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ABSTRACT :
In many signal processing applications, the signals provided by the sensors are mixtures of
many sources. The problem of separation of sources is to extract the original signals from these
mixtures. A new algorithm, based on ideas of backpropagation learning, is proposed for source
separation. No a priori information on the sources themselves is required, and the algorithm can
deal even with non-linear mixtures. After a short overview of previous works in that eld, we will
describe the proposed algorithm. Then, some experimental results will be discussed.
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1 Introduction

Source separation is an important problem in the signal processing eld. For instance, in
the bio-medical domain, the signals provided by the sensors are generally mixtures of many
independent sources. The problem of source separation is to extract the original signals from these
mixtures. The same kind of problem can be found in aerial processing for radar or sonar signals,
or in speech processing for enhancement of speech signal (reduction of perturbating sources such
as other speakers, motor noises in a cockpit, ...).

As pointed out by Jutten (Jutten & Herault, 1991), some kind of separation system should
exists inside the central nervous system, because the signals that circulates through the nerves are
generally mixtures of heterogenous informations. For instance, during a movement, bres Ia and
II transmit to the central nervous system mixtures of information about joint stretch and stretch
speed (Roll, 1981).

Separation of sources may be achieved in different ways, depending on the amount of available a
priori information. Here, we will focus on the case where no a priori information on the sources
themselves is available. The hypotheses are only the following:

� We know a parametric form of the mixture.

� The sources are independent.

� The number of sensors is equal to the number of sources.

Under these hypotheses, the separation of sources is designed as �blind�, because of the lack of
information on the sources themselves. Solutions to the source separation problem with such a
weak a priori information have been found only very recently, for linear parametric forms, due to
the work of Jutten and Herault (Jutten & Herault, 1988). In the next paragraph, we will summarize
some of the proposed solutions. Our objective in this paper is to investigate a new approach, based
on the ideas of backpropagation learning on neural networks. The proposed approach differs from
previous ones by the following points:

� It is based on minimization of a cost function, so its properties are very clear on a
mathematical point of view.

� It can deal with non linear mixtures.

In the following, we will note n the number of sources (which is equal to the number of sensors),
�x�t� the sources, �e�t� the observations (signals provided by the sensors), and �s�t� the outputs of
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the separation system (the discrete index t is the time):

�x�t� � [x1�t�� ���� xn�t�]
T

�e�t� � [e1�t�� ���� en�t�]
T

�s�t� � [s1�t�� ���� sn�t�]
T

The separation system may be seen as a black box, which receives �e�t� on input, and provides �s�t�
on output. The separation algorithm tunes the internal parameter of the separation system, in order
to obtain independent outputs. When these parameters are correctly tuned, we obtain on output an
estimation of the sources, modulo a permutation and a distorsion, as will be detailed in the next
sections.

independent component analysis

E1S1

S1'

S2'

E2

S2

principal component analysis

original axes

Figure 1: Principal Component Analysis and INdependent Component Analysis

It is interesting to point out that an algorithm for blind separation of sources is nothing else than
an algorithm for INdependent Component Analysis (INCA). The INCA concept is much more
powerfull than the traditional Principal Component Analysis (PCA) concept, because INCA
provides independence (full separability of the densities of probability), whereas PCA provides
only decorrelation (separability of the cross-moments of order 2).
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As an illustration, let us consider the simple case of signals with a uniform density of
probability inside a parallelogram, as shown on gure 1. PCA nds a new coordinate system
(always orthogonal), where the maximum dispersion is obtained on the rst axis. In this new
coordinate system, the signals S�1 and S�2 are uncorrelated, but they are still dependent. A simple
way to be convinced of this dependence is to notice that knowledge of the value of S �1 brings an
information on S�2, because the upper and lower bounds of S�2 depend on S�1. On the contrary,
linear INCA nds a new coordinate system where the signals are fully independent. Knowledge
of S1 doesn�t bring any information on the value of S2.

