp1). It receives on input the
normalized correlation matrix Rnor whose entries are

Rnorij =
Re(Rij)Pm
i=1Rii

with R = 1
N

PN
t=1 y(t)y

H(t). The objective of the normal-
ization is invariance w.r.t. the energy of the sources. Pro-
viding only correlation information to this neural net can
be justi¯ed by the fact that MLE itself uses only correla-
tion information as shown in appendix A. In this network,
the function f is the hyperbolic tangent. This rough esti-
mation MLPmust be trained previously on a large number
of signals. The rough estimation is then used to initialize
the weights of the constrained MLP.

2

1
norR

W

W

f!̂1; : : : ; !̂ng

Figure 4: MLP for rough estimation of DOA

Computation time is low, because it only requires one
propagation through the rough estimation MLP, and a
few learning iterations on the ¯ne estimation MLP. Since
the ¯ne estimation MLP starts from an initial state close
to the solution, it is not trapped in a local minimum, and
it reaches quickly the global minimum.

V. Taking profit of statistical information

Without information about the geometry of the array, it is
impossible to estimate the directions of arrival. Anyway,
the sources still can be estimated if statistical information
is available. The methods based on statistical information
are usually called \Blind Separation Methods". The in-
formation is generally the statistical independence of the
sources. Assume that:

8xR1 ; xI1; :::; xRn ; xIn;
p(xR1 ; x

I
1; :::; x

R
n ; x

I
n) = p(x

R
1 )p(x

I
1):::p(x

R
n )p(x

I
n)

where p is the density of probability, and zR and zI stand
for the real and imaginary part of z.
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A neural network which minimizes a measure of the statis-
tical dependence of its outputs eD(s) has been proposed
in [1]. The algorithm is based on the minimization of a
quadratic form of high order moments. Assume that the
number of sensors is equal to the number of sources (if it
is not the case, one may perform a principal component
analysis on the snapshots, and keep the n most signi¯-
cant directions). Let us consider a linear neural network
(s = Be) whose input is e = y(t) and whose output is
s = x̂(t). Then, we have:

x̂(t) = BAx(t) +Bb(t)

If the SNR is high enough, x̂(t) ' BAx(t), and a min-
imum of eD(x̂) is obtained when BA is the product of
a diagonal matrix by a permutation matrix (because, in
that case, the entries of x̂ are statistically independent).

It should be underlined that such a blind separation
method works even if the number of sources is equal
to the number of sensors, while the MLE requires more
sensors than sources. But it does not work with gaus-
sian sources, because in that case, it su±ces that BA
be pseudo-orthogonal (see appendix B for more details)
to provide independence of the entries of x̂. Hence x̂ is
not an estimation of the sources any more. Another way
to understand why blind separation does not work with
gaussian variables is to notice that gaussian variables are
totally de¯ned by their moments up to order 2. Hence,
the higher order moments employed in [1] become useless.

VI. Fusion

Let us go further by noticing that neural networks provide
a framework to combine geometrical and statistical infor-
mation. Consider the network of ¯gure 3 again, and let
us replace the mean square error eMS by a mixed error:

emixed(ŷ; x̂) = eMS(ŷ) + °eD(x̂)

One may retort that eMS is useless when m = n because
there is always a matrix (B = Â¡1) which provides a null
mean square error for any Â. But in fact, the mean square
error is still usefull because, as stressed previously, it im-
poses an implicit constraint on matrix B.

The table below shows the conditions with respect to the
information taken into account and to the nature of the
sources (gaussian with similar variances or non-gaussian).
The mixed approach is able to estimate the sources and
the DOA for any kind of sources, even if the number of
sensors is not greater than the number of sources.

cost function eMS(ŷ) eD(x̂) emixed(ŷ; x̂)
gaussian m > n does not work m ¸ n

non gaussian m > n m ¸ n m ¸ n
Let us consider for instance the case of gaussian sources
when m = n. Because the sources are gaussian, mini-
mizing eD(x̂) does not provide enough equations to cor-
rectly determine the 2n2 real unknowns of matrix B (see
appendix B). But, with the addition of eMS(ŷ), B is im-
plicitely constrained to be close to the pseudo-inverse of Â.
Since Â contains only n unknowns, the system becomes
over-determined.

VII. Experimental results

Experimental results obtained with two gaussian sources
and a SNR of 20dB are presented in this section.

(degrees)

discrepancy (radians)

0.08

theta2

100-10-20
0

20

estimations :
after mlp1
after mlp2
after mle

Figure 5: Estimation error with 2 sources and 10 sensors

Figure 5 shows the discrepancy
p
Ef(!̂2 ¡ !2)2g as a

function of µ2, when the number of sensors is m = 10
and the number of snapshots is N = 20. The other source
is at µ1 = 0

o. As expected the MLE and the ¯ne estima-
tion MLP provide comparable results. Cases where MLE
is better can be explained by the fact that the MLP has
not performed enough iterations to reach exactly the min-
imum by gradient descent. When the MLP is better, it
may be due to the limit imposed by the quantization of
the MLE, or to the inversion of an almost singular matrix
(near µ2 = 0

o) in the computation of CMLE .

