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Introduction

The combinatorial study of Riemann surfaces topology is a research field where either geometers such as G. Jones and D. Singerman (see [JoSi]) or group and graph theorists such as R.Cori and A. Machi (see [CoMa]) have developped to meet at the joint point of the theory of maps. This study is made effective by the tessellation of the surface into polygons that naturally leads to the consideration of a map: a pair of permutations (↵, ), one corresponding to the edges and the other to the vertices of these polygons.Then, topological properties have combinatorial translations for instance, connexity on the surface is ensured by the transitivity of < ↵, > (see below for a detailed explanation). Some properties of the automorphisms of the surface correspond then to the properties of Aut(↵, ), centralizer of both ↵ and in the symmetric group. An example is given by a classical result known as the Riemann Hurwitz formula which relates the genus of the surface, the genus of it quotient surface with respect to an automorphism group G and the number of points fixed by all elements in G on the surface. Defining the genus of the map in function of the number of cycles of ↵, and ↵ 1 , Machi showed that the formula holds for Aut(↵, ) (see [Ma]).

Maps theory has been generalized in a natural way to the one of hypermaps by Cori and can be related to hypergraph theory (see [Co] and below). Searching for links between a hypermap and its quotient hypermap with respect to an automorphism group, we have proposed in [START_REF] Bessis | Induced automorphisms and p-elliptic hypermaps[END_REF] the concept of induced automorphism which can be understood as follow. Let (↵, ) be a hypermap, Aut(↵, ), G a subgroup of Aut(↵, ) and let (↵, ¯ ) be the quotient hypermap of (↵, ) with respect to G. When belongs to the normalizer of G in Aut(↵, ), the automorphism ¯ induced by on (↵, ¯ ) is well defined.

This paper deals with the so called p-elliptic hypermaps introduced in [START_REF] Bessis | Induced automorphisms and p-elliptic hypermaps[END_REF]. The idea is to study hypermaps on which all automorphisms are induced on the sphere by operating a quotient with respect to a prime order group. These can be viewed as p-sheeted coverings of the sphere where p is a prime (see below). For p-elliptic hypermaps we classify their automorphism groups. Aut(↵, ) is either C pn (cyclic) where n is a divisor of 1 + 2g/(p 1) ; C pn or a lifting of D n by C p admitting C pn as a subgroup, where n is a divisor of 2g/(p 1) ; a semi-direct product of C n by C p or a lifting of D n by C p , admitting a semi-direct product of C n by C p as a subgroup, where n is a divisor of 2 + 2g/(p 1) ; or Aut(↵, ) is of order 12p, 24p, 60p ( liftings of A 4 , S 4 , A 5 respectively).This gives sharp bounds for the order of the automorphism group and of the elements. Namely, on a p-elliptic hypermap, an automorphism is of maximal order p(1 + 2g/(p 1)) if o( ) = pm where p and m are coprime, and that the bound becomes 2pg/(p 1) otherwise. Fixing p, these bounds are reached for infinitely many g. Moreover, we show that for g 2, if there exists an automorphism of prime order 2g + 1, then the hypermap except for one case is (2g +1)-elliptic. The exception happens for g = 3 and Aut(↵, ) = P SL 2 (7). The Klein map we describe is a canonical example of it.

Hypermaps, automorphisms and induced automorphisms

For a general introduction to the theory of hypermaps see [CoMa]. In this section we recall a few definitions and results that will be needed in the sequel. Definition 1. A hypermap is a pair of permutations (↵, ) on B (the set of brins) such that the group they generate is transitive on B. When ↵ is a fixed point free involution, (↵, ) is a map. The cycles of ↵, and ↵ 1 are called edges, vertices and faces, respectively; but if their specification in terms of edges, vertices or faces is not needed, we will refer to them as points. Note that considering the permutation means doing first ↵ 1 and then so that permutations are multiplied from left to right.

Euler's formula gives the relationship between the numbers of cycles of these three permutations:

z(↵) + z( ) + z(↵ 1 ) = n + 2 2g
where n = card(B), g is a non-negative integer, called the genus of (↵, ) and where for any permutation ✓, z(✓) denotes the number of its cycles (cycles of length 1 are included) (see [CoMa], p.422). If g = 0, then (↵, ) is planar ; if g = 1, then (↵, ) is toroidal (on the torus).

Definition 2. An automorphism of a hypermap (↵, ) is a permutation commuting with both ↵ and that is : ↵ = ↵ and = Thus, the full automorphism group of (↵, ), denoted by Aut(↵, ), is the centralizer in Sym(n) of the group generated by ↵ and . A subgroup G of Aut(↵, ) is an automorphism group of (↵, ); the transitivity of (↵, ) implies that Aut(↵, ) is semi-regular. Recall here that a semi-regular group is defined by the fact that all its orbits are of the same length namely |G|.

We denote by ✓ ( ) the number of cycles of a permutation ✓ fixed by an automorphism and by ( ) the total number of cycles of ↵, and ↵ 1 fixed by ; o( ) will be the order of . If (↵, ) is planar (g = 0) then ( ) = 2 for all non trivial automorphisms . Moreover, Aut(↵, ) is one of C n (cyclic), D n (dihedral), A 4 , S 4 and A 5 (see [CoMa] p.464). We shall need this result later.

We now define an equivalence relation R on the set B. Definition 3. Let G be an automorphism group of the hypermap (↵, ). Two brins b 1 and b 2 are equivalent, b 1 R b 2 , if they belong to the same orbit.