S2

E2

S1

E1

new coordinate system

original axes

Figure 2: An example of INCA that requires non-linear coordinate transform

Let us now consider the case of gure 2. Here, no linear coordinate transform can realize
independence. A non-linear transformation, in order to obtain a new coordinate system such as
the one shown on the gure, is required. The algorithm that we will propose is able to deal with
non-linear problems.
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2 Previous works

The problem of blind separation of sources has been rst addressed by Jutten and Herault (Jutten
& Herault, 1988). Their algorithm, based on a linear neural network with backward connections,
has been recently published in english (Jutten & Herault, 1991). Recently, other algorithms that
may be faster from a computational point of view have been proposed (Comon, 1989). All the
works in this domain have addressed the case of linear mixtures.

In the linear case, we have:

�e�t� � A�x�t�
�s�t� � F �e�t�

where A and F are nxn matrix. The source separation algorithm tries to estimate the matrix
F, in order that �s�t� approximates as well as possible the sources �x�t�. More precisely, after
convergence, we should have �s�t� � D P �x�t�, where D is a diagonal matrix, and P a permutation
matrix. This indetermination is due to the fact that the algorithm only takes prot of the
independence of the sources, so it can only estimate the sources modulo a permutation and a
dilatation.

� In (Jutten & Herault, 1988), matrix F is estimated indirectely, under the form F � �I �C��1

where I is the identity matrix, and C a matrix with diagonal components set to zero. The
algorithm is an iterative one. For a problem with two sources, the basic iteration for
estimation of C is the following:

C�t� � C�t � 1�� �
�

0 f [s1�t � 1�]g[�s2�t � 1�]
f [s2�t � 1�]g[�s1�t � 1�] 0

�
(1)

�s�t� � [I � C�t�]�1�e�t�
The functions f and g are non-linear functions. The authors suggest f �y� � y3 and
g�y� � atan�10y�. In equation (1), �si �t� designs si �t� centered.

Jutten and Herault have proved that the matrix C that provides the separation is a
stable state of the algorithm. This algorithm doesn�t minimize any cost function, so its study
from a theoretical point of view is not obvious. However, recent theoretical and experimental
investigations have shown that the algorithm may not converge in some cases, depending
on the initial state, and on the statistics of the sources (Comon, Jutten, & Herault, 1991),
(Sorouchyari, 1991). When convergence is possible, the experimental results show that the
algorithm seems to converge in two steps: a rst phase provides decorrelation in a short time,
and then a slower phase provides independence.

5



Neural Networks, Vol. 5, No. 6, Nov-Dec 1992, pp. 937-947

� The method of Comon (Comon, 1989) is a direct one. It is based on the idea of establishing
a set of equations between cumulants of order 4 of �e and cumulants of order 4 of �s. This
is possible due to the linear assumption on the parametric form. Comon has shown that,
under this hypothesis of linearity, cancellation of the cumulants of order 4 of �s is sufcient to
provide independence of the components of �s. The algorithm solve the system of equations
with a least square method (the unknowns are the components of matrix F).

3 Proposed method

3.1 General ideas

We remind that we observe an instantaneous transformation �e � ���x�, possibly non-linear, of
independent sources x1� ���� xn. We know a parametric form of the transformation. Let us note
� the inverse of this parametric form. The problem is to estimate the parameters of �, in order
that the components of �s � ���e� approximate the components of �x modulo a permutation and a
distorsion (this indetermination is inherent to blind separation of sources, because of the weakness
of the hypotheses). This task will be achieved if the components of �s become independent.

The proposed algorithm is based on the ideas of backpropagation learning, in particular the
idea of minimization of a cost function, and backpropagation of a gradient. Furthermore,
the described experiments have been performed with a multi-layer perceptron, because this
architecture can represent a lot of parametric forms (in particular the degenerated case of the
linear transformation). However, there are major differences with traditional applications of
backpropagation. In particular, the cost function will be dened on the basis of statistics of the
obtained network outputs, and not on differences with desired outputs (such desired outputs are
unknown in blind separation problems, because no a priori information on the sources is available).

