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Abstract—Optimal design of distributed decision policies can
be a difficult task, illustrated by the famous Witsenhausen
counterexample. In this paper we characterize the optimal control
designs for the vector-valued setting assuming that it results in
an interim state, i.e. the result of the first decision maker action,
that can be described by a continuous random variable which
has a probability density function. More specifically, we provide
a genie-aided outer bound that relies on our previous results for
empirical coordination problems. This solution turns out to be
not optimal in general, since it consists of a time-sharing strategy
between two linear schemes of specific power. It follows that the
optimal decision strategy for the original scalar Witsenhausen
problem must lead to an interim state that cannot be described
by a continuous random variable which has a probability density
function.

I. INTRODUCTION

Distributed decision-making systems arise in many engi-

neering problems where decentralized agents choose actions

based on locally available information as to minimize a com-

mon cost function. The information at each agent is either lo-

cally observed or received from other agents. Since the process

of sharing information comes with a cost, agents usually do not

have access to the whole information available at all agents.

The design of optimal decision strategies for such problems

is considered to be notoriously difficult. The Witsenhausen

counterexample [1] from 1968 is an outstanding toy example

that has significantly helped to understand the fundamental

difficulty that actions serve two purposes, a control purpose

affecting the system state and a communication purpose pro-

viding information to other agents [2]. More generally, this

problem is also referred to a team decision problem for which

the existence of the optimal solution has been studied in [3].

Although Witsenhausen refuted with his simple two-point

counterexample the assertion that a linear policy would be

also optimal in such a Gaussian setting, the optimal non-linear

policy remains unknown. Many researcher have approached

the optimization problem with various methods. In the last

decade for instance it has been approached with numerical

optimization methods [4], [5], where the latter is based on an

iterative source-channel coding approach. An asymptotically
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optimal approximation approach has been presented in [6].

Analytically, using results from optimal transport theory, it has

been shown in [7] that the optimal decision strategy is a strictly

increasing unbounded piece-wise real analytic function with

a real analytic left inverse. More necessary conditions have

been derived in [8] by analyzing an equivalent optimization

problem on the space of square-integrable quantile functions.

However, it is unclear if the optimal decision policy of the

first agent results in an interim state that can be described by

a continuous random variable.

In this work, we show that the optimal decision strategy

will not lead to an interim state that can be described by

a continuous random variable that has a probability density

function. The observation points on a subtle point in an

outer bound argument, which might be easily overseen. We

will further discuss that this observation, and in essence also

the Witsenhausen counterexample, can be easily explained

by the relation between the MMSE and mutual information

considering Gaussian or binary distributed input [9].
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Fig. 1. The state and the channel noise are drawn according to the i.i.d.
Gaussian distributions Xn

0 ∼ N (0, QI) and Zn
1 ∼ N (0, NI). The interim

state sequence Xn
1 is causally estimated by decision maker C2.

Our approach is based on a vector-valued extension of

the Witsenhausen counterexample as proposed by Grover and

Sahai in [10]. They study a non-causal encoding and decoding

strategy that combines a coding scheme with side information

and a linear scheme, which has been shown to be optimal

by Choudhuri and Mitra in [11]. It has later been observed

that such problems can be also approached as an empirical

coordination coding problem. In [12], we have provided an

overview on the individual findings and completed the missing

cases using coding results from [13]. In [14] we have derived

an achievability result considering non-causal encoding and

causal decoding using a continuous alphabet building on proof



methods from [15]. In this work, we now derive a genie-

aided outer bound for this case considering only decision

strategies that result in continuous random variables which

have a probability density function.

II. SYSTEM MODEL

In this work, we restrict our study to continuous random

variables which have a probability density function (pdf), so

that the joint differential entropy is defined according to [16,

Chap. 8]. For brevity we only refer to continuous random

variables.

We consider the vector-valued Witsenhausen setup in which

the sequences of states and channel noises are drawn inde-

pendently according to the i.i.d. Gaussian distributions Xn
0 ∼

N (0, QI) and Zn
1 ∼ N (0, NI) with min(Q,N) > 0, where

I denotes the identity matrix. We denote by X1 the interim

state and Y1 the output of the noisy channel.

