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Abstract

Surface Electro-MyoGraphic (sEMG) signals acquired on the forearm can provide information on the hand movement, which
can help control a prosthetic implant for disabled people. To do so, the sEMG signals must be accurately classified despite
the signals’ non-stationnarity, noise from sensors, involved muscles, and patient’s peculiarities. This study deals with the
classification of hand movement using sEMG signals, and our main goal is to compare several feature extraction methods. We
focus especially on the use of time-frequency domain for feature extraction and on several linear and non-linear methods for
the dimension reduction. Methods as the Discrete Orthonormal Stockwell Transform (DOST) and Multidimensional Scaling
(MDS) are applied for the first time on sEMG signals, and an extensive comparison study is performed on the combinations of the
proposed methods. Classical classifiers are then used on a public dataset in order to evaluate the applied methods. Both short-time
Fourier transform and Stockwell transform performed well, with respectively 90% and 91% accuracy, while promising results
are obtained with DOST and MDS with classification rate 87% and significant improvement in feature extraction computation time.

Keywords: sEMG classification, Time-frequency domain, Hand gesture, non-linear dimension reduction

1. Introduction

The loss of a limb produces a permanent disability which
causes a significant disruption to amputee’s life. This disability
has an impact of person mobility, self-care, self-image, commu-
nity and leisure involvement. According to the National Limb
Loss Resource Center [1], there are nearly 2 million people
living with limb loss in the United States alone, with approx-
imately 185 000 amputations occur each year, 70% of which
being due to trauma involving the upper limbs.

The use of prosthetic implant can replace some of the func-
tionality loss. These prosthetics can be controlled by users
in different ways as sound, movement, electrical activity, etc.
The most effective and natural way for controlling the pros-
thetic implant is by using the electrical activity of the muscles
which is called ElectroMyoGraphy signals (EMG) and espe-
cially surface EMG (sEMG) which has the advantage of being
non-invasive. However, some studies [2] observed that despite
of the intensive research in prosthetic hand control over the last
60 years, there is still no system that is commercially available
which satisfies all the needs of the users, and many users stop
using their prosthetic after several months. In order to improve
the usability of the prosthetics, more enhancement should be
done in the accuracy of the patient’s movement identification.

However, movements of the fingers, hand grip, or any other
hand gesture, result from combinations of multiple muscles
contractions in the forearm. Hence the resulting sEMG signal
will contain a significant similarities which make distinguish-
ing and classification of these sEMG a difficult challenge [3].
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This is even more challenging when the person has been am-
putated at the forearm, because the signal level in the residual
muscles is low [4]. In addition to that, the sEMG signals are
non-stationary and noisy [5] which makes processing of these
signals a non-trivial task.

In this paper, we aim to use sEMG to identify hand move-
ments patterns based on time-frequency features. We use the
sEMG signals from Ninapro Project [6], and time-frequency
domain for features extraction which are natural candidates for
non-stationary signals. Then we decrease the dimension of the
extracted features by applying different dimension reduction
methods (linear and non-linear), and we evaluate the improve-
ment of the methods using different classifiers.

The main contributions of this paper can be summarized as
follows:

• A detailed comparative study is carried out for feature ex-
traction from time-frequency domain and at the level of
dimension reduction methods.

• For the first time, the Discrete Orthonormal Stockwell
Transform (DOST) is applied to extract features from
sEMG signals, and we found that it yields competitive re-
sults while significantly reducing the computational bur-
den.

• We also introduce the use of Multidimensional Scaling
(MDS) as a non linear dimension reduction method which
gave promising results.

• The proposed methods are thoroughly evaluated on a pub-
lic dataset [6] and compared with state-of-the-art results.
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This paper is organized as follows: we give an introduction
about sEMG signals (1.1) and related work on using these sig-
nals to identify hand movement (1.2), then we explain briefly
the theoretical part of the methods we used in feature extrac-
tion (2.1) and dimension reduction methods (2.2). In the nu-
merical experiment section (3) we explain in details the used
data and the applied methods in the experiments. The results
we get from each method are shown with discussion in (3.5).
Finally, the conclusion of our study is given in section (4).

1.1. Electromyography Signals

EMG signals refer to the collected electric signal from mus-
cles, which is controlled by the nervous system and produced
during muscle contraction. An EMG signal is indeed the elec-
trical activity of a muscle’s motor units, which consist of two
types: surface sEMG, and intramuscular EMG [7]. For pros-
thetic control, sEMG is preferred as it is non-invasive and more
natural with no need for surgical process. Recording sEMG is
performed by placing several electrodes on the skin, and dif-
ferent studies were performed to obtain better results in this
area [8]. Over the past decades, different electrode placement
strategies have been investigated. Some researchers study the
use of multi-channel electrode arrays or high-density EMG
strategy, while others explore the precise anatomical position-
ing approach [9].

When a sEMG signal is being recorded from a muscle, vari-
ous types of noise will contaminate it, namely: inherent noise in
the electrode, movement artifact, electromagnetic noise, cross
talk, internal noise, inherent instability of the signal, and elec-
trocardiographic artifact [5]. Therefore, analyzing and classi-
fying EMG signals is very challenging because of the compli-
cated patterns of EMG which is influenced by the anatomical
and physiological properties of muscles [10]. These signals
are a non-stationary stochastic process, and their amplitude,
variance, energy, and frequency vary depending on contraction
level. Typically, the amplitude ranges from 50 µV to 10 mV
and frequency spectrum lies between 20 Hz and 500 Hz [11].