In the following, we will proceed in three steps:

1. We will built a measure of dependence of the components of �s (this measure must have nice
differential properties).

2. Then, we will dene a cost function, based on the measure of dependence.

3. Finally, we will design an algorithm inspired from backpropagation, in order to minimize this
cost function.
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It is clear that the parameters of the inverse parametric form previously mentioned are the weights
of the neural network. The global separation system can be schematized as shown on gure 3 .

s(t)e(t)

function

of the cost

computation

tuning

parameters

(parameters W  )

of the mixture

inverse parametric form

ij

Figure 3: The separation system

The activation functions of the neurons, the number of neurons and connections, and their
arrangement, are chosen in order to t the inverse parametric form �. Concrete examples will be
given in the experimental part of the paper.

3.2 Proposed measure of dependence

3.2.1 Notations

In the following, we will note:

��i � [

i�1� �� �
0� ���� 0� 1� 0� ���� 0� �� �

n

]T

R�1����n � E
�

S�1
1 ���S

�n
n

�
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M�1����n � E
�

S�1
1 ���S

�n
n

�
� E

�
S�1

1

�
���E

�
S�n

n

�

� R�1����n � R�1 ��1
���R�n ��n

3.2.2 Denition of a measure of dependence

The components of vector �s will be independent if, and only if:

�s1� ���� sn pS1���Sn�s1� ���� sn� � pS1�s1����pSn�sn� (2)

Where p is the density of probability. So we propose the following expression as a measure of
dependence:

� ��

��
���

� ��

��

�
��pS1���Sn�s1� ���� sn�� pS1�s1����pSn�sn�

�
�

n�

i�1

1�
2��i

e
� S2

i
2�2

i

�
�

2

ds1���dsn (3)

It is important to note that we have introduced a gaussian lter, that smooth the probabilities
(the symbol ��� designs the convolution product). The interest of this lter is to provide a
measure better suited to actual data. In particular, the effect of rounding errors or sensor errors
are smoothed, and we avoid strong variations of the dependence measure. This lter also avoids
divergence of the sum when discrete data are considered.

In practice, the measure (3) seems difcult to use, because it requires estimation of densities of
probability, and its differentiation is not obvious. So we propose to nd an expression equal to (3),
but which is easier to cope with. The idea is to perform transformations on (3) in order to suppress
the densities of probabilities in the expression.

We propose at rst to apply the Fourier transform on (3). The Fourier transform of a density of
probability is the characteristic function:

�S1���Sn�u1� ���� un� �
� ��

��
���

� ��

��
pS1���Sn�s1� ���� sn�e

� j �u1s1�����unsn�ds1���dsn

� E
�

e� j �S1u1�����Snun�
� (4)

One may easily verify that the Fourier transform of pS1���pSn is �S1����Sn . Hence, due to
Parseval�s theorem, and by applying well known properties of the Fourier transform, one can show
that (3) is equal to:
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� ��

��
���

� ��

��
� �S1���Sn�u1� ���� un���S1�s1�����Sn�sn� �2 e��

2
1 u2

1���e��
2
n u2

n du1���dun (5)

At this point, we can note that an alternative to gaussian ltering can be the suppression of the
high frequencies, by simply limiting the boundaries of the sum.

3.2.3 Expression of the measure of dependence based on the moments

We are now continuing to transform the form of the measure of dependence by developping
the characteristic function in Taylor expansion around �0. For the problem that interests us, this
expansion always exists, because we are dealing with actual signals. The expansion exists if and
only if the moments exist. But actual signals are always bounded, and the moments of bounded
random variables always exit.

�S1���Sn�u1� ���� un� �
�

�1����n

1

�1!����n!

��1������n�S1���Sn

�u�1
1 ����u�n

n
�0� ���� 0�u�1

1 ���u
�n
n (6)

and

�Si �ui � �
��

�i�0

1

�i !

