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Abstract. This brief overview provides a quick survey of qualitative possibility
theory and possibilistic logic along with their applications to various forms of
epistemic reasoning under and about incomplete information. It is highlighted
that this formalism has the potential of relating various independently introduced
logics for epistemic reasoning.

1 Introduction

Possibility theory is a formal setting for uncertainty management that has been inde-
pendently proposed by different authors since the late 1940’s (e.g. [63, 54, 27]). It has
been later on fully developed in the last 40 years [66, 34, 40]. It offers a framework ded-
icated to the representation of incomplete information, that can be naturally extended
to graded beliefs, and the ensuing forms of uncertain reasoning. Because of its simplic-
ity and natural appeal, some basic parts of this setting are implicit in many theories of
epistemic reasoning, so that possibility theory has a significant unifying power for these
alternative formalisms.

This extended abstract presents a short survey of possibility theory, of possibilistic
logic that is based on it, and of their applications (providing detailed references in each
case).

2 Possibility theory

Possibility theory has a remarkable situation among the settings devoted to the repre-
sentation of imprecise and uncertain information.

First, it may be numerical or qualitative [36]. In the first case, possibility measures
and the dual necessity measures can be regarded respectively as upper bounds and lower
bounds of ill-known probabilities; they are also particular cases of Shafer [64] plausi-
bility and belief functions respectively. In fact, possibility measures and necessity mea-
sures constitute the simplest, non trivial, imprecise probability system [65]. Second,
when qualitative, possibility theory provides a natural approach to the grading of pos-
sibility and necessity modalities on finite scales S = {1 = λ1 > . . . λn > λn+1 = 0}
where grades have an ordinal flavor. In the following, we focus on qualitative possibility
theory.

In possibility theory, pieces of information, viewed as epistemic states, are repre-
sented in terms of sets or fuzzy sets viewed as possibility distributions. A possibility



distribution π is a mapping from a set of states, or universe of discourse, denoted by
U , to a totally ordered scale S (π(u) = 0 means that state u is rejected as impossible;
π(u) = 1 means that state u is totally possible, i.e., plausible). When S = {0, 1}, π is
the characteristic function of a set E of possible mutually exclusive values or states of
affairs, obtained by ruling out the impossible. Such a set represents the epistemic state
of an agent and is called an epistemic set. In the general, graded, case, E is a fuzzy set.

Two increasing set functions, similar to probability functions, are induced from a
possibility distribution, namely a possibility measure Π (Π(A) = supu∈A π(u)) and a
dual necessity measureN (N(A) = 1−Π(Ac), whereAc = U\A is the complement of
A).Π(A) evaluates to what extentA is consistent with the epistemic stateE, andN(A)
to what extent A is certainly implied by E. Note that N(A) > 0 implies Π(A) = 1.

In the Boolean case, when the epistemic state E is a crisp subset of U , possibility
and necessity functions are such that:

– Π(A) = 1 if A ∩ E 6= ∅, and 0 otherwise; so Π(A) = 0 when proposition A is
incompatible with the epistemic state.

– N(A) = 1 if E ⊆ A, and 0 otherwise; so N(A) = 1 when proposition A is true in
all states of the world compatible with the epistemic state.

– When Π(A) = 1 and N(A) = 0 corresponds to the case when the epistemic state
E does not allow for deciding whether A is true or false (ignorance).

Possibility measures satisfy a characteristic “maxitivity” property in the form of the
identity Π(A ∪ B) = max(Π(A), Π(B)), and necessity measures a “minitivity” pro-
perty N(A ∩B) = min(N(A), N(B)).

In contrast with the minitivity of necessity functions and the maxitivity of possibil-
ity functions, it is generally not true that Π(A ∩ B) = min(Π(A), Π(B)), nor that
N(A ∪ B) = max(N(A), N(B)); for instance let B = Ac, and Π(A) = Π(Ac) = 1
(ignorance case), then Π(A ∩ B) = 0 6= min(Π(A), Π(B)) = 1. The property
Π(A ∩ B) = min(Π(A), Π(B)) may hold for some special pair of events for in-
stance when the possibility distribution is multidimensional, i.e., U = U1 × · · · × Uk
and π = minki=1 πi, where πi is a marginal possibility distribution on Ui. π is said to
be decomposable and the variables are said to be non-interactive. Non-interactivity is a
graded generalisation of logical independence.

Two other decreasing set functions can be associated with π:
i) a measure of guaranteed possibility or strong possibility [36]:∆(A) = infu∈A π(u)

which estimates to what extent all states in A are possible according to evidence. ∆(A)
can be used as a degree of evidential support for A;

ii) its dual conjugate∇(A) = 1−∆(Ac): it evaluates a degree of potential or weak
necessity of A, as it is 1 only if some state u out of A is impossible.

In the Boolean case, it reduces to ∆(A) = 1 if A ⊆ E and 0 otherwise, while
∇(A) = 1 if A ∪ E 6= U . Interestingly enough, the four set function are necessary for
describing the relative positions of two subsets such as A and E, see, e.g., [38]. The
four set functions are weakly related by the constraint for all A, max(N(A), ∆(A)) ≤
min(Π(A),∇(A)) (provided that π and 1−π are both normalized, i.e. they reach 1 for
some u ∈ U ).



