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Abstract: A cyclic atomic level scheme interacting with an optical and a microwave field is
proposed for the generation and group-delay control of few-photon optical pulses. Our analysis
exploits a hybrid second order-nonlinearity under conditions of electromagnetically induced
transparency to generate an optical pulse. The generated pulse can be delayed or advanced
through microwave intensity control of the absolute phase of the second-order-nonlinearity.
Importantly, this handle on group delay of the generated pulse is number density-independent.
Our scheme is thus ideally suited for the generation and control of few-photon optical pulses
using ultra-dilute atomic samples. Our results will enable microscopic atomic interface systems
that serve as controllable delay channels for both classical and quantum signal processing.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Generating few-photon and single-photon [1–4] pulses-on-demand is an important resource
for many applications in quantum enabled technologies. Several practically realized quantum
key distribution protocols use attenuated laser pulses [5,6] whereas quantum repeaters and
quantum computing modules use single-photon pulses-on-demand [2–4,7]. Such few-photon
on-demand sources are traditionally implemented through controllable semiconductor sources
such as quantum dots and color centers in crystals [8].

Dilute atomic sample-based controllable generation, storage and transmission of single-photon
pulses has been experimentally realized [9,10]. Such atom-based generation schemes relies
on the Electromagnetically Induced Transparency (EIT) effect and is important for practical
realization of quantum networks. A large number of EIT-based systems have been studied for
controlling the group delay of pulses. In these systems control of propagation dynamics of
an input pulse as subluminal [11–15] and superluminal [16–19] propagation have been both
experimentally and theoretically investigated. In addition there are studies that provide a knob
to change the propagation of light from subluminal to superluminal [18–25], giving control for
continuous tunability of group delay. Observation of nonlinear generation of subluminal and
superluminal pulses using EIT-based schemes in atomic vapours [26–28] has been experimentally
investigated too. These studies are of particular importance in realising optical delay lines [29],
optical coherence tomography [30] and pulse-jitter corrections [27].

In the above mentioned studies of EIT-based generation and control of photon pulses done
so far, efficiency of the process is directly proportional to number density and spatial extent of
the sample. This scaling limits the prospect of integration of these systems with chip-based
integrated circuit devices, which are being increasingly used as a platform for realising scalable
quantum technological architectures [31].
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We propose a mechanism to control generation and group delay of a few-photon optical pulse
that is independent of density and spatial extent of the generating sample. Generation of a
few-photon optical probe pulse is made possible using a hybrid second order-nonlinearity induced
through a cyclic closed three-level scheme in a dilute atomic system. As the probe pulse is
generated by a sum-frequency process between pump field photons, it can be made on-demand
by tailoring the time when one of the pump fields, either the optical field or the microwave field,
is switched on.

We show that group delay of the optical pulse can be controlled by the intensity of the pump
microwave field. This tunable control has the characteristics of subluminal and superluminal
propagation of light but arises from a different physical effect. The intensity of the pump field
alters the absolute phase for different frequencies present within the generated optical pulse
resulting in changes in the group delay. Most significant of all, this control is shown to be number
density-independent and hence can be achieved with few atoms resulting in few-photons per
pulse. For experimentally feasible parameters, we show that a group delay of the order of 1
µs can be achieved with an ultra-dilute density of 106 cm−3. At such densities we show that
the generated optical pulse has approximately a mean photon number of one. Sample lengths
as small as 100 µm has been shown to introduce changes in group delay paving the way for
integration of such system with chip based photonic architectures.

2. Deriving linear and second-order susceptibilities for the probe field in a cyclic
scheme

We consider a generic cyclic and closed Λ atomic level scheme illustrated in Fig. 1. Such a
scheme could be realized using the hyperfine levels of 85Rb around the D1 transition. This
generic scheme consists of an excited state |1⟩, a metastable state |2⟩ and a ground state |3⟩.
The resonance frequencies of the transitions in Fig. 1 are ω13,ω12 and ω23 respectively. The
probe field is weak compared to the coupling and microwave fields. The three fields together
with the three transitions form a closed Λ system, referred to as a ∆ system [32] hereafter. The
electric field representation of the continuous-wave (CW) probe, coupling and the magnetic field
representation of the CW microwave are given by

E⃗p(τ) = e⃗pEp cos(ωpτ), E⃗c(τ) = e⃗cEc cos(ωcτ), B⃗µ(τ) = e⃗µEµ cos(ωµτ), (1)

where τ = t − z/c, with their initial phases taken to be zero. e⃗i, Ei and ωi for i ∈ {p,c, µ} are the
polarization, amplitude and frequency labels of the respective fields.