This leads to the following definition. Definition 4. The quotient hypermap (↵, ¯ ) of (↵, ), with respect to an automorphism group G, is a pair of permutations (↵, ¯ ) acting on the set B, where B = B/R and ↵, ¯ are the permutations induced by ↵ and on B.

The following Riemann-Hurwitz formula (RH) relates the genus of (↵, ¯ ) to the genus g of (↵, ) (see [Ma]):

2g 2 = |G|(2 2) + P 2G {id} ( ) It follows that  g. In case G is a cyclic group, G =< >, (RH) becomes (RH2): 2g 2 = |G|(2 2) + P 2G {id} ( ) As a consequence, if g 2, |Aut(↵, )|  84(g 1).
We reproduce here a part of the proof found in [CoMa]. When the quotient is planar, (RH) can be changed into (RH?) the following formula : where r is the number of conjugacy classes of fixing automorphisms and n i the cardinality of each classe of stabilizer.

If r < 3 then g < 2 ; If r 4 then |Aut(↵, )|  12(g 1) ; If r = 3 then we have the following array finishing the proof :

n 1 n 2 n 1 P 3 i=1 1 ni |G|  |G| = n 1 > 3 n 2 > 3 n > 3 1 4 8(g 1) 3 n 2 > 3 n > 3 1 6 12(g 1) 3 3 n > 3 1 12 24(g 1) 6n n 3 (g 1) 2 n 2 > 4 n > 4 1 10 20(g 1) 2 4 n > 4 1 20 40(g 1) 8n n 4 (g 1) 2 3 n > 6 1 42
84(g 1) 12n n 6 (g 1) This leads to another definition : Definition 5. The signature of an automorphism group is given by (n 1 , n 2 , ...n r ) where the n i are written in cressant order. Now, some other propreties : If is an automorphism of order m, then, for all integers i, ( )  ( i ), and when m and i are coprime ( ) = ( i ). Let (↵, ) be a hypermap, G an automorphism group of (↵, ) and let (↵, ¯ ) be the quotient hypermap of (↵, ) with respect to G. The proof of the following results can be found in [START_REF] Bessis | Induced automorphisms and p-elliptic hypermaps[END_REF].

For any element in the normalizer of G in Aut(↵, ), the permutation ¯ , defined as /G , is an automorphism of (↵, ¯ ). The two following operations on (↵, ) are equivalent:

(i) taking the quotient of (↵, ) first by G and then taking the quotient of (↵, ¯ ) by < >, (ii) taking the quotient of (↵, ) by < G, >. Definition 6. The permutation ¯ is called the induced automorphism of on (↵, ¯ ). We also say induces ¯ on (↵, ¯ ).

We now give the theorem that counts the fixed cycles of an induced automorphism.(see [START_REF] Bessis | Fixed points of induced automorphisms of hypermaps[END_REF]) Theorem 7. Let (↵, ) be a hypermap admitting an automorphism and an automorphism group G such that G is normal in < G, >. Then:

|G| ( ) = P 2G ( 
) where ¯ is the permutation induced by on the quotient hypermap of (↵, ) with respect to G.

When G = C p , we have simpler formulas (see [START_REF] Bessis | Induced automorphisms and p-elliptic hypermaps[END_REF]). G is now generated by an automorphism of prime order p and is an element of Aut(↵, ). Then there are two cases. Proposition 8. Let commute with .

i) is of order m, where p and m are coprime, then p ( ¯ ) = ( ) + (p 1) ( ) (IAF 1) ii) is of order pn, p and n coprime, and belong to < >, then:

p ( ¯ ) = ( p ) + (p 1) ( ) (IAF 2)
iii) is of order p m n, where m > 1, p and n coprime, and belong to < > , then: ( ¯ ) = ( ) (IAF 3) iv) is of order pm, m being any integer, and does not belong to < >, then ( i ) ⌘ 0 (mod p) and p ( ¯ ) = P p 1 i=0 ( i ) (IAF 4) Now, the other case: Proposition 9. If does not commute with , then ( ¯ ) = ( ). (IAF 5)

In the classical theory of Riemann surfaces, a hyperelliptic surface S is a surface admitting an involution which is central in Aut(S) and fixes 2g + 2 points. This notion applies to hypermaps [CoMa]. In the next definition we consider automorphisms of prime order p to generalize the idea of hyperellipticity. Definition 10. A hypermap (↵, ) of genus g 2 is said to be p-elliptic if it admits an automorphism of prime order p such that:

(1) the quotient hypermap (↵, ¯ ) with respect to < > is planar, (2) < > is normal in Aut(↵, ).

Note that Definition 10 is equivalent to the next definition since by (RH) if the quotient hypermap (↵, ¯ ) with respect to < > is of genus 0 then fixes 2 + 2g/(p 1) points and vice versa. Definition 11. A hypermap (↵, ) of genus g 2 is said to be p-elliptic if it admits an automorphism of prime order p such that:

(1) fixes 2 + 2g/(p 1) points, (2) < > is normal in Aut(↵, ).

Remark 12. A 2-elliptic hypermap is a hyperelliptic hypermap and Property (1) implies Property (2) when g 2 ( see [CoMa]).

Since an automorphism on the sphere fixes exactly 2 points, it has been proved in [START_REF] Bessis | Induced automorphisms and p-elliptic hypermaps[END_REF] that:

Proposition 13. An automorphism on a p-elliptic hypermap of genus g has one of the following behaviors: i) it is a p-elliptic automorphism and therefore fixes 2 + 2g/(p 1) points ii) it fixes 2 points in common with a p-elliptic automorphism and there fore fixes only these 2 points;

iii) it fixes 1 point in common with a p-elliptic automorphism and there fore fixes either 1 or p + 1 points; iv) it fixes no point in common with a p-elliptic automorphism and there fore fixes either 0, p or 2p points.

