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Abstract: The paper presents a new analytical model for thin structural adhesives in glued tube-to-
tube butt joints. The aim of this work is to provide an interface condition that allows for a suitable
replacement of the adhesive layer in numerical simulations. The proposed model is a nonlinear
and rate-dependent imperfect interface law that is able to accurately describe brittle and ductile
stress–strain behaviors of adhesive layers under combined tensile–torsion loads. A first comparison
with experimental data that were available in the literature provided promising results in terms of the
reproducibility of the stress–strain behavior for pure tensile and torsional loads (the relative errors
were less than 6%) and in terms of failure strains for combined tensile–torsion loads (the relative
errors were less than 14%). Two main novelties are highlighted: (i) Unlike the classic spring-like
interface models, this model accounts for both stress and displacement jumps, so it is suitable for soft
and hard adhesive layers; (ii) unlike classic cohesive zone models, which are phenomenological, this
model explicitly accounts for material and damage properties of the adhesive layer.

Keywords: adhesive layer; butt joint; mode-I; mixed-mode; damage evolution; analytical solution

1. Introduction

Within the last decades, adhesive bonding became a very common assembly technique
in many industrial sectors, such as aeronautical (e.g., in composite aircraft to bond the
stringers to fuselage and wing skins to stiffen the structures against buckling [1]), civil (e.g.,
in glass-fiber-reinforced polymer pultruded beams [2] or in carbon-fiber-reinforced polymer
beams [3]), automotive (e.g., in both closures and structural modules [4]), and biomedical
engineering (to fix implants in bone tissue in orthopedic or dentistry surgery [5]), as an
alternative to conventional joining techniques, such as welding and riveting [6]. Adhesive
bonding provides several advantages, including reduced stress concentrations, higher
corrosion resistance, water tightness, and the ability to join materials with dissimilar
properties. Moreover, this technique is increasingly chosen by the transport industry
(automotive and aeronautics) because it allows the production of lighter structures, thus
reducing CO2 emissions. Nevertheless, adhesive bonding still presents some disadvantages.
One of the main concerns limiting the use of adhesive joints is their long-life durability
when exposed to service conditions [4]. Corrosion and aging may cause micro-cracking
phenomena that can be measured via non-destructive techniques [7]. Another drawback
is represented by the multifactorial and multiscale nature of the damage phenomena
occurring in the adhesive joints, which make it more complex to predict their strength.

In some structural polymeric adhesives, the tensile stress–strain behavior is typically
characterized by an initial linear-elastic phase, followed by softening and rupture. This
nonlinear constitutive behavior suggests that a micro-cracking process could occur: pre-
existing microcracks, generated by the adhesive preparation (manufacturing, thermal
treatment, etc.) and initially present in the linear-elastic phase, propagate during the
softening phase, causing debonding and failure [8].
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Generally, tube-to-tube butt joints are used to experimentally characterize the mechan-
ical properties of structural adhesives under combined tensile–torsion loads [9–11]. Despite
numerous experimental studies on this subject, it is still not possible to univocally define
the damage/failure behavior of adhesive layers (see the disadvantages listed above). For
this reason, a modeling approach can be very useful, and that is what this work proposes.

In numerical modeling, it is often suitable to avoid a volumetric description of the
adhesive layer in order to limit problems that can be involved (e.g., a mesh size that is
too small, mesh dependency, too large of a number of degrees of freedom, and too long
of a computational time). The classic strategy used for modeling damage in adhesive-
bonded joints is based on cohesive zone models (CZMs) [6], which are described by a
traction–separation (TS) law across the cohesive surface. Several TS laws of different
shapes (i.e., bilateral, trapezoidal, polynomial) have been proposed (see [12,13] and the
references therein), and they adequately describe the global response of adhesive-bonded
joints [14–17]. However, a crucial drawback of CZMs is that they adopt a phenomenological
approach, and thus, the model parameters describing the damage/failure behavior of
adhesives are not based on their physical properties (e.g., material properties, geometry).