1.2. Related Work

1.2.1. Feature Extraction
In pattern-recognition-based control, the feature extraction

and classification are crucial steps. Feature extraction involves
transforming raw sEMG data into a feature vector that is used to
represent a given movement. Several features extractions meth-
ods were studied in this area which can be divided into three
major domains: time domain features, frequency domain fea-
tures, and time-frequency domain features.

Time Domain (TD) Features. TD features are the most com-
monly used in sEMG signal classification [12]. Their major
advantage is that they are fast to compute because no complex
transformation is needed. However, because TD features are
based on signal amplitude, they are relatively sensitive to noise
and artifacts [13]. The most common combinations are found in
Hudgin’s feature vector [14], which consists of the mean abso-
lute value, the waveform length, zero crossing, and signal slope

changes. Hudgin’s feature vector yields a relatively high clas-
sification accuracy, stability against changes in segment length,
low discrepancy over several sessions, and computational sim-
plicity [14][15].

In [16], Hudgin’s feature vector was used and fed to a Sup-
port Vector Machine (SVM) classifier (6 classes and 4 chan-
nels) and the resulting accuracy was 96%. Note that in this
case, the high classification accuracy must be tempered by the
relatively low number of classes.

In a different study [17], features of sixth-order autoregres-
sive model was added to Hudgin’s feature vector, with a Lin-
ear Discriminant Analysis (LDA) as a classifier. In this study
sEMG signals were recorded on 15 channels, the results of us-
ing these features were varied based on the number of classes
(movements), where it was 81.0% for 29 classes, and 88.8% for
17 classes, up to 97% for 9 classes.

Another study [18] used high-density sEMG signals, by
recording sEMG signals of the forearm using an array of 192
electrodes. Root mean square values were used as a feature for
each signal, and an average of 95% of classification rate for 9
classes is reached with a SVM classifier.

Despite the fact that TD features are simple to compute and
could perform well for prosthetic with a few degrees of free-
dom (i.e. less classes), the nature of sEMG signals and its
non-stationary characteristic make the TD features limited to
preserve intrinsic features of the sEMG signals.

Frequency Domain (FD) Features. FD features can be used
to estimate muscle fatigue, force production and changes in
muscle activation patterns [13]. Using FD features alone in
movement pattern recognition has not given good results com-
pared to TD features which outperformed the frequency fea-
tures and were more stable [13].

The studies addressing feature extractions show that using
the TD features gives better results than using FD features.
In [12] frequency domain features alone were tested, which are
mean frequency, Median frequency, 1st, 2nd and 3rd spectral
moments and frequency ratio. In this study, the FD features
classification accuracy was between 75-85% where most of the
used TD features accuracy was more than 85% for six upper
limb movements applied on the same dataset.

However, combining FD features with successful TD fea-
tures may yield more robust classification than TD features.
In two studies [19][20], appending the mean and median fre-
quency to TD features increased the robustness of the classifica-
tion. Different sets of features in noisy environment were tested
in study [20] and it was approved that by appending these two
TF features, the error rate decreased from 20% to 5-10% for six
upper limb motions.

Time-Frequency Domain (TFD) Features. TFD features con-
tains the combination of temporal and frequency information.
These features characterize the signal in a time-frequency plane
which allows an accurate description of the variability of fre-
quency over time, providing plentiful non-stationary informa-
tion about the sEMG signals.

Recent studies have shown that time-frequency analysis
methods can extract relevant information about sEMG sig-
nals [21][22], but on the other hand they yield a high-
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dimensional feature vector. Hence using all the features would
be numerically intractable and weakly relevant to the classifica-
tion. Therefore it is mandatory to perform a dimension reduc-
tion on these features. Several time-frequency methods were
used in the state of the art.

Short Time Fourier Transform (STFT) [23] is a well-known
time-frequency method which performs a mono-resolution
analysis by applying a fixed-size window on the signal. STFT
was successfully used to extract intrinsic features of the move-
ment identification, and led to high classification rate in case
of large training data when followed by linear or non-linear di-
mension reduction methods [22] where the average accuracy
was of 94.8% for six hand motions with 90% training set size.
However, it may be limited in term of time-frequency resolu-
tion for some non-stationary signals, where we need to adapt
the resolution of the analyzing window over the frequency of
the signal.

The Wavelet Transform (WT) overcomes the shortcomings
of frequency-invariant window in the STFT. The WT adapts
to the change in frequency in the signal by scaling the mother
wavelet. When the frequency in the signal increases, the
WT increases the resolution by narrowing the used wavelet.
In [15][24] the Continuous WT (CWT) was used and proved
to outperform TD features when applied on different datasets,
while in [25] Discrete WT (DWT) was proven to provide suf-
ficient information about the original signal, with a significant
reduction in the computation time compared to STFT.