��i�Si

�u�i
i

�0�u�i
i (7)

In these formula, by convention, the partial derivative of order 0 of a function is the function itself.
Hence, we have:

�S1���Sn�u1� ���� un���S1�s1�����Sn�sn� �
�

�1����n

T�1����n u�1
1 ���u

�n
n (8)

with:

T�1����n �
1

�1!����n!

�
��1������n�S1���Sn

�u�1
1 ����u�n

n
�0� ���� 0�� �

�1�S1

�u�1
1

�0����
��n�Sn

�u�n
n
�0�

�
(9)

Equation (4) allows to write:

��1������n�S1���Sn

�u�1
1 ����u�n

n
�0� ���� 0� � �� j��1������n E

�
S�1

1 ���S
�n
n

�

� �� j��1������n R�1����n (10)

and so :

T�1����n �
1

�1!����n!
�� j��1������n M�1����n (11)
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The expression of the measure of dependence becomes:

� ��

��
���

� ��

��
�
�

�1����n

T�1����n u�1
1 ���u

�n
n �2 e��

2
1 u2

1���e��
2
n u2

n du1���dun (12)

which is equal to :

� ��

��
���

� ��

��

� �

�1����n

�

�1����n

T�1����n T ��1����n
u�1��1

1 ���u�n��n
n

�
e��

2
1 u2

1���e��
2
n u2

n du1���dun (13)

And by taking prot of the linearity of the summation operator:

�

�1����n

�

�1����n

T�1����n T ��1����n

� ��

��
���

� ��

��
u�1��1

1 ���u�n��n
n e��

2
1 u2

1���e��
2
n u2

n du1���dun (14)

So:

�

�1��1
�1��1 e�en

���
�

�n ��n
�n��n e�en

T�1����n T ��1����n
J�1��1��1����J�n��n��n� (15)

where J2k�� � are the moments of a gaussian:

J2k�� � �
�2k�!

4kk!

�
2�

� 2k�1

By using (11), we obtain as expression of the measure of dependence:

��

�1�0

���
��

�n�0

��

�1�0

���
��

�n�0

G�1����n��1����n M�1����n M�1����n
(16)

where:

G�1����n��1����n �
n�

i�1

g��i � �i � �i � (17)

and:

g��� �� �� � 1

�!�!
��1�

���
2 J����� � i f � � � is e�en

� 0 i f not
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0 1 2 3 4 5 6 7 8

0 1 0 �250m 0 31�2m 0 �2�60m 0 163�
1 500m 0 �125m 0 15�6m 0 �1�30m 0
2 187m 0 �39�1m 0 4�56m 0 �366�
3 52�1m 0 �9�11m 0 977� 0
4 11�4m 0 �1�71m 0 167�
5 2�05m 0 �269� 0
6 313� 0 �36�4�
7 41�6� 0
8 4�87�

Table 1: The normalized rst coefcients of the measure of dependence

When at least one of the index increases, the coefcient G�1����n��1����n get closer and closer to 0
(see mathematical annex). This allows us to limit, in practice, the summation to a certain order.

Table 1 contains
�����1

�
2�

g��� �� �� for the rst values of the index (m � 10�3, � � 10�6):

3.2.4 Remarks

Expression (16) of the measure of dependence is a positive quadratic form (PQF), because it is
equal to (12). Consequently, it is null only when all the M�1����n are equal to zero (that means only
when the si are independent). Furthermore, we remind the reader that this expression is strictly
equal to (3), because no approximation has been done during the demonstration. This may be very
interesting for further research in this area, because expression (3) is easier to understand from a
human point of view.