To overcome this drawback, for the past few years, the authors have been working
on alternative TS laws, issued by an imperfect interface approach combining continuum
damage mechanics and asymptotic homogenization. These imperfect interface laws have
already established their effectiveness in taking into account the micromechanical proper-
ties of the adhesive, such as anisotropy [18], micro-cracking, and roughness [19]. Moreover,
they can describe the behavior of hard adhesive layers (as stiff as adherents) in which both
stress and displacement jumps occur [20–22]. Recently, the authors provided a new hard
imperfect interface model accounting for micro-cracking damage [23] via an evolution law
that is directly related to the mechanical properties of the adhesive.

As a novelty, this paper aims to apply the hard imperfect interface model cited above
to the case of adhesive layers in glued butt joints submitted to combined tensile–torsion
loads. In detail, a tube-to-tube butt joint configuration is chosen in order to provide an
analytical law that, once implemented in a finite element code, can simulate standard
characterization tests for structural adhesives.

The presentation of the analytical interface model and its original validation by com-
parison with experimental data by Murakami et al. [9] are the subjects of this paper, which
is organized as follows: the analytical model is presented in Section 2; its numerical imple-
mentation together with the chosen experimental data from [9] are detailed in Section 3;
the results are illustrated in Section 4, and finally, conclusions and perspectives of future
work are highlighted in the summary.

2. Analytical Method for Damage Prediction

After introducing the equilibrium problem of the tube-to-tube butt joint, a classical
solution is first introduced, corresponding to the perfect contact between the adherents and
modeling a very rigid adhesive. Next, a generalization of the classical solution is proposed,
taking into account the presence of a very thin deformable adhesive. The latter is described
by a model of an imperfect interface proposed in [22]. Micro-cracking damage within the
adhesive is described by using the Kachanov–Sevostianov (KS) model for micro-cracked
materials [24,25]. Damage evolution is accounted for by the evolution law obtained in [23]
via an asymptotic method.

2.1. Classical Solution for Perfect Contact between the Adherents

The butt-joint specimen is composed of two identical cylindrical adherents that are
joined together. The lower basis of the specimen is fixed, and the upper one is subjected to
combined tensile force F and torque T, as shown in Figure 1, where the dimensions of the
adherents are also shown. Under the simplifying hypotheses of perfect adhesion, small
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strains, and linear-elastic material behavior, the stress tensor in the adherents is given by
the classical relation

σ(x1, x2) = −
T
I0

(
− x2(e1 � e3) + x1(e2 � e3)

)
+

F
A
(e3 ⊗ e3), (1)

where ei is the versor of the i axis, i = 1, 2, 3, the symbol� is taken to denote the symmetric
dyadic product of vectors, and A and I0 are the cross-sectional area and the polar moment
of inertia, respectively. The stress tensor (1) is divergence-free, and the surface forces σn
vanish on the lateral surface of the cylinder, as n is the outward normal to the lateral
surface. The resultant vertical force and torque on the upper basis of the cylinder balance
the applied force F and torque T, respectively, so equilibrium is ensured.
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Figure 1. (a) Sketch of the tube-to-tube joint with the loading configuration. (b) Longitudinal and
traversal sections with dimensions.

Assuming the adherents to be made of the same linearly elastic isotropic material
with Young’s modulus E, Poisson’s ratio ν, and shear modulus G = E/(2(1 + ν)), the
homogeneous displacement field in the adherents corresponding to the stress (1) is

u0(x1, x2, x3) =
(
− F

A
ν

E
x1 −

T
GI0

x2x3
)
e1 +

(
− F

A
ν

E
x2 +

T
GI0

x1x3
)
e2 +

F
EA

x3e3. (2)

2.2. Generalized Equilibrium Solution for Imperfect Contact between the Adherents

The displacement field (2) is appropriate for a specimen made of two identical ad-
herents that are perfectly joined. To take into account the presence of a very thin elastic
adhesive without describing it geometrically in a numerical model, we propose the orig-
inal approach to impose an imperfect interface boundary condition that simulates the
macroscopic behavior of a very thin elastic adhesive [20]. Often, structural adhesives have
a stiffness that is comparable to the adherents’ stiffnesses; in this case their mechanical
behavior cannot be accurately described via a classic spring-like interface model (i.e., the
continuity of stresses and discontinuity of displacements), but a hard interface condition
also accounting for stress jumps is indicated more. For this reason, we assume the thin
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adhesive layer to be modeled by the following law of hard imperfect contact proposed
in [22]:

[[u]] = ε
(
(K33)−1

(
〈〈σσσe3〉〉 −Kα3〈〈u,α〉〉

)
− 〈〈u,3〉〉

)
(3)

[[σσσ e3]] = ε
((
−Kβα〈〈u,β〉〉 −K3α(K33)−1

(
〈〈σσσe3〉〉 −Kβ3〈〈u,β〉〉

))
,α

−〈〈σσσ,3 e3〉〉
)

, (4)

where ε is the thickness of the adhesive, and the symbols [[(·)]] and 〈〈(·)〉〉 are taken to
denote the jump and the average of the quantity (·) across the interface separating the two
adherents, respectively; the Greek indexes (α, β = 1, 2) are related to the in-plane (x1, x2)
quantities; commas denote the first derivatives, and the summation convention is used.

The transmission conditions (3) and (4) prescribe jumps in the traction [[σσσ e3]] and
displacement [[u]] fields across the interface between the two adherents, thus describing
the asymptotic behavior of a very thin deformable adhesive made of a general anisotropic
linear-elastic material with elasticity coefficients bijkl , which are related to the matrices
Kij, i, j = 1, 2, 3. If the adhesive is modeled as isotropic, with Young’s modulus Ē and
Poisson’s ratio ν̄, the matrices Kij have the form:

Kii =
Ē

2(1 + ν̄)

(2(1− ν̄)

(1− 2ν̄)
ei ⊗ ei + ej ⊗ ej + ek ⊗ ek

)
, i 6= j 6= k, (5)

Kij =
Ē

2(1 + ν̄)

(
ei ⊗ ej +

2ν̄

(1− 2ν̄)
ej ⊗ ei

)
, j 6= i. (6)

To take into account to the presence of the adhesive and enforce the transmission
conditions (3) and (4), we propose a generalized equilibrium solution, which is obtained
by modifying the displacement field (2) in the upper part of the tube-to-tube butt joint as
follows:

u(x1, x2, x3) = u0(x1, x2, x3) + [[u1]]e1 + [[u2]]e2 + [[u3]]e3, for x3 ≥ h + ε, (7)

where the jumps [[ui]], i = 1, 2, 3, possibly dependent on x1, x2, x3, have to be determined.
In the lower part of the tube-to-tube butt joint below the adhesive, for x3 ≤ h, the displace-
ment field is still given by (2).

In (7), the jumps [[ui]], i = 1, 2, 3, have to be chosen in order to satisfy the transmission
conditions (3) and (4). In the presence of the thin deformable adhesive, assuming that the
stress field is still given by (1) and substituting (1) and (5)–(7) into (3) and (4), we obtain:

[[u1]] = −εξG
Tx2

GI0
,

[[u2]] = +εξG
Tx1

GI0
,

[[u3]] = εξE
F

EA
, (8)

with

ξG =
G
Ḡ
− 1, (9)

ξE =
E
Ē

(
1− 2ν̄2

(1− ν̄)

)
−
(

1− 2νν̄

(1− ν̄)

)
, (10)

where Ḡ = Ē/(2(1 + ν̄)) is the shear modulus of the adhesive.
In view of (1), (2), (7), and (8), the generalized equilibrium solution is thus character-

ized by:



Technologies 2021, 9, 19 5 of 14

• The stress field (1), which is continuous across the adhesive and equilibrated by the
applied loads;

• A displacement field that is discontinuous across the adhesive, which is given by (2)
below the adhesive (for 0 ≤ x3 ≤ h) and by (7) above the adhesive (for h + ε < x3 ≤
2h + ε);

• A strain field that is continuous across the adhesive, which is given by the symmetric
part of the gradient of (2) (or (7)).

Notably, the displacement fields above and below the adhesive differ by a rotation
in the (x1, x2)-plane, given by the jumps [[u1]] and [[u2]], and by a translation along the
x3-axis, given by the jump [[u3]]. The rotation and the translation reproduce the shear
and axial deformations, respectively, of a very thin adhesive under the given applied load
acting on the tube-to-tube butt joint.