The Stockwell Transform (ST) is a time-frequency analysis
method, and is a hybrid version between the STFT and the
CWT. It uses a multi-resolution Gaussian window by varying
its standard deviation over the analyzed frequencies [26]. Un-
like the wavelet transform, the ST preserves the phase infor-
mation of the signal in the same way as the Fourier transform.
A recent study [27] shows that ST features overcomes wavelet
packet transform features for sEMG classification, where three
levels of wavelet decomposition and symmlet mother wavelet
of order five were adopted in this research. The ST achieved
98.12% of average accuracy for six hand motions while wavelet
packet transform achieved 97.61% [27].

1.2.2. Dimension Reduction and Classification
The dimension reduction becomes an essential part when

dealing with TF features because of their high-dimensional
space. One of the most used dimension reduction technique
is the Principal Component Analysis (PCA) [28] as a linear
dimension reduction method. In [29] PCA was applied to re-
duce dimension of the wavelet packet transform features, and
the final classification accuracy result was 96% accuracy on 9
different classes.

Dimension reduction has been notably generalized since the
introduction of non-linear techniques, which do not require the
low-dimensional space to be Euclidean. A study [22] compared
PCA and Diffusion Maps (DM), when applied on STFT fea-
tures. This study concluded that DM outperforms PCA when
less training data is available. This point is important, as train-
ing effort is one of the challenges that faces prostheses develop-
ment. Another study [30] shows how the features’ dimension

reduction process can improve the classification of sEMG in
armband acquisition approach. This study found that, with re-
spect to several other dimension reduction techniques, the best
results in this study were obtained by using the Large Margin
Nearest Neighbor (LMNN) and a SVM classifier with 94% ac-
curacy for six wrist movements.

Regarding the classification step, several methods were used
to classify sEMG signals as k-Nearest Neighbors (k-NN) [31],
LDA [32], SVM [33], Neural networks (NN) [34]. A study [35]
made a comparison between k-NN and SVM when applied on
the TF features of sEMG signals. Both methods performed well
on these kind of features with better accuracy score for k-NN.
For 15 fingers’ motions, k-NN with PCA had average accuracy
of 93.76% while SVM with PCA had 88.88%.

2. Methods

We saw that TF features and DR play an essential part in
modern sEMG classification and they give promising results in
the literature. However, there is no comprehensive work on this
topic. In this paper, we will test a new time-frequency method
(DOST) and compare it to other classical TF methods, in com-
bination with several DR methods, in order to classify sEMG
signals.

Data used in this work [6] is recorded by surface electrodes
placed on the arm of the subject, and each movement is repeated
several times. The data is saved in a matrix E ∈ Rn×m, where
n is the total number of recorded samples on a channel for all
movements together, and m is number of channels (electrodes).
For a single observation e in that matrix, we have number p of
samples on each channel, where p is based on the chosen seg-
ment length, so that e ∈ Rp×m. In this section, we will detail the
methods used in our study at each stage of features’ extraction,
dimension reduction and classification.

2.1. TF Feature extraction

We apply three different TF transforms (STFT, ST, and
DOST) in order to evaluate the efficiency of these features
based on classification accuracy. We use STFT as it is used
in literature [23] and it yields promising results, while ST is
chosen because it extends STFT by performing multi-resolution
analysis. According to our knowledge, for the first time the
DOST is applied in this paper on the sEMG signals, and it has
the advantage of its efficient computational complexity.

2.1.1. Short Time Fourier Transform
STFT overcomes the disadvantages of the frequency domain

alone by considering frequency variations over the time, which
is necessary for sEMG as it is non-stationary signal. It is ap-
plied using a sliding window in which we consider the signal as
stationary. Therefore, the Fourier transform can be applied in
order to obtain the local spectrum [36] as follows:

STFT(τ, f ) =

∫ +∞

−∞

s(t)g(t − τ)e−i2π f tdt; (1)
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where s(t) ∈ L2(R) is the original signal, t, τ ∈ R refers to time,
f ∈ R∗ the frequency, and g(t) ∈ L2(R) is the applied window
function. We chose a Gaussian window for STFT transform,
in order to compare with ST. In addition, the Gaussian window
minimize the Heisenberg-Gabor relation which describes the
compromise between the time and frequency resolution. Using
the standard deviation σ, g(t) is written:

g(t) =
1

σ
√

2π
e
−t2

2σ2 . (2)

2.1.2. Stockwell Transform
The Stockwell transform is an hybrid version between the

STFT and CWT. It uses a multi-resolution Gaussian window
by varying its standard deviation over the analyzed frequen-
cies [26]. The ST, as defined originally by Stockwell et al. [37],
can be derived from Eq.(1) by replacing σ in (2) by 1/| f |. Then
the window function can be expressed as follows:

g(t) =
| f |
√

2π
e
−t2 f 2

2 . (3)

Then the ST is defined as [37]:

S T (τ, f ) =

∫ +∞

−∞

s(t)
| f |
√

2π
e
−(t−τ)2 f 2

2 e−i2π f tdt. (4)

Then, the discrete ST is defined as follows: let s[kT ] ∈
L2(R) with k = 0, 1, . . . ,N − 1 denote the discrete time series
corresponding to s(t) with a time sampling interval of T . The
discrete Fourier transform (DFT) of s[kT ] is obtained as:

S [
n

NT
] =

1
N

N−1∑
k=0

s[kT ]e
−i2πnk

N ; (5)

where n = 0, 1, . . . ,N − 1.
By setting f = n/NT and τ = jT in Eq(4), and by writing the

ST as a convolution product, we can get a direct link between
ST and the Fourier transform of the analyzed signal S and the

Fourier transform of the Gaussian window e
−2π2m2α2

n2 as follows :

S [ jT,
n

NT
] =

N−1∑
m=0

H[
m + n
NT

]e
−2π2m2α2

n2 e
i2πm j

N ; (6)

which is optimized for implementation with respect to Eq. (5),
because of its relation to FFT.