To understand linear and second-order processes involving the |1⟩ ↔ |3⟩ transition in our ∆
system and their effect on the probe field, linear electric susceptibility χ(1)p (ωp) and hybrid second-
order susceptibility χ(2)p (ωc,ωµ) for the probe field are calculated. The hybrid χ(2)p (ωc,ωµ)
corresponds to generation of the probe field by a combination of electric-and magnetic-dipole
transitions mediated by coupling and microwave electromagnetic fields, respectively.

The susceptibilities are calculated analytically by solving the master equation for the atomic
density operator (ρ) to first order in probe amplitude. The density-matrix equations in the rotating
frame are

σ̇11 = − 2(γ13 + γ12)σ11 + iΩcσ21 + iΩpe−i∆tτσ31 − iΩ∗
cσ12 − iΩ∗

pei∆tτσ13,
σ̇22 = − 2γ23σ22 + 2γ12σ11 + iΩ∗

cσ12 + iΩµσ32 − iΩcσ21 − iΩ∗
µσ23,

σ̇12 = − (γ13 + γ12 + γ23 − i∆c)σ12 + iΩpe−i∆tτσ32 + iΩcσ22 − iΩcσ11 − iΩ∗
µσ13,

σ̇13 = − (γ13 + γ12 − i(∆c + ∆µ))σ13 + iΩcσ23 − iΩµσ12 + iΩpe−i∆tτ(1 − σ22 − σ11)

− iΩpe−i∆tτσ11,
σ̇23 = − (γ23 − i∆µ)σ23 − iΩpe−i∆tτσ21 + iΩ∗

cσ13 − iΩµσ22 + iΩµ(1 − σ22 − σ11),

(2)
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Fig. 1. Schematic diagram of ∆ atomic system. Electric dipole allowed transitions
|1⟩ ↔ |3⟩ and |1⟩ ↔ |2⟩ are coupled by two optical fields called probe (Ωp) and coupling
(Ωc), respectively. The magnetic dipole allowed transition |2⟩ ↔ |3⟩ is connected by a
microwave field (Ωµ).

where the off-diagonal elements represent atomic coherences of the system; particularly, σ13 is
our quantity of interest for calculating pertinent susceptibilities. Rotated σ matrix elements are
related to the original matrix elements ρ by the unitary transformation

ρ12 = σ12e−iωcτ , ρ13 = σ13e−i(ωc+ωµ )τ , ρ23 = σ23e−iωµτ . (3)

In Eqs. (2), 2γ13 is the decay rate for |1⟩ −→ |3⟩, 2γ12 is the decay rate for |1⟩ −→ |2⟩ and 2γ23
is the decay rate for |2⟩ −→ |3⟩. The Rabi frequencies of the probe, coupling and microwave fields
are defined as

2Ωp =
e⃗p · d⃗13Ep

ℏ
, 2Ωc =

e⃗c · d⃗12Ec
ℏ

, 2Ωµ =
e⃗µ · µ⃗23Eµ

ℏ
, (4)

where d⃗13, d⃗12 are electric-dipole matrix elements for the transitions |1⟩ ↔ |3⟩, |1⟩ ↔ |2⟩
respectively and µ⃗23 is the magnetic-dipole matrix element for the |2⟩ ↔ |3⟩ transition. The
quantities

∆p = ωp − ω13, ∆c = ωc − ω12, ∆µ = ωµ − ω23, (5)

are detunings of probe, coupling and microwave fields from their respective transitions. Three-
photon detuning of all three fields is defined as

∆t = ∆p − ∆c − ∆µ. (6)

Scalar polarization of the atoms, induced by electromagnetic fields to first order in probe
amplitude, is

P(τ) ≈ ε0Ep(χ
(1)
p (ωp)e−iωpτ + c.c.)/2 + ε0EcEµ(χ

(2)
p (ωc,ωµ)e−i(ωc+ωµ )τ + c.c.)/4, (7)
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and, in terms of the density-matrix elements using Eq. (3), is

P(τ) = N(d13σ13e−i(ωc+ωµ )τ + d12σ12e−iωcτ + c.c.), (8)

where N is the number density of atoms. The susceptibilities of probes χ(1)p , χ(2)p are obtained by
calculating σ13 to first order in probe amplitude [20]. Towards this, we expand density-matrix
elements σjk of (2) as