Note that a "non p-elliptic" automorphism fixes at most 2 points in common with a p-elliptic automorphism.

We shall also need the following result proved in [Bel] based on a result in [BiCo] : an automorphism of prime power order can not fix only one point.

A bound for the order of an automorphism on p-elliptic hypermaps

Let (↵, ) be a p-elliptic hypermap and be the p-elliptic automorphism. We know that fixes 2 + 2g/(p 1) points. Since < > is normal in Aut(↵, ) any automorphism permutes these fixed points among themselves, and we can define a homomorphism h from Aut(↵, ) to S 2+2g/(p 1) Lemma 14. Let (↵, ) be a p-elliptic hypermap. An automorphism induces a regular permutation on 2+2g/(p 1) points if and have no common fixed point, 1 + 2g/(p 1) points if and have one common fixed point and 2g/(p 1) points if and have two common fixed points.

Proof. The proof is based on Proposition 13. Let be an automorphism of order m coprime with p, commuting with . Let i be any no zero (mod m) integer. We recall that ( )  ( i ). If ( ) = 2p, then ( i ) = 2p since it is the maximum of points that can be fixed. If ( ) = p + 1, then and fixe one point in common, so do i and , that is

( i ) is at most p + 1. Thus, ( i ) = p + 1. If ( ) = 2,
then and fixe two points in common, so do i and , that is

( i ) is at most 2. Thus, ( i ) = 2.
Let be an automorphism of order p n m, with m coprime with p, such that belongs to < >. Let i be any no zero (mod m) integer. and fixe two points in common, so do i and , that is not in < >.

Let be an automorphism of order p n m, with m coprime with p, commuting with but such that does not belong to < >. fixes 0, p or 2p points and none in common with , thus permutes all fixed points of the latter. If h( ) is not regular (see above for notation), there exists an integer k such that ( k ) = 2, these points being fixed in common with and p n divides k since o( ) and o( k ) must be coprime (Proposition 8 ) This can only occur if fixes no point. Now, by Proposition 8 , some i fixes either p or 2p points. But ( i ) k = k , thus i fixes two points. Hence, the contradiction and h( ) is regular.

Let be an automorphism of order p n m, with m coprime with p, not commuting with .

fixes two points and none in common with , thus permutes all fixed points of the latter. If h( ) is not regular, there exists an integer k such that ( k ) = 2, these points being fixed in common with . Then fixes the same two points in common with : a contradiction and h( ) is regular.

By (RH2), it is simple to see that the maximum order for an automorphism of prime order is 2g + 1 and that the prime imediately before is g + 1 for g 2 being the genus of the hypermap. Is there a bound for an automorphim on a p-elliptic hypermap ? The answer is given by the next theorem. ⇤ Theorem 15. Let (↵, ) be a p-elliptic hypermap of genus g 2. Let be an automorphism of (↵, ). Then either o( ) = p(1 + 2g/(p 1)) where p and 1 + 2g/(p 1) are coprime or o( )  2pg/(p 1).

Proof. Let us suppose that the automorphism is of order o( ) > 2pg/(p 1). We know that there exists a homomorphism h from Aut(↵, ) to S 2+2g/(p 1) , where 2 + 2g/(p 1) is the number of the points fixed by the p-elliptic automorphism.

Let us suppose first that the induced automorphism ¯ on the quotient hypermap (↵, ¯ ) with respect to < > is of order 2+2g/(p 1). Thus, o( ) = p(2+2g/(p 1)). The automorphisms and have no common fixed point since ¯ permutes the 2 + 2g/(p 1) points fixed by . By Proposition 13, this means that p does not divide 2 + 2g/(p 1). Since ( ) = 0, we have by (IAF 2) that ( p ) = 2p. Applying RH2 to p , we have:

2g 2 p(2 + 2g p 1 )(2 2) + 2p(1 + 2g p 1 )
from which = 0. Thus, 2g 2 p(2

+ 2g p 1) )( 2) + 2p(1 + 2g p 1) ) ; that is 2g (2p 2)(1 + 2g p 1)
) and finally g p 1 1 + 2g p 1) which is impossible. We now suppose that the induced automorphism ¯ on the quotient hypermap (↵, ¯ ) with respect to < > is of order 1 + 2g/(p 1). Thus, o( ) = p(1 + 2g/(p 1)). The automorphisms and have one common fixed point since ¯ permutes the 1 + 2g/(p 1) points fixed by . By Proposition 13, this means that p does not divide 1 + 2g/(p 1). Since ( ) = 1, we have by (IAF 2) that ( p ) = p + 1. Applying RH2 to p , we have:

2g 2 p(1 + 2g p 1) )(2 2) + (p + 1) 2g p 1)
from which = 0. Thus, 2g 2 p(1

+ 2g p 1) )( 2) + (p + 1)( 2g p 1) ) ; that is 2g (p 1)( 2g p 1)
) which is absolutely possible. All other possible orders for the induced automorphism ¯ are less than 2g/(p 1) that is o( )  2pg/(p 1). ⇤

All these bounds are sharp as the two following examples show.

Example 16. Let g > 2, p a prime such that p 1 divides 2g, and suppose that 1 + 2g/(p 1) is coprime with p. Consider the following hypermap (↵, ) on

n = p(1 + 2g/(p 1)) brins, ↵ 1 is the cycle (1, 2, • • • n),
↵ and are powers of ↵ 1 of orders p and 1 + 2g/(p 1). Euler formula shows that g is the genus of (↵, ). Aut(↵, ) =< ↵ 1 > and the quotient hypermap with respect to < > is planar. Thus (↵, ) is a p-elliptic hypermap with an automorphism of maximal order.