2.1.3. Discrete Orthonormal Stockwell Transform (DOST)
For a signal of length N, there are N2 Stockwell coefficients,

and their computation has a O(N) time complexity. Hence,
computing all N2 coefficients of the ST has a computational
complexity of O(N3), so the ST gets very expensive for high-
dimension space.

The DOST prunes the redundancy in within the ST. Indeed,
since lower frequencies have longer periods, they can cope with
lower sampling rates. Hence, the DOST down-samples the low
frequencies. Conversely, high frequencies have a higher sam-
pling rates.

The DOST takes advantage of this sample spacing paradigm,
and distributes its coefficients accordingly. It does so by con-
structing a set of N orthogonal unit-length basis vectors, each
of them targeting a particular region in the time-frequency do-
main [38][39]. Thus the DOST representation can be defined
as the inner products between a time series s[kT ] and the or-
thonormal basis functions defined as function of [kT ], with the
parameters ν (a frequency variable locating the center of a fre-
quency band), β (defining the frequency resolution), and τ (for
time localization):

S h[kT ] = S (τT,
ν

NT
) =

N−1∑
k=0

h[kT ]S [ν,β,τ][kT ]; (7)

where:

S [ν,β,τ][kT ] =
ie−iπτ

√
β

e−i2π( k
N −

τ
β )(ν− β

2−
1
2 )
− e−i2π( k

N −
τ
β )(ν+ β

2−
1
2 )

2 sin[π( k
N −

τ
β
)]

. (8)

The following rules needs be applied to the sampling of the
time–frequency space to ensure orthogonality [39]

• τ = 0, 1,...,β-1.

• ν and β must be selected such that each Fourier frequency
sample is used once and only once.

2.2. Dimension Reduction

The final output of the features extraction is F ∈ RN×k where
N is the number of observations and k is the number of TF fea-
tures for each observation. F contains all observations’ fea-
tures, and it belongs to a high dimensional space (typically,
k ≈ 3 × 106): this makes dimension reduction a mandatory
step. In this paper, we apply both linear and nonlinear methods
in order to study the best approach that should be used in this
area.

Each dimension reduction method takes the features’ matrix
F ∈ RN×k as an input and yields the reduced features’ matrix
Y ∈ RN×d where d � k.

A baseline for dimension reduction consists in Principal
Component Analysis (PCA), which is one of the most popular
linear dimension reduction [28].

2.2.1. Multidimensional Scaling (MDS)
MDS [40] methods aim to reduces the dimension of the data

by using only the dissimilarities measures between observations
rather than using the data points. The idea is to find a lower-
dimensional representation of the data that preserves the pair-
wise distances as well as possible [41].

Nonclassical multidimensional scaling creates a configura-
tion of points whose inter-point distances approximate the given
dissimilarities. In our study we used non-metric scaling which
is designed to relax this condition. Instead of trying to approxi-
mate the dissimilarities themselves, non-metric scaling approx-
imates a nonlinear, but monotonic, transformation of these dis-
similarities. Because of the monotonicity, larger or smaller
distances on a plot of the output will correspond to larger or
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smaller dissimilarities, respectively. Nonmetric MDS creates
a configuration of points whose inter-point distances approx-
imate a monotonic transformation of the original dissimilari-
ties [40][42].

The steps of MDS are the following [43]:

• From the features matrix F, we calculate the inter-point
distances matrix D ∈ RN×N , the elements of D denoted di j

are, ∀i, j ∈ {1, . . . ,N}:

di j = ‖Fi − F j‖2 where Fi, F j ∈ F (9)

• From D, we form the matrix A so that ∀i, j ∈ {1, . . . ,N}:

ai j = [−
1
2

d2
i j] (10)

• Then we apply double centering:

B = HAH (11)

where H is the centering matrix: H = I − 1
N 1N1T

N with 1N

a vector of ones.

• Next, we calculate the spectral decomposition of B

B = VΛVT (12)

where Λ is the diagonal matrix formed from the eigenval-
ues of B, and V is the matrix of corresponding eigenvec-
tors. To get the embedded features in the p−dimensional
space, we take the first p eigenvalues as Λp and first p
eigenvectors asVp

• The new embedded features matrix Y is:

Y = VpΛ
1
2
p (13)

The new dimension p � k should be chosen so that features
still preserve intrinsic characteristics of the observation, while
removing weakly-relevant or redundant information.

2.2.2. Isomap
Isomap [44] stands for isometric mapping, and assumes that

the data in the high-dimensional space lies on some manifold.
Isomap is a non-linear dimension reduction method which aims
at preserving the geodesic distances in the lower dimension. It
constructs a graph that approximates the geodesic distances of
the points in the manifold, then it considers this graph as an
approximation of the manifold.