We also remind that, in practice, the Taylor expansion has to be limited to a certain order
K . In that case, refering to (12) and (16), the measure of dependence is:

�

�1������n�K

�

�1������n�K

G�1����n��1����n M�1����n M�1����n (18)
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3.3 Denition of a cost function

Blind separation of sources will be realized by a multilayers perceptron, which input vector will
be �e, and output vector will be �s. The estimation of the parameters (the weights of the network)
will be achieved by gradient backpropagation. So, we have now to dene a cost function, and to
compute the gradient of this function. We propose the following cost function:

C � 1

2

�
n�

i�1

� E�Si � �2 �
n�

i�1

� E�Si
2� � 1 �2 �

�

�1������n�K

�

�1������n�K

G�1����n ��1����n M�1����n M�1����n

�
(19)

This cost function has been dened in such a way that the following constraints tend to be veried:

(C1)
�i � �1� ���� n�� E�Si � � 0

This constraint can always be achieved by backpropagation learning because it only needs
tuning the bias of the output neurons.

(C2)
�i � �1� ���� n�� E�Si

2� � 1

This constraint is absolutly necessary because, if it was missing, the simplest solution to
realize independence is to provide null outputs.

The values of the coefcients G�1����n��1����n are entirely determined by the standard deviations
�i of the gaussian lter. Because the outputs si tend to be centered and of unitary variance (due
to C1 and C2), the �i can be chosen equal. Our experiments have been performed with �i � 1.
A solution that may improve convergence, but that we have not experimentally evaluated, may
be to begin with quite a large value of the �i , for instance �i � 2�0, and to progressively reduce
this value during learning. The underlying idea is to reduce the smoothing effect during learning.
Doing that may also help to avoid local minima because the shape of the cost surface in the
parameters space change during learning.

Two ways of learning are possible: global learning, and continuous learning.

Continuous learning consists in slighly modifying the weights after each propagation of an
input vector �e�t� through the network. Statistics may be estimated via low pass lters. This kind
of learning is interesting when signals samples arrive in real time, and when storage capacities are
reduced.

12
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In global mode, a nite number of samples has been previously recorded. Statistics are
computed exactly on these data, and the weights are modied only after each vector �e has been
propagated through the network.

In the following, we will describe the learning algorithm for computation of the gradient in
the global mode. About computation in the continuous mode, only indications will be provided,
because from a formal point of view, it is very similar to global mode.

3.4 Learning in global mode

In global mode, the moments can be computed by averaging on all the available samples:

�R�1����n �
1

T

T�

t�1

S�1
1 �t����S

�n
n �t�

and we have:
�M�1����n � �R�1����n � �R�1 ��1

��� �R�n ��n

So, it is possible to write an estimation of the cost function as follows:

�C � 1

2

�
n�

i�1

� �R ��i
�2 �

n�

i�1

� �R2 ��i
� 1 �2 �

�

�1������n�K

�

�1������n�K

G�1����n ��1����n
�M�1����n

�M�1����n

�
(20)

The problem we have to solve is to compute the gradient. We can write:

� �C
�Wab

�
T�

t�1

n�

j�1

� �C
�Sj �t�

�S j �t�

�Wab

The backpropagation algorithm (Rumelhart, Hinton, & Williams, 1986) indicates how to compute
�Sj �t�

�Wab
. So we just have to determine a way to compute

� �C
�Sj �t�

.

� �C
�Sj �t�

� � �C
� �R �� j

� �R �� j

�Sj �t�
� � �C
� �R2 �� j

� �R2 �� j

�S j �t�
�

�

�1������n�K

� �C
� �M�1����n

� �M�1����n

�Sj �t�

� �R �� j

� �R �� j

�S j �t�
�
�
�R2 �� j

� 1
� � �R2 �� j

�S j �t�

�
�

�1������n�K

� �

�1������n�K

G�1����n��1����n
�M�1����n

�
� �M�1����n

�Sj �t�
(21)
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And for the derivative relative to S j �t�:

� �R �� j

�Sj �t�
� 1

T

� �R2 �� j

�S j �t�
� 2

T
Sj �t�

� �M�1����n

�S j �t�
� � �R�1����n

�S j �t�
�
� �R� j �� j

�Sj �t�

n�

l�1
l �� j

�R�l ��l

� I
�
� j � 0

�
�
��

1

T
� j S

� j�1
j �t�

�
��

n�

l�1
l �� j

S�l
l �t��

n�

l�1
l �� j

�R�l ��l

�
��

�
��

Where I
�
� j � 0

�
is 1 if � j � 0, and 0 if not.