Now the second bound:

Example 17. Let p and g be such that 2g = p k (p 1) where p is a prime and k is any positive integer. Consider (↵, ) on n = 2pg/(p 1) = p k+1 brins: is the cycle (1, 2, • • • n), ↵ is a power of of order p ; ↵ 1 is thus a cycle of order n. Euler formula shows that g is the genus of (↵, ). Aut(↵, ) =< > and the quotient hypermap with respect to ↵ is planar. Thus (↵, ) is a p-elliptic hypermap with an automorphism of maximal order.

Corollary 18. The order of an automorphism of a p-elliptic hypermap of genus g is either 4g + 2, or at most 4g.

Proof. The function f 1 (p) = p(1+2g/(p 1)) decreases on [2; 1+ p 2g]; and increases on [1 + p 2g; 2g + 1] , the maximum is reached for f 1 (2) = f 1 (2g + 1) = 4g + 2 on an hyperelliptic hypermap or a (2g+1)-elliptic hypermap. We will see further on that those maps will coincide.

The function f 2 (p) = 2pg/(p 1) decreases on [2; 2g +1] ; its maximum is reached for f 2 (2) = 4g that is on an hyperelliptic hypermap. Proof. We recall the existence of a homomorphism h from Aut(↵, ) to S 2+2g/(p 1) , where 2 + 2g/(p 1) is the number of the points fixed by the p-elliptic automorphism. Ker(h) is a cyclic group (since it is the stabilizer of points see [CoMa] ) and contains . Since an automorphism not contained in < > fixes at most 2 points in common with and 2 < 2 + 2g/(p 1), Ker(h) is reduced to < >. Aut(↵, )/ < > is a subgroup of S 2+2g/(p 1) because of the homomorphism and is isomorphic to either C n , D n , A 4 , S 4 , A 5 because the quotient is planar where n is a divisor of 1 + 2g/(p 1), 2g/(p 1) or 2 + 2g/(p 1).

If n is a divisor of 1+2g/(p 1), there exists an element ✓ of order pn in Aut(↵, ) and fixing just one point (in common with ). Since |Aut(↵, )| is either pn or 2pn, < ✓ > is normal in Aut(↵, ) ; thus, all automorphisms permute the fixed points of ✓ among themselves that is fix the unique ✓ fixed point. Therefore, Aut(↵, ) is C pn .

If n is a divisor of 2g/(p 1), there exists an element ✓ of order pn in Aut(↵, ) and fixing exactly two points (in common with ). Since |Aut(↵, )| is either pn or 2pn, < ✓ > is normal in Aut(↵, ) ; thus, all automorphisms permute the fixed points of ✓ among themselves. Therefore, Aut(↵, ) is either C pn or a lifting of D n by C p admitting C pn as a subgroup.

If n is a divisor of 2+2g/(p 1), there exists no element ✓ of order pn in Aut(↵, ) (except if n and p are coprime and ✓ commute with ). Therefore, C n is lifted as

C p ⇥ k C n and the lifting of D n contains C p ⇥ k C n .
The Proof. Let p be a prime equal to 2g + 1 then by RH, an automorphism of order 2g + 1 fixes 3 points. If the (2g + 1) -Sylow subgroups are not of order 2g + 1 then there exists a subgroup of order p 2 , thus commutative. If the subgroup is C p 2 , an automorphism of order p 2 fixes all its points (at most 2) in common with its power of order p and permutes the others; that means 2g + 1 divides 3 or 2 which is impossible for g 2. If the subgroup is C p ⇥ C p , then again 2g + 1 must divide 3(since there is no common fixed point between the two groups) and it is impossible for the former reason.

Let p be g + 1, then by RH, , an automorphism of order g + 1 fixes 4 points. If the (g + 1)-Sylow subgroups are not of order g + 1 then there exists a subgroup of order p 2 , thus commutative. If the subgroup is C p 2 , an automorphism of order p 2 fixes all its points (at most 2) in common with its power of order p and permutes the others; that means g + 1 divides 4, 3 or 2 which is impossible for g 3 ; If g = 2, the only difficult case is p = 3 = g + 1 but then the automorphism of order 9 would fixe exactly one point which is impossible since it is of prime power order. If the subgroup is C p ⇥ C p , then again g + 1 must divide 4 (since there is no common fixed point between the two groups) and it is impossible for g 2. ⇤

Proposition 22. Let (↵, ) be a (2g + 1)-elliptic hypermap. Then Aut(↵, ) is either C 2g+1 or C 4g+2 (in which case it is also hyperelliptic) and if 3 divides g we also have C 2g+1 o j C 3 (the unique non commutative group of order 6g + 3 ) where j is a cubic root of unity mod 2g + 1

Proof. Let be the (2g + 1).-elliptic automorphism, By (RH), ( ) = 3, so that Aut(↵, )/ < > is a subgroup of S 3 because of the homomorphism and therefore is isomorphic to either id, C 2 , C 3 or D 3 , because the quotient is planar. An automorphism of prime order commuting with fixes either 2 points (both in common with ) or 2g + 2 points (one in common with ) because, by (RH), no automorphism can fix more than 2g + 2 points. But no automorphism can fix two points in common with whom fixes three points. Thus only the hyperelliptic involution can commute with . An automorphism that does not commute with fixes 2 points and none in common with , which means that they are permuted. Such an automorphism is of order 3 . Thus, id is lifted in C 2g+1 , C 2 in C 4g+2 (since an automorphism of order 2 must commute with ) , C 3 in C 2g+1 o j C 3 (since an automorphism of order 3 must not commute with ). D 3 can not be lifted because all automorphisms of order 2 commute with and they generate an automorphism of order 3; but an automorphism of order 3 must not commute with . ⇤