In our case, the manifold is the feature matrix F ∈ RN×k,
containing the TF features. The first step in Isomap is to
compute the inter-point Euclidean distances matrix D ∈ RN×N

(Eq. (9)) between each element of F. Then, we define the ini-
tial distance matrix P ∈ RN×N

+ such that each element pi j is,
∀i, j ∈ {1, . . . ,N}:

pi j =

pi j, if F j belongs to the u nearest neighbors of Fi

∞, otherwise
(14)

P serves as an adjacency matrix in order to build a graph G
which approximates the manifold supporting F.

In its second step, Isomap estimates the geodesic distances
between all pairs of points by computing the shortest path on G
using Dijkstra’s algorithm. This yields a geodesic distance ma-
trix DG ∈ R+

N×N , which represents the new kernel of the initial
manifold. Finally, we calculate the spectral decomposition of
DG and the new embedded features matrix Y in the same way
as in Eqs. (12,13).

2.2.3. Diffusion Maps (DM)
DM aims to reduce the dimension of a high-dimensional

dataset while preserving the local and global geometry [22].
The kernel in DM method (Gaussian kernel) defines the connec-
tivity of each point with its neighbourhood, where this connec-
tivity measure drops quickly to zero for weak connected neigh-
bours. Using a Gaussian kernel has special characteristics:

• Values in the kernel decrease with distance and goes to
zero for far points which more likely belong to different
cluster or kind.

• It is bounded between zero and one, so it is less sensitive
to abnormal observations.

The first step in this method is to calculate the positive weight
matrix W ∈ RN×N

+∗ such that wi j is, ∀i, j ∈ {1, . . . ,N}:

wi j = e−
‖Fi−F j‖

2
2

2σ . (15)

Then, a normalized kernel matrix A ∈ RN×N
+∗ is computed,

∀i, j ∈ {1, . . . ,N}:

ai j =
wi j

N∑
i=1

wi j ×
N∑

j=1
wi j

(16)

After that we produce the Markov transition matrix M ∈

]0, 1]N×N such that ∀i, j ∈ {1, . . . ,N}:

mi j =
ai j

N∑
i=1

ai j

(17)

M is a normalized version of A so that it is analog to a proba-
bility of moving from Fi to F j.

The final step is similar to previous the dimension reduction
methods, as we calculate the spectral decomposition of the ma-
trix M and the embedded features matrix Y , see Eq(12,13).

2.3. Classification
Several classification algorithms have been used in sEMG

signals classification with different combinations of features
and classifiers [10][13][45]. In order to evaluate the meth-
ods we use in features extraction and dimension reduction, we
choose three of the most used classifiers in the literature:

• k-nearest neighbors (k-NN) algorithm, which classifies
data point based on the points that are nearest to it [31]
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• Linear discriminant analysis (LDA), which is based on the
probability that a point belongs to each class. The point is
classified as the class with the highest probability which is
estimated using Bayes Theorem [32].

• Support vector machine (SVM), which tries to project the
feature space into a larger dimension space, by using a ker-
nel function, in order to separate the transformed data lin-
early. SVM doesn’t support multi-class classification na-
tively. It supports binary classification and separating data
points into two classes. Multi-class SVMs (MCSVM) are
implemented by combining several binary SVMs [33][46].

In the following, we will compare the results of these three clas-
sifiers in combination with different TF and DR methods.

2.4. Main Algorithm

Starting from raw sEMG data, the main steps of the proposed
algorithms in our paper are the following:

• Data normalization: we first normalize the data so we get
standard deviation 1, and mean values 0 on each channel.
The normalized data is S ∈ Rn×m, where m is the number
of channels and n is the total number of signal’s samples
on each channel, will be used in features extraction.

• Time-frequency features extraction: time-frequency trans-
form is applied on the normalized signals of each channel.
Then for each observation, we combine the result into a
single vector of length k. The resulting features matrix for
all observation is F ∈ RN×k where N is number of obser-
vations (data points).

• Dimension reduction of the features space: we apply di-
mension reduction methods to transform the feature matrix
F ∈ RN×k into a more compact Y ∈ RN×d where d � k.

This algorithm is summarized in figure 1.

3. Numerical experiments

3.1. Data

In order to evaluate the chosen methods we used the database
provided by the Ninapro Project [6]. The advantages of this
database is that it contains recorded data for wide range of
movements and for many subjects, which provides good re-
source for training and testing. All this data is recorded in
a unified format which is useful when comparing our applied
methods. We chose exercise 1 from database 2, which con-
tains 17 different basic movements of fingers and wrist. The
sEMG signals are provided together with their hand gestures.
Each movement in the exercise is repeated 6 times, where each
subject was asked to repeat movement and hold position for 5
second, followed by 3 second of rest. The muscular activity is
sampled at a rate of 2 kHz by m = 12 electrodes placed on sub-
ject’s arm. The recorded sEMG data is saved into the matrix
E ∈ Rn×m where n is the number of recorded samples on one
channel. Figure 2 shows the list of these basic hand moves.

Normalized sEMG S ∈ Rn×m

Features Extraction

STFTSTDOST

Dimension reduction

PCADM IsomapMDS

Classification

SVMLDAk-NN

Movement’s class

F ∈ RN×k

Y ∈ RN×d

Figure 1: The main algorithm of the paper. It shows the data flow starting from
the normalized sEMG signals; and how the data processed until the classifica-
tion. In this paper, we compare the different combination possibilities for each
step.