And we nally obtain:

� �C
�Sj �t�

� (22)

1

T

�
�R �� j

� 2
�
�R2 �� j

� 1
�

S j �t�
�

� 1

T

�
���
���

�

�1������n�K
� j�0

� j S
� j�1
j �t�

�
��

n�

l�1
l �� j

S�l
l �t��

n�

l�1
l �� j

�R�l ��l

�
��
� �

�1������n�K

G�1����n��1����n
�M�1����n

�
�
���
���

3.5 Learning in continuous mode

In continuous mode, we propose to estimate the statistics with the help of low pass lters:

�R�1����n�t� � �1� ��S�1
1 �t����S

�n
n �t�� � �R�1����n�t � 1�

And we still have:
�M�1����n�t� � �R�1����n�t�� �R�1 ��1

�t���� �R�n ��n
�t�

It is possible to write an estimation of the cost as:

�C�t� � 1

2

��

i

� �R ��i
�t� �2 �

�

i

� �R2 ��i
�t�� 1 �2

�
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x1 probability
�
�

2 0.25
0 0.5�
2 0.25

Table 2: Characteristics of the rst source

� 1

2

� �

�1������n�K

�

�1������n�K

G�1����n ��1����n
�M�1����n�t� �M�1����n �t�

�
(23)

We nally obtain:

� �C�t�
�Sj�t�

� (24)

�1� ��
�
�R �� j

� 2
�
�R2 �� j

� 1
�

Sj�t�
�

��1� ��

�
��
��

�

�1������n�K
� j�0

� j S
� j�1
j �t�

�
��

n�

l�1
l �� j

S�l
l �t��

n�

l�1
l �� j

�R�l ��l

�
��
� �

�1������n�K

G�1����n��1����n
�M�1����n

����
��

4 Experimental results

4.1 Experimental conditions

We present experimentations performed with n � 2 sources in the global mode. The order of the
Taylor expansion is K � 4, and the standard deviations of the gaussian lter are �1 � �2 � 1.

The experimental results discussed in the following have been obtained with the sources used by
Comon in his experimentations (Comon, 1989). The characteristics of sources x1 and x2 are given
in tables 2 and 3

These sources (gure 4) are centered and of unitary variance. On the gures, an offset of 4.0 has
been put on the signals, for visualisation purpose only.
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X1X2

t

4.0

Xi + 4

39

8.0

Figure 4: The sources

x2 probability

�
�

0�3
0�7 0.7

�
�

0�7
0�3 0.3

Table 3: Characteristics of the second source

4.2 Automatic computation of the learning speed

First experiments have shown that obtaining convergence with a constant learning speed is
difcult. Furthermore, it is difcult to guess an acceptable value of this learning speed.

So we propose the following simple adaptation rule for the learning speed, that has been
used for the described experimentations. The basic idea is to replace the parameter �learning
speed� by a more understandable and stable parameter: �the relative decrease of the cost�. Let
us note �g the gradient, �W the weights vector, � the learning speed, C the cost, and d the desired
relative decrease of the cost at each iteration. A slight variation � �W of the weights vector will
cause a variation �C � �g�� �W of the cost (by denition of the gradient, and if the weights
modication is not too strong). But, according to the backpropagation algorithm, the weights
variation is � �W � ���g. So, we have:

�C � ����g�2
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If we want to have �C � �d�C , we must adapt the learning speed in the following way:

� � d�C

��g�2

In order to avoid problems in areas with very low gradient, an upper bound equal to 4.0 is imposed
on the value of �. This upper bound is arbitrary, but it has provided good results. We haven�t
evaluated other values. A better strategy is probably to impose an upper bound on the norm of the
vector � �W , but it has not been evaluated at present time.