Remark 23. The case C 4g+2 happens for all g 2 as Example 17 shows; we just rewrite it for p = 2 by taking ↵ = (1, 2)(3, 4) • • • (4g + 1, 4g + 2), = (4g + 2, 4g 1, 4g 2, 4g 5, 4g 6, ...6, 3, 2)(4g + 1, 4g, 4g 3, 4g 4, 4g 7, ...5, 4, ) and ↵ 1 = (4g + 2, 4g, 4g 2, ..., 4, 2, 4g + 1, 4g 1, 4g 3, ..., 3, 1)) . Euler's formula certifies that g is the genus. Since ↵ and commute Aut(↵, ) =< ↵, > thus is equal to C 4g+2 .

The case C 2g+1 happens for all g 2 by taking

↵ 1 = = (1, 2, 3 • • • 2g + 1
). Euler's formula certifies that g is the genus. Since ↵ and commute Aut(↵, ) =< >, thus is equal to C 2g+1 . The case C 2g+1 o j C 3 happens for instance on the Fano Plane hypermap of genus 3 described in [CoMa].

Proposition 24. Let (↵, ) be a (g + 1)-elliptic hypermap. Aut(↵, ) is one of the following groups:

C g+1 , C 2g+2 , C 3g+3 , D g+1 , D 2g+2 (in which case it is also hyperelliptic), C 2 ⇥ C 2g+2 (in which case it is also hyperelliptic), C g+1 o 1 C 4 (in which case it is also hyperelliptic), if 4 divides g, C g+1 o i C 4 . And (C 2 ⇥C 2g+2 )o A C 2
reaching the maximum order of 8(g + 1), where A is an automorphism described in the proof (in which case it is also hyperelliptic).

Proof. Note first that to have g + 1 prime means that g is even. Let be the (g + 1).-elliptic automorphism, By (RH), ( ) = 4, so that Aut(↵, )/ < > is a subgroup of S 4 because of the homomorphism and therefore is isomorphic to either id, C 2 , C 3 , C 4 , D 2 , D 3 , D 4 , A 4 or S 4 and also because the quotient is planar.

Assume first that g > 2 to eliminate the case of g + 1 = 3. Let be an automorphism commuting with . If fixes 2 points (both in common with ), then it is either of order 2 because it must permute the 2 other fixed points of and because an automorphism of order 4g + 4 does not exist (Theorem 18) or of order 2g + 2 as the product of with the element of order 2 we have just mentioned. If fixes g + 2 points (one in common with ) then it is of order 3 because it must permute the 3 other fixed points of ; note that fixes one point and is of order 3g + 3. If fixes 2g + 2 points it is the hyperelliptic involution and fixes no point and is of order 2g + 2. Note that any involution commuting with and not fixing any point in common with is necessarily the hyperelliptic involution.

If does not commute with , then it fixes 2 points and none in common with , which means that they are permuted. Such an automorphism is of order 2 or 4.

Thus, id is lifted in C g+1 , C 2 in C 2g+2 or D g+1 , C 3 in C 3g+3 (since an automorphism of order 3 must commute with ).

D 3 should be lifted in a group of order 6g + 6; since an automorphism of order 3 must commute with there exists a normal subgroup of order 3g + 3 because it is of index 2. But the normalizer of a group generated by an element fixing only one point is cyclic. Thus, D 3 can't be lifted and therefore neither can S 4 .

Either D 2 or C 4 are of order 4. Now, The general group theory gives the structure of groups of order 4p for p 5 being a prime. Thus,

D 2g+2 , C 2 ⇥C 2g+2 , C g+1 o 1 C 4 , if 4 divides g, C g+1 o i C 4 are possible; but not C 4g+4 as already explained. Let us show that when Aut(↵, ) is either C 2 ⇥ C 2g+2 or C g+1 o 1 C 4 then the hypermap is also hyperelliptic. If Aut(↵, ) = C 2 ⇥ C 2g+2 or D 2g+2 ,
let us consider the homomorphism h : Aut(↵, ) ! S 4 on fixed points. D 2 , can be described in two possible ways (up to isomorphism); if D 2 = {id,(1,3)(2,4),(1,2)(3,4),(1,4)(3,2)} one of them is commuting and fixes no point in common with therefore it is the image of the hyperelliptic involution ; if D 2 = {id,(1,3)(2,4),(1)(3)(2,4),(1,3)(2)(4)} all of them commute with (the last two because they have common fixed points and the first one because it is the product of the others), thus, the element (1, 3)(2, 4) is the image of the hyperelliptic involution because it commutes with with and fixes no point in common with . If Aut(↵, ) = C g+1 o 1 C 4 , Let us consider the homomorphism h : Aut(↵, ) ! S 4 on fixed points. C 4 , can be described in only one way (up to isomorphism) : C 4 = {id,(1,2,3,4), (4,3,2,1), (1,3)(2,4)} ; here again the element (1, 3)(2, 4) is the image of the hyperelliptic involution because it commutes with with and fixes no point in common with .