3.2. Feature extraction
3.2.1. Feature’s sliding window

Due to real-time constraints, an adjacent segment length plus
the processing time of generating classified control commands
should be equal or less than 300 ms [47], while the segment
should be long enough to have sufficient features for classifica-
tion. Therefore a tradeoff in response time and accuracy should
be considered when selecting the window length. In our ex-
periments we chose the window length equal to 250 ms with
125 ms overlapping as it is used in studies with similar con-
straints [48][49][50]. The sampling frequency is 2 kHz, for
each observation we get 12 windows (i.e. 12 electrodes) with
250 ms length. In figure 3 we can see an example of observation
windows on one of the channels.

3.2.2. TF features
After segment extraction we get 12 windows for each single

observation. We apply the TF method on each of them, and then
we yield the resulting matrix into a vector. Finally we combine
all these 12 vectors into one vector Fi which represents the TF
features of this observation Fi ∈ Rk where k is the number of
TF features of a single observation. For each observation in the
dataset, we extract the features’ vector in the same way, then we
save it into the feature matrix F ∈ RN×k where N is the number
of observations.

We use a sampling frequency of 2 kHz, with a frequency
range between 1 and 200 Hz, as the usable energy of sEMG

6



Figure 2: Visual depiction of the 17 hand gestures considered in our study, based on the NinaPro database [6]
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Figure 3: Example of recorded signals on channel 1 for the 17 movements (see
2). TF of the highlighted movement are shown in Fig.4.

signal is dominant in this range.
Given these values, the number of TF features k on a single
observation is k ' 3.105 for STFT and ST, while k ' 6.103 for
the DOST. For the STFT we choose empirically the value σ =

0.03 (see Eq. (2)) since it gives a good compromise between
time and frequency resolutions. For the ST, we keep the original
version where σ = 1/| f |. Similarly, for the DOST, the original
version proposed by [39] is applied in this paper.
Figure 4 depicts an instance of STFT, ST, and DOST transforms
applied on the same sample.

Note that in practice, we observe a significant drop in com-
putation time when using the DOST, which takes around 8%
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(a) STFT transform
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(b) ST transform
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(c) DOST transform, rearranged to give a TF representation.

Figure 4: TF transforms examples: to the left is movement 3 - channel 1, to the
right is movement 7 - channel 1. Movements are shown in figure 2

of the required time for STFT or ST (table 1). In addition the
DOST output lies in a lower-dimensional space.

Method Time(ms)
STFT 1.75

ST 1.60
DOST 0.13

Table 1: TF feature computation time on window of one channel, calculated as
an average over all 39360 samples windows in the dataset

3.3. Dimension reduction
For all methods applied in dimension reduction, the input is

the features matrix F ∈ RN×k, with k depending on the method
used in previous step. The number of features which we want
to reduce the space into is important as selecting more features
will lead to over fitting in the classification, and selecting less
than needed will lose valuable data in the features and in both
cases the classification accuracy will be worse.
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(b) MDS
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(c) Isomap
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Figure 5: Preserved variance by number of features in the embedded space

For PCA, the dimension of the new embedded space is de-
cided based on the preserved variance in Figure 5a we see
the preserved variance by features number and the slop which
presents the changing rate of the preserved variance. We test
different values of embedded features number in a range where
preserved variance stop increasing rapidly. Finally, we choose
the value of d with the best accuracy (figure 7).

For the non-linear methods, the original space of the features
matrix is replaced by a kernel of paired similarity/dissimilarity,
and then PCA is applied on this kernel. Therefore, we use the
variance of the new kernel as a factor for choosing the new di-
mensions. In each case we approved our concept by testing val-
ues that belong to interval where the ratio between preserved
variance and features number is increasing significantly by fea-
tures number increment. Figures 5b, 5c, 5d show relation be-
tween the preserved variance and the number of the features in
the embedded space for kernels of MDS, Isomap, DM respec-
tively. and figure 7 shows classification accuracy by number of
embedded features for non-linear methods.

Isomap requires the setting of an additional parameter,
namely the value u (number of neighbours to be considered
when building the graph) which gives best results in classifi-
cation, so we run our tests for all u values [10, 300] as values
more than that will leads to multiple clusters being considered
as neighbours in Isomap algorithm. We chose u = 220 based
on this test as shown in figure 6.
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Figure 6: Isomap - Classification accuracy by number of neighbours in Isomap
algorithm

3.4. Classification

For the k-NN classifier, we choose value of 3 nearest neigh-
bors, as it gave better results on our data, and for SVM, we
choose the Gaussian kernel function and combine several one-
versus-one of multiple binary SVMs. Each combination is eval-
uated based on K-fold Cross-Validation with value K = 5.
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Figure 7: Classification accuracy by features number

3.5. Results and Discussion

A summary of the classification accuracy obtained by vary-
ing TF, DR and classification methods, averaged over five dif-
ferent subjects, is given in table 2. As we see in the table, both
STFT and ST are approximately giving the same performance
with slight advantage for the ST features. The best combination
we got was by using ST features and PCA for dimension reduc-
tion and k-NN as classifier which yields a 90.96% accuracy.