X1 =X0 + U1 with X0 ∼ N (0, Q), (1)

Y1 =X1 + Z1 = X0 + U1 + Z1 with Z1 ∼ N (0, N). (2)

We denote by PX0 = N (0, Q) the Gaussian state distribution

and by PX1Y1|X0U1
the conditional probability distribution

corresponding to equations (1) and (2).

Definition 1. For n ∈ N⋆ = N \ {0}, a “control design” with

non-causal encoder and causal decoder is a tuple of stochastic

functions c = (f, {gt}t∈{1,...,n}) defined by

f : Xn
0 −→ Un

1 , gt : Yt
1 −→ U2, ∀t ∈ {1, . . . , n}, (3)

which induces a distribution over the sequences given by

( n
∏

t=1

PX0,t

)

fUn
1 |Xn

0

( n
∏

i=t

PX1,tY1,t|X0,tU1,t

)( n
∏

t=1

gU2,t|Y t
1

)

.

We denote by Cd(n) the set of control designs with non-

causal encoder and causal decoder c = (f, {gt}t∈{1,...,n})
that induce sequences of continuous random variables.

Definition 2. We define the n-stage costs associated with c by

γn
p (c) =

{

E

[

1
n

∑n

t=1 U
2
1,t

]

if it exists,

+∞ otherwise,
(4)

γn
s (c) =

{

E

[

1
n

∑n

t=1(X1,t − U2,t)
2
]

if it exists,

+∞ otherwise.
(5)

The pair of costs (P, S) ∈ R2 is achievable if for all ε > 0,

there exists n̄ ∈ N⋆, for all n ≥ n̄, there exists a control design

c ∈ Cd(n) such that
∣

∣

∣
P − γn

p (c)
∣

∣

∣
+
∣

∣

∣
S − γn

s (c)
∣

∣

∣
≤ ε. (6)

Theorem 1. The pair of Witsenhausen costs (P, S) is achiev-

able if and only if there exists continuous random variables

with probability distribution that decomposes according to

PX0QU1W1W2|X0
PX1Y1|X0U1

QU2|W2Y1
, (7)

where (W1,W2) are continuous auxiliary random variables

such that 0 ≤ I(W1;Y1|W2)− I(W1,W2;X0) and

P = EQ
[

U2
1

]

, S = EQ
[

(X1 − U2)
2
]

. (8)

This result is stated in [14, Theorem 1].

Remark 1. The probability distribution in (7) satisfies










(X1, Y1)−
− (X0, U1)−
− (W1,W2),

U2 −
− (Y1,W2)−
− (X0, X1, U1,W1),

X2 −
− (X1, U2)−
− (X0, U1, Y1,W1,W2).

(9)

The causality condition prevents the controller C2 to recover

W1 which induces the second Markov chain of (9).

Definition 3. The optimal cost considering continuous random

variables is characterized by the optimization problem defined

as follows

Sc(P ) = inf
Q∈Qc(P )

EQ
[

(X1 − U2)
2
]

, (10)

Qc(P ) =

{

(

QU1W1W2|X0
,QU2|W2Y1

)

s.t. P = EQ
[

U2
1

]

,

I(W1;Y1|W2)− I(W1,W2;X0) ≥ 0 and

X0, U1,W1,W2, X1, Y1, U2 are continuous

}

. (11)

Lemma 1 (Lemma 11 in [1]). The best linear scheme is U1 =

−
√

P
Q
X0 if P ≤ Q, otherwise U1 = −X0 +

√
P −Q.1 This

induces the estimation cost given by

Sℓ(P ) =











(√
Q−

√
P

)2
·N

(√
Q−

√
P

)2
+N

if P ∈ [0, Q],

0 otherwise.

(12)
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Fig. 2. The curve Sℓ(P ) in (12) and the straight line
N·(Q−N−P )

Q
.

1If P > Q, the interim state X1 can be canceled and the offset
√
P −Q

is only included to meet the power constraint with equality as in (6).