σjk = σ
(0)
jk ΩcΩµ + σ

(1)
jk Ωpe−i∆tτ + σ

(2)
jk Ω

∗
pei∆tτ

(j, k ∈ {1, 2, 3}).
(9)

The perturbative expansion (9) is substituted in Eqs. (2), and we neglect terms of order Ω2
p

as Ωp ≪ Ωµ & Ωc. The unknowns σ(0)
jk ,σ(1)

jk ,σ(2)
jk are found by solving the resulting linear

equations. Required susceptibilities are obtained by substituting Eq. (9) for σ13 in Eq. (8) and
comparing it with Eq. (7), giving us

χ
(2)
p (ωc + ωµ,ωc,ωµ) =

(︃
4Nd13d12µ23

ε0ℏ2

)︃
σ
(0)
13 (Ωc,Ωµ,∆c,∆µ), (10)

χ
(1)
p (ωp,ωp) =

(︃2Nd2
13

ε0ℏ

)︃
σ
(1)
13 (Ωc,Ωµ,∆c,∆µ,∆p). (11)

In the succeeding section, χ(1)p and χ(2)p are used to study the group delay and temporal profile
of the generated probe pulse.

3. Pulsed probe-field generation and manipulation of group delay

In this section we study the ∆ system without the input probe field and investigate the effect of
various parameters on group delay of a generated probe pulse, generated through the hybrid
second order-nonlinearity χ(2)p . Towards this we use a modified ∆ scheme given in Fig. 2.

With the help of susceptibility expressions given in Eqs. (10) and (11), we calculate the
temporal profile for a generated probe pulse. To ensure pulse-probe generation, we employ an
input Gaussian pulsed microwave field,

Ωµ(z = 0,∆µ) = (2Ω0
µ

√
2π/δ)e−∆

2
µ/2δ2

(12)

driving |2⟩ ↔ |3⟩, where 2Ω0
µ and δ are the amplitude and spectral width of the envelope,

respectively. The coupling field in Fig. 2 is the same as the one in Fig. 1, a CW with ∆c = 0. The
input fields are taken to be propagating along the positive z-direction. The vapour cell has length
l and extends from z = 0 to l, and the input fields are defined at the entrance to the cell at z = 0.

Due to χ(2)p the pulsed microwave field combines with the CW optical coupling field to give
rise to a pulsed probe field through a sum-frequency generation process. By conservation of
energy, the generated probe detuning (∆p) will be equal to the microwave detuning, i.e., ∆p = ∆µ.
Such a generation was theoretically studied [33] and already experimentally observed by us [34].

The input microwave pulse and the CW optical coupling fields are undepleted pump fields.
The magnitudes of the propagation vectors of the coupling, microwave and probe fields inside
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Fig. 2. Pulsed microwave field Ωµ(∆µ) and a CW coupling field Ωc is used to observe
pulsed probe generation through the nonlinear susceptibility χ(2)p .

the vapour cell are

k2
c =
ω2

12(1 + χ
(1)
c )

c2 , k2
µ =

(ω23 + ∆µ)
2(1 + χ(1)µ )

c2 , (13)

k2
p =

(ω13 + ∆p)
2(1 + χ(1)p )

c2 , (14)

where χ(1)c , χ(1)µ are the linear susceptibilities of the coupling and microwave fields. The wave-
vector mismatch of the generated probe field is defined as ∆k = (kc + kµ) − kp. We assume
a length l for the cell such that ∆kl ≪ 1 over the bandwidth of the microwave pulse. For
brevity the arguments of the following functions are suppressed : Ωµ(∆p) = Ωµ, kp(∆p) = kp

and χ(2)p (∆p) = |χ
(2)
p |eiφ(2) . Under the assumptions stated above, the temporal envelope of the

generated probe pulse at z = l in the slowly varying amplitude approximation [35] is

Ω
g
p(l, t) =

∫ ∞

−∞

i(ω13 + ∆p)
2lΩµΩc |χ

(2)
p |eiφ(2)ei(kpl−(ω13+∆p)t)

Kc2kp
d∆p, (15)

where K = 2πµ23d12/ℏd13. For simplicity, the microwave pulse bandwidth is assumed to be
small enough such that only the effect of central frequency is considered for estimation of χ(1)p .
As can be seen from Eq. (15), the dynamics of the generated probe pulse profile depends on
the complex (C) quantities χ(1)p and χ(2)p . We study in-detail the effects of linear and non-linear
susceptibility on the amplitude and group delay of the generated probe pulse.