For D 4 , let us consider the homomorphism h : Aut(↵, ) ! S 4 on fixed points. D 4 , can be described is the following way (up to isomorphism) : D 4 = {id,(1,2,3,4), (4,3,2,1), (1,3)(2,4), (1,2)(3,4), (1,4)(3,2), (1)(3)(2,4), (1,3)(2)(4)}. Note that the last two elements are commuting with (they have common fixed points with ), that their product is the element (1, 3)(2, 4) (thus commuting with ) but that this last element has no common fixed point with ; therefore, it is the image of the hyperelliptic involution. This means that the hypermap is hyperelliptic and this group can be viewed as a central lifting of D 2g+2 by C 2 owning C 2 ⇥ C 2g+2 as a subgroup by Corollary 20. Now, the signature of C 2 ⇥ C 2g+2 is (2, 2g + 2, 2g + 2) because there are two groups of order 2g + 2 fixing two points in common with which are not conjugated one to another. An the other fixed points are the one of conjugated by those groups of order 2g + 2. (There is another group of order 2g + 2 but not fixing any point and therefore not appearing in the signature). Let us call ! the hyperelliptic involution, an automorphism of order 2g + 2 and fixing points in common with (and none with !) then C 2 ⇥ C 2g+2 =< ! > ⇥ < >. Now, the signature Aut(↵, ) is (2, 4, 2g + 2) because it is the only possible signature for a group of order 8(g + 1) compatible with its subgroup C 2 ⇥ C 2g+2 . Indeed, the signature must have three components because the group order is larger, its last component must be 2g + 2 because the stabilizer exists in this group but just once because the reflexions in D 4 will conjugate the two C 2g+2 fixing groups, and the rest of the n i can only be 2 or 4 (in case ! "lifts " the order of an involution).

In this signature (2, 4, 2g + 2), the two groups of order 2g + 2 fixing two points in common with are now conjugated one to another by a new element. And some new elements of order 4 have appeared. These elements ⌧ i are necessarily such that their power of order 2 is ! the hyperelliptic involution; they come from one class of reflexions in D 2g+2 on the quotient by !, the class having two fixed points in common with !. Thus there are g + 1 of these groups. They own altogether the 2g + 2 fixed points of !. Therefore, the 2 in the signature is not ! order anymore. Its is the order of a new element. Let ✓ be a representative of this class. ✓ comes from a reflexion ✓ on the quotient with respect to !, such that if we have the following equation : ✓ ¯ = ¯ 1 ✓ because the induced automorphism group is D 2g+2 . This equation becomes in Aut(↵,

) either ✓ = 1 ✓ or ✓ = ! 1 ✓. If ✓ =
1 ✓ were the correct formula, Aut(↵, ) would be

(C 2 ⇥ C 2g+2 ) o (1, 1) C 2 since Aut(↵, ) =< ✓, (C 2 ⇥ C 2g+2
) > because orders coincide ; but then the only C 4 owned by Aut(↵, ) are already in C 2 ⇥ C 2g+2 and could not appear in the signature. This means that the correct formula is ✓ = ! 1 ✓ and the group definition is :

< , !, ✓/ 2g+2 = ! 2 = ✓ 2 = 1, ! = ! , ✓! = !✓, ✓ = ! 1 ✓ >
Let us consider a group of order 12(g + 1) such that the quotient is A 4 . There are four groups of order 3 in which all elements commute with . Each generator of these groups fixes one point in common with . Thus, each one of the four fixed points of is fixed in common with a C 3 . Now, an automorphism of order 2 generated by the product of two generators of those groups must commute with but fixes no point in common with it because then it would be in common with a C 3 . It must be the hyperelliptic involution. Because of A 4 structure, there must be three elements of this type, which is impossible because the hyperelliptic involution is unique. Again, since A 4 can't be lifted neither can S 4 .

Assume now that g = 2. The same proof holds... Only that C 3g+3 will not exist. since by Lemma 21, we know that the 3-Sylow subgroups are of order 3. ⇤

Example 25. The case C 2 ⇥ C 2g+2 , happens for all g 2 as by taking

↵ = (1, 2)(3, 4) • • • (4g + 1, 4g + 2)(4g + 3, 4g + 4), = (4g+3 
, 4g+2, 4g 1, 4g 2, 4g 5, ...3, 2)(4g+4, 4g+1, 4g, 4g 3, 4g 4, ...4, 1) and ↵ 1 = (4g + 4, 4g + 2, 4g, 4g 2, ..., 4, 2)(4g + 3, 4g + 1, 4g 1, 4g 3, ..., 3, 1)) . Euler's formula certifies that g is the genus. Since ↵ and commute, Aut(↵, ) =< ↵, >; thus it is equal to C 2 ⇥ C 2g+2 .

Proposition 26. Let (↵, ) be a hypermap of genus g 2 such that there exists an automorphism of prime order 2g + 1. Then, except for one case when g = 3 and Aut(↵, ) = P SL 2 (7) (the simple group of order 168), (↵, ) is a (2g + 1)-elliptic hypermap.