Theorem 2. The optimal cost with continuous random vari-

ables satisfies

Sc(P ) =

{

N ·(Q−N−P )
Q

if Q > 4N and P ∈ [P1, P2],

Sℓ(P ) otherwise,

(13)

P1 =
1

2

(

Q− 2N −
√

Q · (Q− 4N)
)

, (14)

P2 =
1

2

(

Q− 2N +
√

Q · (Q− 4N)
)

. (15)

The proof of Theorem 2 is stated in Sec. V-A and V-B.

Figure 2 represents the cost of the linear scheme Sℓ(P ) and the

line of equation P 7→ N ·(Q−N−P )
Q

. Note that the upper bound

in (13) may be obtained by using either a time sharing strategy

between the two linear schemes with parameters P1 and P2

when Q > 4N and P ∈ [P1, P2], or a linear scheme of power

P . This result shows that memoryless policies are optimal

so that these policies are also optimal for the original scalar

Witsenhausen counterexample setup restricted to continuous

random variables. However, as pointed out by Witsenhausen

in [1], such a strategy in the original scalar model is generally

not optimal!

III. WITSENHAUSEN’S TWO-POINTS STRATEGY

The two-point strategy described in [1, pp. 141] outperforms

the optimal cost with continuous random variables Sc(P ) of

Theorem 2. We consider Q = 10, N = 1 and the sender’s

strategy with parameter a ≥ 0 given by

U1 =a · sign
(

X0

)

−X0, (16)

which induces X1 = a · sign
(

X0

)

. For all a ≥ 0, the pair of

costs are given by

P t(a) =Q+ a
(

a− 2

√

2Q

π

)

, (17)

S t(a) =
a2√
2π

e−
a2

2

∫

e−
y2

2

coshay
dy. (18)

Fig. 3 shows that for some a ∈ [0.05, 5], the pair of costs

(P t(a), S t(a)) Pareto-dominates Sc(P ) of Theorem 2, for

some P .

From the previous, we have the following Theorem.

Theorem 3. There exists values for Q, N , a for which we

have S t(a) ≤ Sc(P t(a)).

Discussion

In the following we also briefly want to explain the Wit-

senhausen counterexample result in terms of the I-MMSE

formula by Guo, Shamai and Verdu [9]. The formula has

been used to illustrate in [9, Fig. 1] that binary inputs in

additive Gaussian noise channels result in a lower MMSE

than Gaussian distributed inputs with the same SNR. In other

words, to achieve the same MMSE, binary distributed input

requires less channel input power than Gaussian distributed

input. Exactly this power gain has been exploited in the

Witsenhausen counterexample scheme in which the interim

0 P

S

QQP1 P2

Q = 10, N = 1

b bb b

bbb

b

Fig. 3. The lasso-shaped curve corresponds to the Witsenhausen’s two-point
strategy with parametric equations (17) and (18) for a ∈ [0.05, 5]. The upper
curve corresponds to the best linear scheme Sℓ(P ) in (12) and the straight

line
N·(Q−N−P )

Q
provides the value of the time-sharing strategy for P ∈

[P1, P2].

state X1 is binary so that the resulting MMSE outperforms the

MMSE of the best linear scheme. Analytically, it is interesting

to see that the MMSE formulas (17) and (18) directly relate

to [9, Equations (13) and (17)] with the corresponding signal

powers and noise power.

IV. CONCLUSION

Our results show that information theoretic methods, in

particular coordination coding results, lead to new insights

on the Witsenhausen counterexample. Vice versa, we believe

that our observation makes the Witsenhausen counterexample

also interesting for other source-channel coding problems. In

more detail, we show that a convex combination of linear

memoryless policies is optimal for the vector-valued Witsen-

hausen problem with causal decoder restricted to the space of

continuous random variables. Since the policy is memoryless,

it follows that the linear policy is also optimal for the original

Witsenhausen problem restricted to the space of continuous

random variables which have a pdf. However, Witsenhausen’s

two-points strategy outperforms the best linear strategy, which

implies that the hypothesis of a continuous random variable

which has a pdf is an active restriction for the Witsenhausen

counter-example setup. According to the Lebesgue’s decompo-

sition Theorem, every probability distribution on the real line

is a mixture of discrete part, singular part, and an absolutely

continuous part. Accordingly, we conclude that the optimal

decision strategy for the unrestricted Witsenhausen’s counter-

example must lead to an interim state that cannot be described

by a continuous random variable which has a pdf. In future

works, we will consider policies that result in interim states

described by more general probability distributions.