Finally, in the proposed generalized solution that takes the imperfect contact into
account, the stress distribution is assumed to be uniform, thus neglecting the effect of
stress concentrations on the behavior of the joint. This latter aspect is not addressed in the
present paper.

2.3. Micro-Cracking Damaging Adhesive Model

To model a micro-cracking damaging adhesive, we consider the micromechanical
homogenization approach proposed by Kachanov and Sevostianov [24,25] based on the
approximation of non-interacting micro-cracks. The elastic potential in stresses (comple-
mentary energy density) of the effective medium yields the following structure for the
effective modulus M, where M denotes any shear, Young’s, or bulk moduli:

M = M0(1 + Cρ)−1, (11)

where M0 is the modulus of the undamaged matrix or the initial modulus of the adhesive
before damage, ρ is the micro-crack density, thus representing a damage parameter, and the
constant C depends on the particular modulus M that is considered and on the orientational
distribution of defects. For a two-dimensional random distribution of circular voids, C = 3
in the Young’s modulus and

C =
(7− 5ν0)

2(1− ν2
0)

(12)

in the shear modulus, where ν0 is the Poisson ratio of the undamaged matrix [24].

2.4. Damage Evolution

Damage evolution is described as an accumulation of micro-cracks by assuming the
damage parameter ρ to increase with time t ≥ 0. The evolution of the micro-crack density
for the proposed model is described by the following kinetic equation, which was proposed
in [23]:

ηρ̇ =

ω− 1
2

K,ρ(ρ)

 〈〈u,1〉〉
〈〈u,2〉〉

[[u]] + ε〈〈u,3〉〉

.

 〈〈u,1〉〉
〈〈u,2〉〉

[[u]] + ε〈〈u,3〉〉


+

, (13)

where η is a positive viscosity parameter, a dot denotes time differentiation, ω is a strictly
negative parameter, u is the generalized displacement field defined by (7) above the
adhesive and by (2) below it, {·}+ denotes the positive part, and K,ρ(ρ) indicates the
component-wise derivative of the stiffness tensor

K(ρ) =

εK11 εK21 K31

εK12 εK22 K32

K13 K23 1
ε K33

 (14)

with respect to ρ. Note that K,ρ(ρ) also depends on the adhesive layer thickness ε.



Technologies 2021, 9, 19 6 of 14

The kinetic Equation (13) is a first-order ODE in the unknown damage evolution
function ρ = ρ(t) to be solved for the initial condition ρ(0) = ρ0. It is important to
emphasize that (13) is directly related to the intrinsic mechanical and damage properties
of the adhesive layer. In detail, η is a damage viscosity that influences the velocity of the
damage evolution, and ω is an energy threshold, which is similar to the energy of adhesion
of polymers [26], after which the damage evolution starts at the adhesive layer.

2.5. Stress–Strain Response

The aim here is to find the stress–strain response of the adhesive in the tube-to-tube
butt joint subjected to a combined tensile–torsion loading. The tensile stress σ and shear
stress τ in the adhesive layer are calculated as:

σ =
F
A

, τ =
T
I0

R, (15)

where R is the outer radius of the joint. The tensile strain ε and shear strain γ of the
adhesive are given by:

ε =
[[u3]]

ε
, γ =

√
[[u1]]

2 + [[u2]]
2

ε
, (16)

respectively, where [[u3]] is the axial displacement of the adhesive and the square root is
the circumferential displacement at the outer diameter of the adhesive. Substituting (8)
into (16), the normalized tensile stress–tensile strain and shear stress–shear strain are found
as follows:

σ/E = ξ−1
E ε, τ/G = ξ−1

G γ, (17)

where ξG, ξE are given by (9) and (10), respectively. Note that in (9) and (10), the moduli Ē
and Ḡ depend upon the micro-crack density ρ through the KS model (cf. (11)) as follows:

Ē = E0(1 + CEρ)−1, Ḡ = G0(1 + CGρ)−1, (18)

where G0 = E0/(2(ν0 + 1)) is the initial shear modulus of the adhesive. The damage
parameter ρ evolves via the kinetic Equation (13). By substituting (2), (5)–(7), (14), and
(18) into (13) and simplifying, we obtain the following evolution problem for the damage
parameter ρ = ρ(t) : {

ηρ̇ = {ω +F (ρ, F) + T (ρ, T)}+,
ρ(0) = ρ0,

(19)

with

F (ρ, F) =
(
C1 +

C2

(C3 + C4ρ)2

)( εF2

2A2E2E0

)
, (20)

T (ρ, T) =
εCGT2R2

2G0 I2
0

. (21)

The constants Ci, i = 1, 2, 3, 4, reported in Appendix A, depend on the elasticity coefficients
of the adherents E, ν, on the initial elasticity coefficients of the adhesive E0, ν0, and on the
constants CE and CG. Note that tensile and torsion loads are decoupled in (19). Finally,
since we are simulating force-controlled tests, the use of (15) allows us to eliminate the
tensile load F and the torque T in favor of the control variables σ(t) = σ̇t and τ(t) = τ̇t,
where σ̇ and τ̇ are the tensile and shear strain rates, respectively.

For pure torsion, i.e., for F = 0 and T 6= 0, the evolution problem (19) admits the
simple solution:
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ρ(t) =

{
ρ0, 0 ≤ t ≤ t0

ρ0 +
ω
η (t− t0) +

εCG τ̇
6G0η (t

3 − t3
0), t > t0

(22)

where t0 is the instant at which damage evolution begins:

t0 =
1
τ̇

√
−2ωG0

εCG
. (23)

Substituting (22) and (9) into the second of (17), the shear strain–stress response of the
adhesive is obtained:

γ =

{
aτ, 0 ≤ τ ≤ τ0
aτ + bτ(τ − τ0)

2(τ + 2τ0), τ > τ0
(24)

with

τ0 = τ̇t0 =

√
−2ωG0

εCG
, (25)

a =
1

G0
− 1

G
+ ρ0

CG
G0

, (26)

b =
εC2

G
6ητ̇G2

0
. (27)

For a pure tensile load, i.e., for F 6= 0 and T = 0, or for a combined tensile–torsion
loading, a general closed-form solution of the evolution problem (19) is not available.
However, it is possible to obtain a closed-form solution before damage initiation. Indeed,
in view of the positivity of the constants C1 and C2 in (20) (cf. the Appendix A), inspection
of (19) indicates that the instant t0 of damage initiation for a generic combination of tensile
and torsion loads takes the form:

t0 =

√√√√− ω[
C1 +

C2
(C3+C4ρ)2

]
εσ̇2

2E2E0
+ εCG τ̇2

2G0

. (28)

Note that for pure torsion (σ̇ = 0 and τ̇ 6= 0), (28) reduces to (23).
For t ≤ t0, the shear stress–strain response is still given by the linear part in (24), while

the tensile stress–strain response takes the following linear form:

σ =
(C5 + C6ρ0)

(C7 + C8ρ0 + C9ρ2
0)

ε (29)

where the constants Ci, i = 5, 6, 7, 8, 9 are given in Appendix A.

3. Numerical Implementation

The numerical simulations for the pure tensile and for a combined tensile–torsion
loading condition were carried out by numerically solving the differential problem (19)
using the commercial software Mathematica [27]. For pure torsion loading, the closed-form
solution (24) was used. Tables 1 and 2 show the geometrical and material parameters of the
joint specimen of the experimental study by Murakami and coworkers [9] that were chosen
to compare with those of the proposed model as an original validation. In [9], the adherents
were two S45C carbon steel cylinders joined by a one-component epoxy adhesive (XA7416,
3M Japan Ltd., Tokyo, Japan).
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Table 1. Geometrical parameters of the joint specimen [9].

Quantity Symbol Value Unit

Outer diameter D 26.0 mm
Inner diameter d 20.0 mm

Adhesive thickness ε 0.3 mm

Table 2. Mechanical properties of the joint materials [9].