Comparing TF methods. As we see from the results, ST per-
formance is slightly better than STFT due to its multi-resolution
nature, also it adapts better to the variation of the frequency
content of the sEMG signal comparing to the STFT, which can
enhance the quality of the extracted features. DOST gives less
accuracy with no noticeable difference from both STFT and
ST. DOST preserves information in time-frequency domain in a
non-redundant approach (due to the used orthogonal basis) and
it has a O(N) time complexity (to be compared to O(N3) for
other TF methods) that’s explains why in our practical experi-
ments the DOST was more than 10 times faster on our testing
platform1 (see table 1). This criteria is an important advantage
for the DOST as it makes it possible for real prosthetic appli-
cation when processing time is very critical factor and the pro-
cessing power is limited. However, rigorously speaking, the

1Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz - 64 GB Ram
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DOST is not exactly the orthonormal version of the ST. As
shown in [51], the classical DOST version applies the equiv-
alent of a boxcar window and not a Gaussian one as ST. This
can explain the slightly decreasing performance for the classi-
fication rate for the DOST.

Comparing DR methods. For the dimension reduction meth-
ods, PCA yields better results than non-linear dimension reduc-
tion methods, then comes MDS which outperformed Isomap
and DM. The proposed method MDS still performs less than
PCA, but based on a study [22] which compared PCA with
DM on STFT features; it was proved that non-linear dimen-
sion reduction outperforms PCA when less training data is used.
Training data size is an important factor as it reflects the time
and effort needed by the amputee to be able to use his prosthetic.
Non-linear dimension reduction methods is based completely
on the constructed kernel that describes similarity/dissimilarity
between paired observations, and the fact that they perform less
that PCA could be because that we need better way to measure
the similarity between observations.

Comparing classification methods. k-NN classifier is giv-
ing better classification accuracy. These results is consistent
with some studies which did comparison between classifiers on
sEMG signals. In [35] both k-NN and SVM were applied on TF
features with PCA as dimension reduction method and k-NN
outperformed SVM. Another study [52] did comparision be-
tween k-NN and LDA classifiers on sEMG signals of wrist mo-
tions and they concluded that k-NN has better average recogni-
tion rate.

For the purpose of comparing combinations of TF methods
with DR methods, we observed that the methods combination
that leads to better accuracy using k-NN classifier is also giving
better accuracy than other methods combinations using LDA
and SVM, which means, changing the classifier will not pro-
motes one combination over the other.

Other studies on the same dataset. We can compare the TF
features to other TD and FD features, by comparing to other
studies using TD or FD features on the same dataset and same
exercises. In [53] different combinations of TD features were
tested with different classifiers on the same dataset. Classifica-
tion, using a k-NN classifier, yields then a 85% accuracy. An-
other study [54] used TD with FD features (RMS and median
frequency) with paraconsistent artificial neural network clas-
sifier and achieved a 76,0±9,1% accuracy. Comparing these
results to our study, we proved that TF features outperform
TD and FD features, even when using the time-efficient DOST
method.

4. Conclusion

We applied different kinds of TF features and proved their
efficiency for sEMG classification problems over TD features.
We proposed using DOST which is time-efficient with no sig-
nificant drop in accuracy, and that makes it applicable in real
prosthetic application. We also proposed using MDS as non-
linear dimension reduction method, and the importance of non-
linear methods comes from the fact that they require less train-
ing data, which is one of the problems that face the develop-

TF DR d Classifier Acc. (%) Time(s)

STFT

PCA 18
k-NN 90.05 167.73
LDA 81.78 167.75
SVM 84.48 168.75

MDS 14
k-NN 87.88 91.14
LDA 77.76 91.18
SVM 82.84 92.10

Isomap 14
k-NN 79.17 688.00
LDA 73.50 688.40
SVM 75.03 689.50

DM 14
k-NN 86.09 95.44
LDA 79.42 95.48
SVM 83.17 96.98

ST

PCA 15
k-NN 90.96 179.52
LDA 83.62 180.00
SVM 85.63 181.20

MDS 11
k-NN 88.99 89.54
LDA 77.60 89.98
SVM 82.58 100.40

Isomap 11
k-NN 81.10 695.37
LDA 73.11 695.80
SVM 75.11 696.73

DM 11
k-NN 87.91 87.92
LDA 82.17 88.35
SVM 84.70 89.44

DOST

PCA 11
k-NN 88.08 15.65
LDA 80.40 15.69
SVM 82.31 16.28

MDS 10
k-NN 87.13 28.21
LDA 72.68 29.03
SVM 75.74 29.64

Isomap 10
k-NN 76.88 589.33
LDA 70.23 589.81
SVM 72.73 590.73

DM 10
k-NN 85.22 13.42
LDA 78.14 13.77
SVM 81.60 14.80

Table 2: The final classification results of all combinations of the used meth-
ods with their computation time. The classification rate for each combination
were calculated using cross-validation method and an average of accuracy for 5
subjects. TF: time-frequency method, DR: dimension reduction method, d: the
number of features in the embedded space, Acc.: the classification accuracy,
Time: the overall time for feature extraction, dimension reduction and training.

ment of prosthetic. In this study we made extended review
about combinations of TF features and dimension reductions
method and provided these combination results applied on the
same data. The best combination is achieved by using ST with
PCA and k-NN where the classification accuracy is 90.96%.
Taking the computation time in consideration promotes using
DOST with PCA and k-NN where the classification accuracy is
88.08%.