V. PROOFS

A. Lower bound for the Theorem 2

The Markov chain Y1 −
− (X0, U1)−
− (W1,W2) implies

I(W1;Y1|W2)− I(W1,W2;X0)

≤I(W1;Y1|W2, X0)− I(W2;X0) (19)

≤I(U1;Y1|W2, X0)− I(W2;X0). (20)

Therefore

Sc(P ) ≥ min
QU1W2|X0

∈Q1(P ),

QU2|W2Y1

EQ
[

(X1 − U2)
2
]

(21)

≥ min
QU1W2|X0

∈Q1(P )
EQ
[(

X1 − E
[

X1|W2, Y1

]

)2]

, (22)

where

Q1(P ) =

{

QU1W2|X0
s.t. P = EQ

[

U2
1

]

,

I(U1;Y1|W2, X0)− I(W2;X0) ≥ 0,

(X0, U1,W2, X1, Y1, U2) are continuous

}

, (23)

The random variables (X0,W2, U1) drawn according to

Q′
U1W2|X0

which is optimal for (22), have covariance matrix

K =





Q ρ1
√
QV ρ2

√
QP

ρ1
√
QV V ρ3

√
V P

ρ2
√
QP ρ3

√
V P P



 , (24)

where the correlation coefficients (ρ1, ρ2, ρ3) ∈ [−1, 1]3 are

such that QV P ·
(

1− ρ21 − ρ22 − ρ23 +2ρ1ρ2ρ3
)

≥ 0, i.e. K is

semi-definite positive.

We denote by QU1W2|X0
the Gaussian conditional distribu-

tion such that (X0,W2, U1) ∼ N (0,K). According to [17,

Maximum Differential Entropy Lemma, pp. 21], we have

EQ′

[(

X1 − E
[

X1|Y1,W2

]

)2]

≥ 1

2πe
· 22h(X1|Y1,W2) (25)

= EQ
[(

X1 − E
[

X1|Y1,W2

]

)2]

. (26)

Moreover, both PX0Q′
U1W2|X0

and PX0QU1W2|X0
satisfy

0 ≤IQ′ (U1;Y1|W2, X0)− IQ′(W2;X0) (27)

=hQ′(Y1|W2, X0)− hQ(Y1|W2, X0, U1)

− hQ(X0) + hQ′(X0|W2) (28)

≤hQ(Y1|W2, X0)− hQ(Y1|W2, X0, U1)

− hQ(X0) + hQ(X0|W2) (29)

=IQ(U1;Y1|W2, X0)− IQ(W2;X0), (30)

where (28) comes from hQ′(X0) = hQ(X0) and

hQ′(Y1|W2, X0, U1) = hQ(Z) = hQ(Y1|W2, X0, U1), and

(29) comes from [16, (8.92), pp. 256].

Lemma 2. Assume that (X0,W2, U1) ∼ N (0,K), then

I(U1;Y |X0,W2)− I(X0;W2)

=
1

2
log2

(

P

N
· (1− ρ21 − ρ22 − ρ23 + 2ρ1ρ2ρ3) + (1− ρ21)

)

,

(31)

EQ
[(

X1 − E
[

X1|Y1,W2

]

)2]

=
N ·

(

Q · (1− ρ21) + P · (1− ρ23) + 2
√
QP · (ρ2 − ρ1ρ3)

)

N +
(

Q · (1− ρ21) + P · (1− ρ23) + 2
√
QP · (ρ2 − ρ1ρ3)

) .