The rough estimation MLP comprises m2 = 100 inputs,
42 hidden units, and 2 outputs. It has been previously
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trained on 3071 examples (various combinations of !1 and
!2). The ¯ne estimation MLP comprises 10 complex in-
puts, 2 complex hidden units and 10 complex outputs. For
MLE, the criterion CMLE is computed for each combina-
tion of angles (¡60o · µ1 · 60o and ¡ 60o · µ2 · 60o)
with steps of 0.0047rad on !1 and !2. Hence CMLE must
be evaluated around 1:3x106 times for each set of 20 snap-
shots. On a Sun workstation, the MLE requires 11 hours
for each set of 20 snapshots, while the neural networks re-
quire only 1.5 second. Figure 6 shows the value of eMS for
a particular set of snapshots. The true DOA are µ1 = 0

o

and µ2 = 20
o. As mentioned in section 3, there is no spu-

rious local minimum near the solution.

theta2

50403020100-10

0

5.64

eMS

Figure 6: value of the mean square error as a function of
the estimated angle, for a particular set of snapshots

(degrees)
theta2

discrepancy (radians)

0

3020100

0.16

Figure 7: Estimation error with 2 sources and 2 sensors

Figure 7 shows
p
Ef(!̂2 ¡ !2)2g when the number of sen-

sors is m = 2 and the number of snapshots is N = 200.
Since the number of sources is equal to the number of sen-
sors, classical methods such as MLE do not work. Here, a
MLP using emixed (see section 6) has been used. Figure 8
shows the value of emixed for a particular set of snapshots.
It can be seen from this ¯gure that there is no spurious
local minimum in the neighbourhood of the solution. The
true DOA are µ1 = 0o and µ2 = 20o. As expected, the
minimum is close to the true value of µ2.

theta2

6050403020100-10

0

4.16

emixed

Figure 8: value of the mixed error as a function of the
estimated angle, for a particular set of snapshots

VIII. Conclusion

Neural approaches for DOA Estimation and Blind Sepa-
ration of Sources have been developed in this paper. Fur-
thermore, neural networks allow to combine in an e±-
cient way geometrical and statistical a priori information.
The result is the possibility to estimate the sources and
the DOA, even with gaussian sources and with as many
sources as sensors. It has also been shown that (when
the MLE works) the neural approach provides almost the
same precision than MLE with less computation time.
Taking into account that some potentialities of this ap-
proach still remain unexploited, we are currently studying
the possibility to estimate more directions of arrival than
sensors.
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Appendix A:

Interest of the correlation matrix

It is proved below that the MLE uses only information con-
tained in the correlation matrix:

CMLE =

NX
t=1

jj(I ¡ PÂ)ytjj2

=

NX
t=1

tr
©
(I ¡ PÂ)ytyHt (I ¡ PÂ)H

ª
= tr

(
(I ¡ PÂ)

"
NX
t=1

yty
H
t

#
(I ¡ PÂ)H

)

Appendix B:

Particularity of gaussian sources

Let us consider a blind separation of sources problem, and let
us note x the sources, A the mixture, B the separator, and x̂
the output of the separator. The vectors are of dimension n,
and the matrices are nxn. By noting C = BA, we have:

x̂ = Cx

The ideal would be to obtain a matrix C equal to identity.
In fact, we can expect only C = ¡P , where ¡ is a diagonal
matrix, and P a permutation matrix. This is not a problem
because the sources are estimated modulo a permutation and
a dilatation. But, with gaussian sources, we show below that
C can be any pseudo-orthogonal matrix, hence the separation
may fail. Let us consider the characteristic function:

ªx̂(v) = lnEfejvH x̂g
= lnEfejvHCxg
= lnEfej(CHv)Hxg

= ªx(C
Hv)

=

nX
j=1

ªxj (C
H
j v)

where Cj is the j
th column of C. The last equation is due

to the independence of the sources. After convergence of the
separator, the entries of x̂ are independent, hence we can write:

ªx̂(v) =

nX
i=1

ªx̂(:::; 0; vi; 0; :::)

=

nX
i=1

nX
j=1

ªxj (C
¤
ijvi)

Thus, we obtain:

nX
j=1

nX
i=1

ªxj (C
¤
ijvi) =

nX
j=1

ªxj (

nX
i=1

C¤ijvi)

And using Taylor expansion:

nX
j=1

nX
i=1

1X
k=1

bjk(C
¤
ijvi)

k =

nX
j=1

1X
k=1

bjk(

nX
i=1

C¤ijvi)
k

where bjk is proportional to the cumulant of order k of xj .
Since the equation above must be true for any v, we can equal
the terms of the same order:

8k;
nX
j=1

nX
i=1

bjk(C
¤
ijvi)

k =

nX
j=1

bjk(

nX
i=1

C¤ijvi)
k

Then, by developing the right hand side term, we obtain:

8k;
nX
j=1

bjk
X

i1;:::;ik
(not all equal)

C¤i1j :::C
¤
ikjvi1 :::vik = 0

Since the equation above must be true for any v, all the coef-
¯cients of the polynomial must be null:

8k; 8(i1; :::; ik) (not all equal);
nX
j=1

b¤jkCi1j :::Cikj = 0

One can easily verify that any matrix C = ¡P is a solution.
For gaussian sources, the bjk are null for k > 2, hence the
equations system reduces to:

8(i1; i2) (not equal);
nX
j=1

b¤j2Ci1jCi2j = 0

This is some kind of pseudo-orthogonality condition, hence,
any pseudo-orthogonal matrix C is a solution, and, conse-
quently, separation of sources may fail. On the contrary, non-
gaussian sources have at least one cumulant of order greater
than 2 which is non zero. Hence, the number of equations be-
comes large enough to constraint C as wanted.
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