Proof. By Lemma 21, we know that the (2g + 1)-Sylow subgroups are all of order (2g + 1). If they are more than one, then by the Sylow theorems and because |Aut(↵, )|  84(g 1), |Aut(↵, )| must be (2g + 2)(2g + 1), 2(2g + 2)(2g + 1), 3(2g + 2)(2g + 1), (4g + 3)(2g + 1) or (6g + 4)(2g + 1) (since (8g + 5)(2g + 1) is greater than 84(g 1) for all g 2). If |Aut(↵, )| = k(2g + 1) where k is either 2g + 2, 4g + 3 or 6g + 4 then k is the number of (2g + 1)-Sylows. Now by (RH2), 2g 2 Let us prove now that if g = 3 and |Aut(↵, )| = 168 then Aut(↵, ) = P SL 2 (7) (the simple group of order 168). Note that there are eight 7-Sylows otherwise (↵, ) would be a 7-elliptic hypermap (i.e. |Aut(↵, )  21 by Theorem 22). Each 7-Sylow admits a non commutative normalizer of order 21-thus a C 7 o j C 3 . since an automorphism of order 3 induced on the plane by an automorphism of order 7 fixes exactly two points (no automorphism of order 21 when the genus is 3). By th Sylow's Theorems, the number of C 3 can only be 7 or 28 ; because of the former We give here a combinatorial map (↵, ) which describes a regular triangulation of the Klein surface. This surface of genus 3 is a famous example where the Hurwitz bound is reached. Thus, this map admits P SL 2 (7), the simple group of order 168, as automorphism group. (↵, ) has 56 vertices, 84 edges, and 24 faces on 168 brins; it is represented on Figure 1 where we identify the 14 sides of the polygon in the following way: A F , B K, C H, D M , E J, G L, I N . We recall that the Klein map represents an exceptional phenomenon for 2g + 1 prime order automorphisms where g is the genus, since we have seen that any hypermap admitting a 2g + 1 prime order automorphism is 2g + 1 -elliptic and has an automorphism group equal C 2g+1 , C 4g+2 and if 3 divides g we also have , 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21) (22, 23, 24)(25, 26, 27)(28, 29, 30)(31, 32, 33)(34, 35, 36)(37, 38, 39) (40, 41, 42)(43, 44, 45)(46, 47, 48)(49, 50, 51)(52, 53, 54)(55, 56, 57) (58, 59, 60)(61, 62, 63)(64, 65, 66)(67, 68, 69)(70, 71, 72)(73, 74, 75) (76, 77, 78)(79, 80, 81)(82, 83, 84)(85, 86, 87)(88, 89, 90)(91, 92, 93) (94, 95, 96)(97, 98, 99)(100, 101, 102)(103, 104, 105)(106, 107, 108) (109, 110, 111)(112, 113, 114)(115, 116, 117)(118, 119, 120)(121, 122, 123) (124, 125, 126)(127, 128, 129)(130, 131, 132)(133, 134, 135)(136, 137, 138) (139, 140, 141)(142, 143, 144)(145, 146, 147)(148, 149, 150)(151, 152, 153) (154, 155, 156)(157, 158, 159)(160, 161, 162)(163, 164, 165)(166, 167, 168) , 19, 16, 13, 10, 7, 4) ((1, 19, 16, 13, 10, 7, 4)(2, 24, 45, 100, 97, 40, 21) (3, 5, 25, 49, 106, 48, 23)(6, 8, 28, 59, 56, 53, 27)(9, 11, 32, 68, 65, 62, 30) (12, 14, 35, 76, 73, 70, 31)(15, 17, 38, 85, 82, 79, 34)(18, 20, 41, 94, 91, 88, 37) (22, 46, 152, 155, 130, 129, 44)(26, 54, 140, 143, 146, 149, 51) (29, 63, 128, 131, 134, 137, 58)(33, 71, 148, 147, 166, 165, 67) (36, 80, 136, 135, 160, 159, 78)(39, 89, 164, 167, 154, 153, 87) (42, 98, 158, 161, 142, 141, 96)(43, 127, 61, 66, 116, 103, 102) (47, 107, 110, 121, 84, 86, 151)(50, 150, 72, 74, 119, 109, 108) (52, 57, 113, 124, 93, 95, 139)(55, 60, 138, 81, 83, 122, 112) (64, 69, 163, 90, 92, 125, 115)(75, 77, 157, 99, 101, 104, 118) (105, 117, 126, 114, 123, 111, 120)(132, 156, 168, 145, 144, 162, 133) 

2k(2g + 1) + k(2g) ⇥ 3, thus 2g 2 k( 2g 
C 3 ⇥ j C 2g+1 ,
↵ 1 = (1

⇤ 4 .

 4 Automorphism groups of p-elliptic hypermaps We indicate by C p o k C m the group such that there exists , generator of C p , and , generator of C m , and = k . We also indicate by (C p ⇥ C n ) o (k,l) C m the group such that there exists , generator of C p , there exists !, generator of C n , and , generator of C m , such that = k and ! = ! l . Theorem 19. Let (↵, ) be a p-elliptic hypermap. Then Aut(↵, ) is either C pn (cyclic) where n is a divisor of 1+2g/(p 1) ; C pn or a lifting of D n by C p admitting C pn as a subgroup, where n is a divisor of 2g/(p 1) ; a semi-direct product of C n by C p or a lifting of D n by C p , admitting a semi-direct product of C n by C p as a subgroup, where n is a divisor of 2 + 2g/(p 1) ; or Aut(↵, ) is of order 12p, 24p, 60p (liftings of A 4 , S 4 , A 5 respectively).

  2) which is impossible. The remaining cases are: g = 2 and |Aut(↵, )| = 60, g = 3 and |Aut(↵, )| = 168 or |Aut(↵, )| = 112, g = 5 and |Aut(↵, )| = 264 and g = 6 and |Aut(↵, )| = 364. Now, an automorphism group is either of exact order 84(g 1) or of order less than 48(g 1) (See the array above). Thus the last possible case is g = 3 and |Aut(↵, )| = 168.

  if 5 divides |Aut(↵, )| then 3 = g + 1 does not divide |Aut(↵, )| by Corollary 22 and Proposition 26; moreover, g + 1 = 3 implies that 9 does not divide |Aut(↵, )| by Lemma 21. Therefore, |Aut(↵, )| = 2 k 3 with k  4. Only 24 and 48 are greater than 19, hence the result. ⇤ 6. The Klein map

Figure 6 . 1 .