This study should help in taking decisions about choosing the
TF and dimension reduction methods, and pave the way to more
advanced studies in one or more of these combinations. Fu-
ture work will be about non-linear method optimizing to more
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suits the used features, besides to more experiments on cross-
subjects features using these methods.

References

[1] K. Ziegler-Graham, E. MacKenzie, P. Ephraim, T. Travison, R. Brook-
meyer, Estimating the prevalence of limb loss in the united states: 2005
to 2050, Archives of physical medicine and rehabilitation 89 (3) 422–429.
doi:10.1016/j.apmr.2007.11.005.

[2] D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Di-
etl, O. Aszmann, The extraction of neural information from the sur-
face EMG for the control of upper-limb prostheses: emerging avenues
and challenges, IEEE Trans Neural Syst Rehabil Eng Jul;22(4):797-809,
epub 2014 Feb 11. PMID: 24760934. doi:10.1109/TNSRE.2014.

2305111.

[3] M. Gazzoni, N. Celadon, D. Mastrapasqua, M. Paleari, V. Margaria,
P. Ariano, Quantifying forearm muscle activity during wrist and fin-
ger movements by means of multi-channel electromyography, PLoS One
7;9(10):e109943, pMID: 25289669; PMCID: PMC4188712. doi:10.

1371/journal.pone.0109943.

[4] L. Pizzolato, Tagliapietra, M. Cognolato, M. Reggiani, H. Müller, M. At-
zori, Comparison of six electromyography acquisition setups on hand
movement classification tasks, PLoS ONE 12 (10) (2017) e0186132.
doi:10.1371/journal.pone.0186132.

[5] R. Chowdhury, M. Reaz, M. Ali, A. Bakar, K. Chellappan, T. Chang,
Surface electromyography signal processing and classification tech-
niques, Sensors (Basel 17;13(9):12431-66, pMID: 24048337; PMCID:
PMC3821366. doi:10.3390/s130912431.

[6] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager, S. El-
sig, G. Giatsidis, F. Bassetto, H. Müller, Electromyography data for non-
invasive naturally-controlled robotic hand prostheses, Scientific data 1 (1)
(2014) 1–13.

[7] L. J. Hargrove, K. Englehart, B. Hudgins, A comparison of surface and
intramuscular myoelectric signal classification, IEEE Transactions on
Biomedical Engineering 54 (5) (2007) 847–853. doi:10.1109/TBME.

2006.889192.
[8] Y. Blanc, U. Dimanico, Electrode placement in surface electromyography

(semg)“minimal crosstalk area”(mca), The Open Rehabilitation Journal 3
(2010) 110–126. doi:10.2174/1874943701003010110.

[9] H. Hermens, B. Freriks, The state of the art on sensors and sensor place-
ment procedures for surface electromyography: A proposal for sensor
placement procedures.

[10] N. Nazmi, M. Abdul Rahman, S. Yamamoto, S. Ahmad, H. Zamzuri,
S. Mazlan, A review of classification techniques of EMG signals during
isotonic and isometric contractions, Sensors (Basel 17;16(8):1304, pMID:
27548165; PMCID: PMC5017469. doi:10.3390/s16081304.

[11] N. Meselmani, M. Khrayzat, K. Chahine, M. Ghantous, M. Hajj-Hassan,
Pattern recognition of EMG signals: Towards adaptive control of robotic
arms, in: 2016 IEEE International Multidisciplinary Conference on Engi-
neering Technology (IMCET), 2016, pp. 52–57. doi:10.1109/IMCET.
2016.7777426.

[12] A. Phinyomark, P. Phukpattaranont, C. Limsakul, Feature reduction and
selection for EMG signal classification, Expert Syst. Appl. 39 (2012)
7420–7431.

[13] M. Hakonen, H. Piitulainen, A. Visala, Current state of digital sig-
nal processing in myoelectric interfaces and related applications, Sig-
nal Processing and Control P. 334-359 1746–8094, printed). DOI:
10.1016/j.bspc.2015.02.009.

[14] B. Hudgins, P. Parker, R. N. Scott, A new strategy for multifunction my-
oelectric control, IEEE Transactions on Biomedical Engineering 40 (1)
(1993) 82–94. doi:10.1109/10.204774.

[15] K. Englehart, B. Hudgins, A robust, real-time control scheme for mul-
tifunction myoelectric control, IEEE Transactions on Biomedical Engi-
neering 50 (7) (2003) 848–854. doi:10.1109/TBME.2003.813539.

[16] M. Oskoei, H. Hu, Support vector machine-based classification scheme
for myoelectric control applied to upper limb, IEEE Transactions on En-
gineering 55 (8) 1956–1965,. doi:10.1109/TBME.2008.919734.

[17] D. Tkach, A. Young, L. Smith, E. Rouse, L. Hargrove, Real-time and
offline performance of pattern recognition myoelectric control using a
generic electrode grid with targeted muscle reinnervation patients, IEEE

Trans Neural Syst Rehabil Eng Jul;22(4):727-34, epub 2014 Feb 11.
PMID: 24760931. doi:10.1109/TNSRE.2014.2302799.
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