The amplitude of the generated probe pulse depends on |χ
(2)
p | and the imaginary part of χ(1)p

(χ(1)Ip ). Under two-photon resonance between the generated probe pulse and the coupling pulse
our system satisfies all the conditions necessary for showing EIT effect as seen in Fig. 3. At



Research Article Vol. 29, No. 11 / 24 May 2021 / Optics Express 15945

two-photon resonance, (∆p = 0) the typical value of χ(1)Ip is around 10−7. To make sure that the
generated probe pulse suffers negligible absorption due to χ(1)Ip , the generated probe bandwidth is
chosen to be within the EIT window through appropriate choices of δ and Ωc values. Henceforth
we assume that absorption of the generated pulse due to linear susceptibility is negligible. We
therefore drop terms relating to χ(1)Ip from Eq. (15).

Fig. 3. Real and imaginary parts of the linear susceptibility as a function of generated
probe detuning, for Ωc = 0.4γ13, Ω0

µ = 0.004γ13, γ23 = 0.004γ13, γ13 = 5π × 106 rad/s
and N = 108 cm−3.

Group delay of the generated probe with respect to a reference pulse is defined as the time
difference in peak arrival time of the generated probe pulse and the reference pulse, both
calculated at the end of the vapour cell. The peak here is defined as the peak of the generated
optical pulse with maximum amplitude. The reference is a Gaussian pulse traversing the same
length in vacuum given by

Ωr(l, t) =
1

2π

∫ ∞

−∞

(Ω0
r
√

2π/σ)e−∆
2
p/2σ2

ei(ω13+∆p)(l/c−t)d∆p, (16)

where Ω0
r and σ are the amplitude and spectral width of the reference respectively.

This group delay depends on two qualitatively different spectral phases acquired by the
generated probe as seen in Eq. (15). The first spectral phase is the traditional propagation phase
ϕ(1) = kpl. Using Eq. (14) we derive an expression for ϕ(1)

ϕ(1) ≈
(ω13 + ∆p)(1 + χ(1)Rp/2)l

c
, (17)

where χ(1)Rp is the real part of χ(1)p . The second one is the generation phase, the initial phase probe
pulse acquires during the generation process. This is defined as

ϕ(2) = arg(χ(2)p ), (18)

which is the phase of complex χ(2)p .
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Our main results presented below are due to the effect of ϕ(2) on the group delay of the
generated probe pulse. To calculate the group delay to first order, we perform a Taylor expansion
of the phases ϕ(1) and ϕ(2) around ∆p = 0,

ϕ(k) ≈ ϕ(k)
|︁|︁|︁|︁
∆p=0
+
∂ϕ(k)

∂∆p

|︁|︁|︁|︁
∆p=0
∆p (k ∈ {1, 2}). (19)

We identify the pertinent temporal quantities in the above expansion and classify them as

t(1) =
∂ϕ(1)

∂∆p

|︁|︁|︁|︁
∆p=0
=

ngl
c

, (20)

ng = 1 + (1/2) χ(1)Rp

|︁|︁|︁
∆p=0
+ (1/2)

∂ χ
(1)
Rp

∂∆p

|︁|︁|︁|︁|︁
∆p=0

ω13, (21)

t(2) =
∂ϕ(2)

∂∆p

|︁|︁|︁|︁
∆p=0

. (22)

Substituting Eqs. (17)–(22) in Eq. (15) we calculate the total group delay of the generated
probe pulse with respect to the reference pulse. This is done by comparing the complex phases in
Eqs. (15) and (16). Thus the total group delay (Tg) of the generated probe pulse with respect to
the reference is given by

Tg = t(1) + t(2) − l/c. (23)

In the above expression t(1) is the traditional group delay associated with c/ng, the group
velocity of the pulse. On the other hand, t(2) is the group delay associated with the change of
the generated probe initial phase with changing probe frequency. In the subsequent paragraphs
we analyse each of the t(1) and t(2) contributions to the total group delay for different number
densities of atoms.

There have been numerous studies on the group delay t(1) due to changes in group velocity
of an input pulse traversing a coherently prepared atomic medium [11–25]. Some of these
studies focused on developing a knob for changing the group velocity from subluminal to
superluminal resulting in delay or advancement respectively of the peak of an input pulse [18–25].
These changes in group delay are due to the real part of linear susceptibility and are number
density-dependent as seen from Eq. (11).