Quantity Symbol Value Unit

Adhesive Young’s modulus E0 4.53 GPa
Adhesive Poisson’s ratio ν0 0.36 –

Adherents’ Young’s modulus E 200.00 GPa
Adherents’ Poisson’s ratio ν 0.30 –

The micromechanical parameters CE and CG in (18) were chosen to be equal to 3.00 and
to 2.98, respectively, the latter value being estimated using (12). The other micromechanical
parameters, i.e., the initial value of the damage parameter ρ0, the viscosity parameter η,
and the energy threshold ω, will be identified in the next subsections starting from the
experimental data from [9].

According to [9], two different stress rates were considered in the numerical analyses:
6.67× 10−2 MPa/s for the quasi-static (QS) condition and 1.00× 103 MPa/s for the high-rate
(HR) condition.

For pure tensile and torsion tests, the simulations were stopped at failure, i.e., when
the stress reached the tensile and shear limit strengths, respectively. For a combined
tensile–torsion test, the tensile and shear stresses were related using a loading angle θ:

θ = arctan
(τ

σ

)
. (30)

The tensile and shear strengths estimated experimentally in [9] for some values of the
loading angle are reported in Table 3.

Table 3. Experimentally estimated tensile and torsional (shear) strengths of butt-joint specimens
studied in [9].

Loading Loading Tensile Shear Failure Strain Failure Strain
Rate Angle Strength Strength in Tension in Shear

[deg.] [MPa] [MPa] [%] [%]

QS 0 61.8 – 4.0 –
HR 0 90.0 – 6.1 –
QS 90 – 53.2 – 37.0
HR 90 – 70.0 – 32.0
QS 18.0 61.0 19.9 2.15 2.85
HR 15.5 92.1 25.5 3.55 3.69

4. Results and Discussion

In what follows, a first validation of the proposed model is illustrated. Experimental
data obtained in [9] were chosen for comparison in order to highlight the capacity of our
model to reproduce the stress–strain behavior of adhesive layers under both pure and
combined loads for quasi-static and high-rate loading conditions.

4.1. Simulation of Pure Tensile Tests

Figure 2a shows the stress–strain curves of the adhesive layer in a pure tensile load
obtained by the proposed model for quasi-static (gray) and high-rate (black) loading (solid
lines), compared with the experimental curves by [9] (dashed lines). The experimental data
were extracted from Figure 9 in [9] by using the free online software WebPlotDigitizer [28].
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In view of the modeling approach proposed in the present paper, the experimental
curves in Figure 2a can be interpreted as a linear stress–strain response in analogy with a
brittle damage behavior, for which the accumulated damage slightly differs from the initial
damage ρ0. Accordingly, by fitting the experimental curves in Figure 2a into Mathematica
by using a linear model, we obtained the following slopes: 16.97× 102 MPa for the quasi-
static case and 17.83× 102 MPa for the high-rate case. From (29), the initial value of the
damage parameter, ρ0, was calculated as follows:

• ρ0 = 1.14 for the QS case;
• ρ0 = 1.07 for the HR case.

These two values are very close. Accordingly to our model, this would indicate a very
similar micro-crack density in the samples tested in [9], both in quasi-static and high-rate
loading conditions.

Thus, the proposed model is fully able to reproduce the stress–strain behavior under
pure tensile loading. Moreover, it is able to catch the influence of the loading rate that was
found experimentally in [9], meaning that the tensile strength is higher for high-rate load.
It is important to emphasize that this brittle damage behavior of structural adhesive layers
under tensile loads has been found in other experimental work, such as that of [11,29].

0 2 4 6 8
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(a)
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Figure 2. Stress–strain curves in pure loading conditions: (a) Stress–strain curves of the adhesive
layer under a pure tensile load obtained with the proposed model for quasi-static and high-rate
loading (solid lines) compared with experimental curves by [9] (dashed lines). (b) Stress–strain curves
of the adhesive layer under a pure torsion load obtained with the proposed model for quasi-static
and high-rate loading (solid lines) compared with experimental curves by [9] (dashed lines).
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4.2. Simulation of Pure Torsion Tests

Figure 2b shows the stress–strain curves of the adhesive layer under a pure torsional
load obtained with the proposed model for quasi-static (gray) and high-rate (black) loading
(solid lines) compared with the experimental curves by [9] (dashed lines). The experimental
data were extracted from Figure 10 in [9] by using the free online software WebPlotDigi-
tizer [28].