(32)

The proof of Lemma 2 is stated in Sec. V-C. Note that

the equations (31) and (32) do not depend on the variance

parameter V of the auxiliary random variable W2. Also, when

(31) is positive the matrix K is semi-definite positive.

By using Lemma 2, we reformulate (22) and since the

function x → N ·x
N+x

is strictly increasing for all x ≥ 0, the

optimal parameters (ρ⋆1, ρ
⋆
2, ρ

⋆
3) ∈ [−1, 1]3 minimize

Q · (1− ρ21) + P · (1− ρ23) + 2
√

QP · (ρ2 − ρ1ρ3), (33)

under the constraint

P

N
· (1 − ρ21 − ρ22 − ρ23 + 2ρ1ρ2ρ3)− ρ21 ≥ 0 (34)

⇐⇒(1− ρ21) · (1 − ρ23)−
N

P
· ρ21 ≥ (ρ2 − ρ1ρ3)

2, (35)

which yields

ρ⋆2 =ρ1ρ3 −
√

(1− ρ21) · (1 − ρ23)−
N

P
· ρ21. (36)

Lemma 3. If Q > 4N and P ∈ [P1, P2], then

ρ⋆1
2 =

P ·Q− (P +N)2

(P +N) ·Q , ρ⋆3
2 = 0. (37)

If Q ≤ 4N or if Q > 4N and P ∈ [0, P1] ∪ [P2, Q], then

ρ⋆1
2 = 0, ρ⋆3

2 = 0. (38)

If P > Q, then

ρ⋆1
2 = 0, ρ⋆3

2 =
P −Q

P
. (39)

The proof of Lemma 3 is stated in Sec. V-D. We ob-

tain the lower bound by replacing the optimal parameters

(ρ⋆1, ρ
⋆
2, ρ

⋆
3) ∈ [−1, 1]3 in (32), that is if P ∈ [0, Q]

Sc(P ) ≥











N ·(Q−N−P )
Q

if Q > 4N and P ∈ [P1, P2],
(√

Q−
√
P

)2
·N

(√
Q−

√
P

)2
+N

otherwise.

(40)

B. Upper bound for the Theorem 2

1) Linear Scheme: By considering the best linear scheme

U1 =

{

−
√

P
Q
·X0, if P < Q,

−X0 +
√
P −Q, if P ≥ Q,

(41)

we have that Sc(P ) ≤ Sℓ(P ), for all P ≥ 0.



2) Case where Q > 4N and P ∈ [P1, P2]: The upper

bound of Theorem 2 can be obtained by using a time sharing

strategy between the two linear schemes with parameters P1

and P2. We obtain the same result by assuming that the random

variables (U1,W1,W2) are drawn according to

W2 =

√

P +N

PQ− (P +N)2
·
(

X0 − Z0

)

∼ N
(

0, 1
)

,

with Z0 ∼ N
(

0,
QN + (P +N)2

P +N

)

and Z0 ⊥ W2, (42)

W1 =
PQ− (P +N)2

Q(P +N)
·X0 + U0, with U0 ⊥ (X0,W2)

and U0 ∼ N
(

0,
N ·

(

PQ− (P +N)2
)

QN + (P +N)2

)

, (43)

U1 = − (P +N)2

QN + (P +N)2
·X0 + U0

+

√

PQ− (P +N)2

P +N
· (P +N)2

QN + (P +N)2
·W2. (44)

Then we have

I(W1;Y1,W2)− I(W1;X0,W2) = I(U1;Y1|X0,W2) (45)

= I(X0;W2) =
1

2
log2

(

1 +
PQ− (P +N)2

QN + (P +N)2

)

, (46)

and

Sc(P ) ≤N · (Q − P −N)

Q
. (47)

C. Proof of Lemma 2

We consider (X0,W2, U1) ∼ N (0,K) with K defined in

(24), which together with (2), induces the Gaussian random

variables (X0,W2, Y1) whose entropy is

h(X0,W2, Y ) =
1

2
log2

(

(2πe)3 ·QV (48)

×
(

P · (1 − ρ21 − ρ22 − ρ23 + 2ρ1ρ2ρ3) +N · (1− ρ21)
)

)

.