To explicitly illustrate this density dependence, we show in Fig. 4 the group delay due to χ(1)Rp
as a function of Ω0

µ for two different number densities. For a density value of N = 108 cm−3

we see that the group delay changes from positive to negative as a function of Ω0
µ because of

subluminal to superluminal change in group velocity. However by reducing the density by two
orders to N = 106 cm−3 we observe not only that the group delay remains practically constant
with changing Ω0

µ, but also that its value is close to zero indicating that the group velocity of the
pulse numerically approximates its value in vacuum. Thus we note that any knob to change the
value and sign of the group velocity of a pulse which is density-dependent is unlikely to work for
low-density samples.

In contrast to the heavy dependence of t(1) − l/c on N and l, the group delay due to t(2) is
independent of N l, representing a density-independent group delay due to nonlinear generation.
Mathematically N is a prefactor to both the real and imaginary part of χ(2)p (Eq. (10)) and, since
ϕ(2) is the argument of χ(2)p , it is independent of N leading to t(2) also being N independent.
The physical origin of ϕ(2) being independent of N is that this is the phase associated with the
generated probe field by the atoms during the generation process. In the absence of atom-atom
interaction this generation phase is independent of the number density.
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Fig. 4. Group delay, due to the real part of linear susceptibility, as a function of microwave
amplitude, for Ωc = 3.2γ13, δ = 0.3 × 106 Hz, γ13 = 5π × 106 rad/s and l = 1 cm.

For the purpose of generation of few-photons we henceforth will work with low-density
samples. We show in our subsequent analysis how we can effect both an advancement and a
delay in the peak of a few-photon pulse through t(2). The knob we use to change the sign of t(2) is
the intensity of the microwave pulse.

We fix the input optical pump field (Ωc) to be 0.4γ13 with its beam diameter taken to be 1 mm2

and the spectral width of the input microwave pulse to be δ = 0.3 × 106 Hz. The total energy in
the generated pulse is given by

E = (bℏ2/d2
13)

∫ ∞

−∞

ε0c|Ωg
p(l, t)|2dt, (24)

where b is the beam diameter. The number of photons in the pulse is estimated by dividing the
total energy (E) by the energy of the central frequency photon (ℏω13). By this procedure we find
that a few-photon pulse is generated at the output for N = 106 cm−3 and l = 1 cm. For these N
and l values, the group-delay contribution from (t(1) − l/c) through linear susceptibility can be
safely ignored as can be seen in Fig. 4.

This leads to minimising the effect of χ(1)Rp in Eq. (15), leading to the final generated probe
profile as

Ω
g
p(l, t) =

∫ ∞

−∞

i(ω13 + ∆p)lΩcΩµ |χ
(2)
p |eiφ(2)ei(ω13+∆p)(l/c−t)

Kc
d∆p, (25)

and its group delay with respect to the reference

Tg = t(2). (26)

Now the group delay of the generated few-photon pulse with respect to the reference pulse
originates entirely from the generation phase ϕ(2) and not due to any propagation effect.

As shown in Fig. 5 the atoms generate different frequencies of probe with different initial
phases and this phase profile clearly depends on Ω0

µ. We can see that the slope around the ∆p = 0
value changes sign for two different Ω0

µ values. As t(2) is the slope of ϕ(2) at ∆p = 0, it is clear
from Fig. 5 that one can use Ω0

µ as a handle to delay or advance the generated probe pulse.
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Fig. 5. Generation phase as a function of the generated probe detuning, for Ωc = 0.4γ13,
N = 106 cm−3 and γ13 = 5π × 106 rad/s.

We will quantitatively estimate the group delay of the generated probe pulse through changes
in pump field intensities. We plot in Fig. 6, t(2) as a function of Ω0

µ. This plot shows that Ω0
µ can

be used as a knob for continuous tunability of t(2) resulting in delay or advancement in peak of
the pulse. Such a continuous tunability is also achievable through changes in Ωc. The temporal
profile of the generated probe pulse is obtained by numerical integration of Eq. (25) and is shown
in Figs. 7 and 8. These plots show a pulse delay of 0.5 µs and a pulse advancement of 0.3 µs
respectively, for a change of Ω0

µ = 0.004γ13 to Ω0
µ = 2.4γ13 at N = 106 cm−3. To observe

the same order of delay or advancement in an input probe pulse through propagation effects,
one requires a number density of the order 1011 cm−3. Thus, by manipulating the generated
phase profile even with very dilute samples of atoms, comparable changes in group delay can be
achieved.