 61 Figure 6.1. The Klein map

  last 3 cases give the order of Aut(↵, ) : 12p, 24p or 60p . ⇤ Corollary 20. Let (↵, ) be a hyperelliptic hypermap. Then Aut(↵, ) is either C 2n (cyclic) where n is a divisor of 2g + 1 ; C 2n or lifting of D n by C 2 admitting C 2n as a subgroup where n is a divisor of 2g ; C 2 ⇥ C n or a lifting of D n by C 2 admitting C 2 ⇥ C n as a subgroup, where n is a divisor of 2g + 2 ; or Aut(↵, ) is of order 24, 48, 120 ( liftings of A 4 , S 4 , A 5 respectively).

	Proof. All semi-direct products become direct; hence the result.	⇤
	5. 2g + 1-elliptic and g + 1-elliptic hypermaps	

Lemma 21. Let (↵, ) be a hypermap of genus g 2 and p a prime dividing the order of Aut(↵, ), if p equals g + 1 or 2g + 1, then the p-Sylow subgroups are of order p.

  except the Klein map (up to regularity). ↵ = (1, 21)(2, 23)(3, 4)(5, 27)(6, 7)(8, 30)(9, 10)(11, 31)(12, 13)(14, 34)(15, 16) (17, 37)(18, 19)(20, 40)(22, 48)(24, 44)(25, 51)(26, 53)(28, 58)(29, 62)(32, 67) (33, 70)(35, 78)(36, 79)(38, 87)(39, 88)(41, 96)(42, 97)(43, 129)(45, 102)(46, 151) (47, 106)(50, 149)(52, 56)(54, 139)(55, 59)(57, 112)(60, 137)(61, 65)(49, 108) (63, 127)(64, 68)(66, 115)(69, 165)(71, 150)(72, 73)(74, 118)(75, 76)(77, 159) (80, 138)(81, 82)(83, 121)(84, 85)(86, 153)(89, 163)(90, 91)(92, 124)(93, 94)

	(95, 141)(98, 157)(99, 100)(101, 103)(104, 120)(105, 116)(107, 109)(110, 123)
	(111, 119)(113, 126)(114, 122)(117, 125)(128, 130)(131, 133)(132, 155)
	(134, 136)(135, 162)(140, 142)(143, 145)(144, 161)(146, 148)(147, 168)
	(152, 154)(156, 167)(158, 160)(164, 166)
	= (1, 2, 3)(4, 5, 6)(7, 8, 9)(10
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remark, there are 28 C 3 in Aut(↵, ). Let us suppose that there exists G normal in Aut(↵, ). If 7 divides |G|, then |G| = 8⇥7 and by (RH) 4 8⇥7⇥( 2)+8⇥6⇥3, which is false. If 3 divides |G|, then the 3-Sylows would normalize the 7-Sylows which is not the case. Thus, |G| divides 8. Since the quotient with respect to G induces an automorphism of order 7, it is planar; this means that an automorphism group of type C 2g+1 o j C 3 exists on the plane which is false. Thus Aut(↵, ) is simple and of order 168, hence the result. Such a hypermap does exist: the "Klein map", a regular map on 168 brins vertices of length 3 and faces of length 7 for which Aut(↵, ) = P SL 2 (7). It is given in the last section. ⇤ Proposition 27. Let (↵, ) be a hypermap of genus g 2 such that there exist an automorphism of prime order g + 1. Then (↵, ) is a (g + 1)-elliptic hypermap except for the following cases: g = 2 and |Aut(↵, )| is equal to 24 or 48 ; g = 4 and |Aut(↵, )| is equal to 60, 90 or 120; Or g = 6 and |Aut(↵, )| = 420.

Proof. By Lemma 21, we know that the (g + 1)-Sylow subgroups are all of order (g + 1). If they are more than one, then by the Sylow theorems and because |Aut(↵, )|  84(g 1), then |Aut(↵, )| must be h(g + 2)(g + 1) with h  9, h(2g + 3)(g + 1) with h  4, h(3g + 4)(g + 1) with h  3, (4g + 5)(g + 1) with h  2, (5g + 6)(g + 1), (6g + 7)(g + 1), (7g + 8)(g + 1), (8g + 9)(g + 1), or (9g + 10)(g + 1) (since (10g + 11)(g + 1) is strictly greater than 84(g 1) for all g 6 = 3 but in this case g + 1 is not a prime).

If

where k is either g + 2, 2g + 3, 3g + 4, 4g + 5, 5g + 6, 6g + 7, 7g + 8, 8g + 9, or 9g + 10 then k is the number of (g + 1)-Sylows. Now by (RH2), 2g 2 2k(g + 1) + k(g) ⇥ 4, thus 2g 2 k(2g 2) which is impossible. Thus, |Aut(↵, )| 2(g + 2)(g + 1). If |Aut(↵, )|  19(g 1), then 19(g 1) 2(g + 2)(g + 1) = 2g 2 + 6g + 4 thus, 0 2g 2 13g + 23 which is impossible since the discriminant is negative. Thus, |Aut(↵, )| > 19(g 1). It means that the number of conjugacy classes of stabilizers is r = 3. Moreover, since an automorphism of prime order g + 1 fixes points, either g + 1 or a multiple of g + 1 must appear in the signature.

Assume that g > 2.

In Assume that g = 2. Since, by (RH), the maximal prime order for an automorphism is 2g +1 = 5, |Aut(↵, )| = 84(g 1) can't be reached. We already know that