(49)

Therefore we have

I(U1;Y |X0,W2)− I(X0;W2)

=h(X0,W2, Y )− h(Y |U1, X0,W2)− h(X0)− h(W2)
(50)

=
1

2
log2

(

P

N
· (1− ρ21 − ρ22 − ρ23 + 2ρ1ρ2ρ3) + (1− ρ21)

)

.

(51)

According to (1) and (2) the entropy of (X1,W2, Y1) writes

h(X1,W2, Y ) =
1

2
log2

(

(2πe)3 · V ·N (52)

×
(

Q · (1− ρ21) + P · (1− ρ23) + 2
√

QP · (ρ2 − ρ1ρ3)
)

)

,

(53)

and hence

E

[

(

X1 − E(X1|Y,W2)
)2
]

=
N ·

(

Q · (1− ρ21) + P · (1− ρ23) + 2
√
QP · (ρ2 − ρ1ρ3)

)

N +
(

Q · (1− ρ21) + P · (1− ρ23) + 2
√
QP · (ρ2 − ρ1ρ3)

) .

(54)

D. Proof of Lemma 3

We replace ρ⋆2 in (33) and we define

f(ρ21, ρ
2
3) = Q · (1− ρ21) + P · (1− ρ23)

− 2
√

QP ·
√

(1− ρ21) · (1 − ρ23)−
N

P
· ρ21. (55)

Note that f is well defined if ρ21 ≤ P
P+N

and ρ23 ≤ 1−N
P
· ρ2

1

1−ρ2
1

.

∂f(ρ21, ρ
2
3)

∂ρ23
=
√

PQ · 1− ρ21
√

(1− ρ21) · (1− ρ23)− N
P

· ρ21
− P,

(56)

then for all ρ21 ≤ P
P+N

, the optimal ρ23
⋆
(ρ21) is

ρ23
⋆
(ρ21) = max

(

1−
(

Q

P
·
(

1− ρ21

)

+
N

P
· ρ21
1− ρ21

)

, 0

)

.

(57)

We introduce the parameters

ρa =
2Q− (P +N)−

√

(P +N)2 − 4QN

2Q
, (58)

ρb =
2Q− (P +N) +

√

(P +N)2 − 4QN

2Q
, (59)

and we define the function

F (ρ21) = f
(

ρ21, ρ
2
3
⋆
(ρ21)

)

=



































Q · (1 − ρ21) + P

−2
√
QP ·

√

1− ρ21 · P+N
P

if 0 ≤ ρ21 ≤ ρa,

N · ρ2
1

1−ρ2
1

if ρa ≤ ρ21 ≤ ρb,

Q · (1 − ρ21) + P

−2
√
QP ·

√

1− ρ21 · P+N
P

if ρb ≤ ρ21 ≤ P
P+N

.

(60)

The function F (ρ21) is continuous in ρa and ρb. We define

ρ⋆ =
P ·Q− (P +N)2

(P +N) ·Q . (61)

• If Q > 4N and P ∈ [P1, P2], then the function F (ρ21) is

decreasing over the interval ρ21 ∈ [0, ρ⋆] and increasing over

the interval ρ21 ∈ [ρ⋆, P
P+N

], then the optimal parameters are

ρ21 = ρ⋆, ρ23 = 0. (62)

• If Q ≤ 4N or if Q > 4N and P ∈ [0, P1] ∪ [P2, Q], then

the optimal parameters are ρ21 = ρ23 = 0.

• If P > Q, then

ρ21 = 0, ρ23 =
P −Q

P
. (63)
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[7] Y. Wu and S. Verdú, “Witsenhausen’s counterexample: A view from
optimal transport theory,” in Proc. IEEE CDC, 2011.

[8] W. M. McEneaney and S. H. Han, “Optimization formulation and
monotonic solution method for the Witsenhausen problem,” Automatica,

2015.
[9] D. Guo, S. Shamai and S. Verdú, “Mutual information and minimum
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