The temporal shape of the generated pulse is governed by |χ
(2)
p | as seen in Eq. (25). Our

calculations show that the delayed and advanced probe pulse temporal width (standard deviation)
in Figs. 7 and 8 is contracted by 79 % and 91 % respectively, with respect to the input pulsed
microwave. As can be seen, the higher value of Ω0

µ required for advancement of the generated
pulse shown in Fig. 8 results in increased temporal distortion of the generated pulse. For higher
microwave intensities the levels connected by the microwave field suffer AC stark shift resulting
in increased |χ

(2)
p | values away from resonance. This effect in the frequency domain translates to

the ringing effect in the time domain.
To see the effect of Doppler broadening on the group delay of the generated probe pulse

we have done a Doppler averaging of the χ(2)p susceptibility profile. We incorporate Doppler
broadening by defining the Doppler shifted detunings as

∆c(v) = ∆c − ω12v/c, ∆p(v) = ∆p − ω13v/c, (27)

where v is the velocity of atom. We average χ(2)p using the Maxwell-Boltzmann velocity
distribution for room temperature T=300 K. This procedure leads to the Doppler averaged t(2)
using Eqs. (18) and (22) and is plotted in Fig. 9. It is clear from this figure that even with room
temperature atoms a microwave-intensity change acts as an effective knob to convert a delayed
pulse to an advanced pulse. However, this change happens at a higher microwave intensity. For a
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Fig. 6. Group delay due to generation phase as function of the microwave amplitude, for
δ = 0.3 × 106 Hz, N = 106 cm−3 and γ13 = 5π × 106 rad/s.

Fig. 7. Delay of 0.5 µs observed in the generated probe with respect to the reference, for
Ω0
µ = 0.004γ13, Ωc = 0.4γ13, δ = 0.3 × 106 Hz, γ13 = 5π × 106 rad/s, N = 106 cm−3 and

l = 1 cm. The mean number of photon in the generated probe is 1.24. The generated probe
has been scaled by a factor of 10416. The parameters of the reference are Ω0

r = 0.5γ13 and
σ = 2.4 × 106 Hz.
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Fig. 8. Advancement of 0.3 µs observed in the generated probe with respect to the reference,
for Ω0

µ = 2.4γ13, Ωc = 0.4γ13, δ = 0.3 × 106 Hz, γ13 = 5π × 106 rad/s, N = 106 cm−3 and
l = 100 µm. The mean number of photon in the generated probe is 1.29. The generated
probe has been scaled by a factor of 75757. The parameters of the reference are Ω0

r = 0.5γ13
and σ = 2.4 × 106 Hz.

temperature of 100 ◦C the microwave amplitude required to change from delay to advancement
is about 6 % more than what is required at room temperature.

Fig. 9. Doppler averaged group delay due to generation phase as a function of microwave
amplitude, for γ23 = 0.4γ13, T=300 K, δ = 0.3 × 106 Hz and γ13 = 5π × 106 rad/s.
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The repetition rate of the on-demand pulse with the ability to delay or advance the peak
depends on the bandwidth of the near-linear region around ∆p = 0 in Fig. 5. From this figure it is
clear that the bandwidth is of the order of a few MHz for our parameters and so the repetition
rate of our generation also would be in the order of a few MHz.

Experimental realization of generation and group delay control of a few photon pulse described
above can be achieved. Generation of probe optical field with 85Rb atoms from a sum frequency
process between the coupling and microwave fields has already been realized [34].

In order to show that the delay or advancement of the generated pulse is independent of number
density or length of the cell, the number density in a vapour cell could be varied by changing the
temperature or by using identical cells of varying vapour density or cells with varying physical
dimensions.

4. Conclusion

A scheme for on-demand generation of optical pulses and control of their group delay using a
hybrid second order-nonlinearity in an atomic ∆ system is presented. An unexplored regime
of manipulating group delay arising from the initial phase of the generated pulse is presented.
We rigorously establish that this leads to density-independent group delays. We show that the
generated pulse can be delayed or advanced through change in intensity of the input microwave
field and discuss in detail the average photon number and temporal shape of the generated pulse.
Thus, our scheme can be exploited to generate and control group delay of optical pulses with few
photons using ultra-dilute samples with small spatial dimensions. These results open a way for
producing and manipulating group delays with microscopic atomic systems that can be integrated
in scalable platforms. All the above features in combination with our hybrid nonlinearity will have
a definitive impact in introducing controllable delays in both classical and quantum information
processing channels which use both microwave and optical fields.
Disclosures. The authors declare no conflicts of interest.
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research.
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