By fitting the experimental data into Mathematica by using a nonlinear model based
on (24), the following values were obtained for the parameters a, b, and τ0 :

• a = 1.58× 10−3 MPa−1, b = 1.05× 10−6 MPa−4, τ0 = 50.25 MPa for the QS case;
• a = 1.50× 10−3 MPa−1, b = 1.78× 10−7 MPa−4, τ0 = 64.97 MPa for the HR case.

Substituting these data into (25)–(27), the following values of the parameters ρ0, η,
and ω were calculated:

• ρ0 = 0.55, η = 2296.70 Ns/m, ω = −679.34 N/m for the QS case;
• ρ0 = 0.51, η = 0.90 Ns/m, ω = −1135.64 N/m for the HR case.

The theoretical curves were stopped at the failure strains—37% for the QS case and
32% for the HR case. As a result, the relative errors between the experimental values
(reported in Table 3 for pure torsion, i.e., for θ = 90◦) and theoretical failure strengths are
equal to 4.8% in the QS case and 5.5% in the HR case. On the other hand, after damage
initiation, i.e., for τ > τ0, both experimental curves exhibited a softening behavior, which
cannot be reproduced by the force-controlled theoretical model.

Both the experimental and theoretical stress–strain curves under pure torsion are
typical of a ductile damage behavior of the structural adhesive. The proposed model is
thus clearly able to accurately reproduce this kind of behavior in terms of both yielding
and failure stresses. A ductile damage behavior of structural adhesives in tube-to-tube
butt joints is commonly found in torsion experiments (see, for example, the work by
Kosmann and coworkers [10]). In addition, in the case of pure torsional tests, the yielding
and the failure stresses for the high-rate load were higher than those for the quasi-static
load (of almost 34% according to [9]), and the proposed model was able to catch this
experimental finding.

4.3. Simulation of Combined Tensile–Torsion Tests

Using the values of the micromechanical parameters ρ0, η, and ω identified in the
previous subsections for the pure loading cases, it was possible to solve the damage
evolution problem (19) and plot the corresponding stress–strain diagrams for a combined
tensile–torsion load. In particular, the experimental combined loading conditions from [9]
for θ = 18.0◦ under a QS load and for θ = 15.5◦ under an HR load (see Table 3) were
selected to be simulated via the proposed analytical model. The limit strengths in the
tensile and shear conditions were set up to stop simulations in the stress-controlled mode,
and the failure strains in tension and shear were obtained. The simulated stress–strain
curves are plotted in Figure 3; the tensile part is shown in Figure 3a and the torsional part
in Figure 3b. The corresponding experimental stress–strain curves are not available in [9],
so a direct comparison was not possible. However, it was possible to compare the values
of the strains at failure. For the QS loading condition (θ = 18.0◦), the simulations gave
failure strains of 2.14% in tension and 3.13% in torsion, providing acceptable relative errors
(0.46% and 9.82%) when compared to the failure strains estimated experimentally (2.15%
and 2.85%). For the HR loading condition (θ = 15.5◦), the simulations gave failure strains
of 3.08% in tension and 3.83% in torsion, again providing acceptable relative errors (13.24%
and 3.80%) when compared to the failure strains estimated experimentally (3.55% and
3.69%).

Finally, the simulated stress–strain curves for the combined tensile–torsion load ex-
hibited a brittle damage behavior. Unfortunately, it was not possible to find experimental
curves in the literature in order to make a comparison, so this and related aspects will be
investigated in further work.
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Figure 3. Stress–strain curves in combined tensile–torsion loading conditions: (a) Tensile stress–
strain curves of the adhesive layer obtained with the proposed model for quasi-static and high-rate
loading. (b) Torsion stress–strain curves of the adhesive layer obtained with the proposed model for
quasi-static and high-rate loading.