4.3 The mixtures

� Comon�s linear mixture :
This is the mixture used for experimentations in (Comon, 1989).

�
e1

e2

�
�
�

0�32 0�95
�0�95 0�32

��
x1

x2

�
(25)

The inverse parametric form of this mixture is:
�

s1

s2

�
�
�

a b
c d

��
e1

e2

�
(26)

� Non-linear mixture in square with 8 unknowns:
�

e1

e2

�
�
�

0�32 0�95
�0�95 0�32

��
sgn���[�]2

sgn���[�]2

��
0�32 0�95
�0�95 0�32

��
x1

x2

�
(27)

So, this mixture consists in mixing the sources with a linear transformation, squaring
the components of the result (with preservation of the sign), and remixing with a linear
transformation. The inverse parametric form of this mixture is:

�
s1

s2

�
�
�

a b
c d

��
sgn���

�� � �
sgn���

�� � �

��
e f
g h

��
e1

e2

�
(28)

The multilayer perceptron used to separate this non-linear mixture is shown on gure 5. The two
neurons of the intermediate level are weighted summators followed by a non-linear function in
sgn���

����. The two neurons of the output layer are weighted summators only. The 8 unknown
parameters of the inverse of the mixture are the 8 weights of the neural network.
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input unit

neuron

input vector (e)

output vector (s)

Figure 5: MLP for separation of the non-linear mixture

4.4 Separation of linear mixtures

The neural network is a two layers perceptron with 2 inputs and 2 outputs. The neuron model is
linear. The average decrease asked on error is d � 10%.

Separation is very fast and requires only around 50 to 100 iterations. Experimentations have been
performed with various initializations of the weights, and no problem of local minima has been
detected.

An example of learning curve is shown on gure 6. Three areas can be distinguished on
this curve: a rst area of fast reduction of the cost (until iteration 20), then an area of difcult
convergence (iteration 20 to 40), and nally an area of fast convergence towards perfect separation.
We will come back on this point in the next paragraph because the same phenomenon has been
noticed in the non-linear case.
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iteration

cost

99

0.545

Figure 6: Evolution of cost during learning (linear mixture)

4.5 Separation of non-linear mixture in square with 8 unknowns

An example of the evolution of the cost during learning is shown on gure 7. The average relative
decrease asked on the cost has been d � 4%.

iteration

cost

1.663

700

Figure 7: Evolution of cost during learning (non-linear mixture)
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As in the linear case, the learning curve can be splitted into three steps. During the rst step
(the rst 100 iterations), fast decrease of error is observed. Then, we observe a step of difcult
learning (iterations 100 to 400), where the cost decreases very slowly, and sometimes oscillates.
Here, the learning rate saturates on its upper bound. This step may correspond to a at area of the
cost surface in the parameter space. This area may contain local minima, but (if they exist) they
don�t seem to be too deep because the algorithm has not been trapped in one of them. Finally, a
third step with fast decrease of the cost towards perfect separation is noticed (iterations 400 to 700).

E2E1

Ei + 4

39

t

8.0

4.0

Figure 8: Neural network�s input signals (the mixtures)

The input signals of the neural network are shown on gure 8 (it is the mixture of the sources).
The initial and nal output signals of the neural network are shown on gure 9 and 10. Analysis
of gure 10 shows that blind separation has succeeded, because we nd on the neural network�s
outputs the original sources modulo a permutation and a negation:

S1�t� � �X2�t�
S2�t� � X1�t�

To give an idea of required computing time, the separation of this non-linear mixture required 90
seconds on a Sun4 Workstation (with a program written in C, but not optimized at all).
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S2

S1

4.0

Si + 4

8.0

39

t

Figure 9: Neural network�s output signals in the initial state of the network

S2

S1

4.0

8.0

39

t

Si + 4

Figure 10: Neural network�s output signals at the end of the learning phase

4.6 Separation of a non-linear mixture corrupted by noise

Let us now examine robustness of the algorithm versus noise corruption of the observations (inputs
of the neural network). The mixture is the same than in the previous paragraph, but the inputs
of the neural network have been corrupted with an additive white noise of uniform density of
probability inside [�0�15��0�15]. The average relative decrease asked on the cost is still d � 4%.
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4.0