5. Summary

The behavior of thin adhesive layers in butt joints under combined tensile and torsion
loads was modeled by using an imperfect interface approach that merged continuum
damage mechanics and asymptotic homogenization. The proposed approach took micro-
cracking damage evolution into account, resulting in a ductile stress–strain behavior of
the adhesive for the pure torsional tests and in a brittle stress–strain behavior for the pure
tensile and combined tensile–torsion tests. In the case of pure torsion (ductile damage
behavior), a closed-form solutions was proposed. In the case of brittle damage behavior
(pure tensile and combined tensile–torsion loads), a closed-form solution was calculated in
the linear stress–strain domain. The comparisons with the experimental data from [9] gave
satisfying results in terms of the failure strains for pure and combined loads in both QS and
HR conditions. In all cases, the relative errors between the experimental and simulated
failure strains were found to be less than 14%.

The proposed model has some main limitations. First, stresses in the adhesive layer are
supposed to be uniformly distributed. This is not realistic, particularly at the boundaries
between the adhesive and adherents, where stress concentrations are known to occur [11];
therefore, the effect of the stress concentration on tensile strength is not discussed in this
paper. Next, for the sake of simplicity, the adhesive thickness was assumed to be constant
and uniform in the whole layer, and perfect thickness uniformity is almost impossible to
achieve in real applications. Nevertheless, it is possible to easily generalize the analytical
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model by accounting for a smooth–rough interface (cf. [19]). Lastly, the viscoplasticity and
viscoelasticity that are typical of structural adhesives were not considered in the proposed
model. These aspects could be the object of further work.

Despite these limitations, the model is able to accurately reproduce experimental
stress–strain behavior for both brittle and ductile damages. Future studies will focus on an
experimental protocol for the identification of the model parameters.
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Appendix A

Constants in (20):

C1 =
CGE2(ν0 + 1)(2CG(ν0 + 1)− 3CE)

CG(1 + ν0)− 2CE
, (A1)

C2 =
2(CG(ν0 + 1)(E− E0ν)− CE(Eν0 + E− 2E0ν))2

2CE − CG(ν0 + 1)
, (A2)

C3 = 1− ν0, (A3)

C4 = 2CE − CG(1 + ν0). (A4)

In the case of a bi-dimensional circular defect, one has CE = 3 and CG = (7 −
5ν0)/(2(1− ν2

0)), and the constants C1, C2 and C4 simplify to:

C1 =
2E2(1− 2ν0)(7− 5ν0)

(1− ν0)(5− 7ν0)
, (A5)

C2 =
(E(ν0(6ν0 − 5) + 1) + E0ν(5− 7ν0))

2

(1− ν0)(5− 7ν0)
(A6)

C4 =
1

(1− ν0)
− 7

2
. (A7)

Assuming −1 < ν0 < 1/2, the constants C1, C2 and C3 are positive, and C4 is negative.



Technologies 2021, 9, 19 13 of 14

Constants in (29):

C5 = −
EE2

0(ν0 − 1)
2(ν0 + 1)2 , (A8)

C6 = −
EE2

0(−2CE + CGν0 + CG)

2(ν0 + 1)2 , (A9)

C7 =
E0
(
E0(2νν0 + ν0 − 1)− E

(
2ν2

0 + ν0 − 1
))

2(ν0 + 1)2 , (A10)

C8 =
E0(CE(3E(ν0 + 1)− 2E0(ν + 1))− CG(ν0 + 1)(4Eν0 + E− E0(2ν + 1)))

2(ν0 + 1)2 , (A11)

C9 = CGE
(

3CEE0
2(ν0 + 1)

− CGE0

)
. (A12)

For CE = 3 and CG = (7− 5ν0)/(2(1− ν2
0)), the constants C6, C8 and C9 specialize as

C6 =
EE2

0(7ν0 − 5)
4(ν0 − 1)(ν0 + 1)2 , (A13)

C8 = −E0(E(ν0 − 11)(2ν0 − 1) + E0(2ν(ν0 + 1) + 7ν0 − 5))
4(ν0 − 1)(ν0 + 1)2 , (A14)

C9 =
EE0(2ν0 − 1)(5ν0 − 7)

2
(
ν2

0 − 1
)2 . (A15)
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