Ei + 4

t

39

8.0

E2E1

Figure 11: Neural network�s input signals corrupted by noise

iteration

650

1.745

cost

Figure 12: Learning curve in presence of noise

The input signals of the neural network are shown on gure 11 and the learning curve is shown
on gure 12. The segmentation of the learning phase in three steps is still observed. The learning
curve shows that separation has succeeded, despite both non-linearities and presence of noise.
This result conrms the robustness of the algorithm versus noise corruption of the observations.

Figure 13 shows the obtained output signals at the end of the learning phase. These signals
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S2
S1

t

Si + 4

4.0

8.0

39

Figure 13: Final neural network�s output signals (when fed with signals corrupted by noise)

are the original sources modulo a permutation and a dilatation. This conrms the success of
the separation process. Of course, these signals are corrupted by noise, because the algorithm
is a separation algorithm and not a noise reduction algorithm. Noise reduction is absolutely
impossible without additional hypotheses on the noise, and this is not the aim of our method. A lot
of noise reduction methods have been proposed in the litterature. If the noise is important, a noise
reduction algorithm may be placed on input or on output of the separation device, depending on
the available (or assumed) hypotheses on the noise.

5 Conclusion

We have proposed a new algorithm for blind separation of sources which is able to cope with
non-linear mixtures. Experimental results have been provided in order to illustrate and validate
the approach.

Good results, even in non-linear cases, have been obtained, as we have shown in the experimental
section. Furthermore, robustness of the algorithm versus noise corruption of the observations has
been experimentally shown. In presence of noise, the algorithm still separates the sources. But, of
course, it doesn�t reduct noise, because no hypotheses on the noise have been assumed.

At present time, the major limits of the algorithm are the following: convergence is not
guaranteed, because local minima are always possible, and the required computing time is

23



Neural Networks, Vol. 5, No. 6, Nov-Dec 1992, pp. 937-947

important. That means that a lot of theoretical work has still to be done in that eld. It is perhaps
possible to suppress some redundancies in the learning algorithm, and to study strategies to limit
the risk of being trapped in a local minima. The idea of changing the standard deviation of
the gaussian lter during learning may be an answer on that later point, because it would cause
dynamic distorsions of the cost surface.

Also, extension of the algorithm to convolutive (and not only instantaneous) non-linear
mixtures should be studied. This is an important point because, in many real applications, it is
difcult to get rid of the convolutive nature of most physical transmission channels.

Up to now, we haven�t tried to nd a theoretical explanation to the segmentation of the
learning curves in three phases, which has been noticed both in the linear and non-linear cases.
The study of this phenomenon may perhaps bring ideas to improve the algorithm.

Finally, we want to point out a major difference between the proposed algorithm and traditional
applications of backpropagation, because the cost function to minimize is not dened as a measure
of difference between obtained and desired outputs. In blind separation problems, the desired
outputs are totally unknown. Our cost function is based on the statistics of the obtained output
themselves. So, in this context, backpropagation is an unsupervised learning algorithm.
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Mathematical annex : Behaviour of the coefcients of the depen-
dence measure

We remind that we have the following approximation:

�! �
�

2�� ��e��
�

1� 1

12�

�

This approximation is valid even for low values of � (for � � 1, the error is only 10�3�.

G�1����n��1����n is a product of terms of the form :
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��1�

���
2

�� � ��!
2���

�
���

2

�
!

�
2�

�����1

If we take prot of the approximation previously mentioned, we obtain:
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When � or � tend to innity, this expression behaves as:

�� � �����2

���1���1

For instance, for � xed and � increasing up to innity, this fraction behaves as
�
�
2

��
, which is

equivalent to ��
�
2 . So, the coefcients of the dependence measure are approaching zero when at

least one of the index becomes large.
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