3 Connections between possibility theory and other
representations of incomplete knowledge

Necessity and possibility functions reminds of modal logics, where these modalities,
respectively denoted by 2 and 3, are used to prefix logical sentences. In KD modal
logics, which are also known as epistemic logics [49], asserting 2φ stands for declar-
ing that an agent believes or knows that proposition φ is true. If φ is a propositional
formula that is true for those and only those states of affairs in the set A, asserting 2φ
is faithfully encoded by the identity N(A) = 1. Counterparts of properties of possibil-
ity functions are valid in KD modal logics, in particular minitivity of necessity func-
tions (2(φ ∧ ψ) ≡ 2φ ∧ 2ψ), duality (3φ stands for ¬2¬φ and encodes the identity
Π(A) = 1), and maxitivity of possibility functions (3(φ ∧ ψ) ≡ 3φ ∧ 3ψ). These
possibilistic semantics are the basis of a very simple modal logic (MEL [3]). However,
the language of modal logics is more complex than the one of possibility theory because
propositions prefixed by modalities may contain modalities. The semantics is usually
in terms of relations rather than epistemic states [48].

A semantics of Kleene three-valued logic can be devised in terms of multidimen-
sional possibility distributions over a universe that is a Cartesian product U = U1 ×
· · · × Uk, where each subspace Ui = {ai,¬ai}. Kleene logic uses 3 truth-values
{T > I > F}. Assigning T (resp. F ) to an atom ai, i.e., t(ai) = T ) (resp. t(ai) = F )
expresses that ai is surely true, i.e., NT (ai) = 1 (resp. surely false : NF (¬ai) = 1)
which corresponds to Boolean possibility distributions πTi (ai) = 1, πTi (¬ai) = 0 (resp.
πFi (ai) = 0, πFi (¬ai) = 1); finally assigning I to ai expresses a lack of knowledge
about whether ai is true or false (πIi (ai) = 1, πIi (¬ai) = 1). In Kleene logic, knowl-
edge is thus expressed on atoms only, and it handles epistemic states in the form of
possibility distributions minki=1 πi where πi ∈ {πTi , πFi , πIi }. A truth assignment t is a
partial model of the form (∧i:t(ai)=Tai) ∧ (∧j:t(aj)=F¬aj) encoded by the possibility
distribution πt = min(mini:t(ai)=T π

T
i ,mini:t(ai)=F π

F
i ) (πIi disappears, being equal

to 1 everywhere). The truth-functionality of Kleene logic can be justified in terms of the
non-interactivity of the Boolean variables. The possibilistic framework highlights the
limited expressiveness of Kleene 3-valued logic, which cannot account for epistemic
states modelled by subsets of U that are not partial models [26].

4 Possibilistic logic and its applications

Possibilistic logic (PL) [31, 39, 41, 42] amounts to a classical logic handling of certainty-
qualified statements. Certainty is estimated in the setting of possibility theory as a lower
bound of a necessity set-function. An elementary possibilistic formula (a, α) is made
of a classical logic formula a associated with a certainty level α ∈ S \ {0}. Basic
PL handles only conjunctions of such formulas, and PL bases can be viewed as classi-
cal logic bases layered in terms of certainty. Semantics is in terms of epistemic states
represented by fuzzy sets of interpretations. A PL base Γ is associated with an incon-
sistency level above which formulas are safe from inconsistency (this level is defined
by inc(Γ ) = max{α|Γ ` (⊥, α)}, which semantically corresponds to the lack of
normalization of the possibility distribution associated with Γ ).



Applications of possibilistic logic (and possibility theory) include

– Bayesian-like possibilistic networks [15, 12], where possibilistic conditioning is de-
fined using a Bayesian-like equation of the form Π(B ∩ A) = Π(B | A) ? Π(A)
where Π(A) > 0 and ? is the minimum in the qualitative case or the product in
the quantitative case; moreover N(B | A) = 1 − Π(Bc | A). Several notions of
independence make sense in the possibilistic setting [29, 11]. Like joint probability
distributions, joint possibility distributions can be decomposed into a conjunction
of conditional possibility distributions (using ? = minimum, or product), once an
ordering of the variables is chosen, in a way similar to Bayes nets. Moreover, pos-
sibilistic nets can be directly translated into PL bases and vice-versa.

– Reasoning with default rules [17, 18]: Possibility theory can be used for describing
the normal course of things. A default rule “if a then generally b” is understood
formally as the constraint Π(a ∧ b) > Π(a ∧ ¬b) on a possibility measure Π
describing the semantics of the available knowledge. It expresses that in the context
where a is true it is more possible that b is true than the opposite. A default rule
“if ai then generally bi” in a conditional knowledge base can be turned into a PL
clause (¬ai ∨ bi, N(¬ai ∨ bi)), where the necessity N is computed from the set of
constraints corresponding to the default rules in the base. We thus obtain a PL base
encoding this set of rules. Then using PL inference on the PL base, augmented
with propositional formulas describing a factual situation, enables us to perform
non monotonic reasoning in agreement with a postulate-based approach (namely,
rational closure in the sense of Lehmann and Magidor [53]).

– Belief revision. Since non monotonic reasoning and belief revision can be closely
related, PL finds application also in belief revision. In fact, comparative necessity
relations (a relational counterpart of qualitative necessity measures) [28] are noth-
ing but the epistemic entrenchment relations [35] that underly well-behaved belief
revision processes [47]. This enables the PL setting to provide syntactic revision
operators that apply to possibilistic knowledge bases, including the case of uncer-
tain inputs [21, 59].

– Information fusion. The combination of possibility distributions, by means of fuzzy
set connectives such as min, can be equivalently performed syntactically in terms
of PL bases [20]. Besides, this approach can be also applied to the syntactic en-
coding of the merging of classical logic bases based on Hamming distance (where
distances are computed between each interpretation and the different classical logic
bases, thus giving birth to counterparts of possibility distributions) [16].

– Preference modeling. In this case, certainty is turned into priority: Each PL formula
(a, α) represents a goal a to be reached with some priority level α. Beyond PL,
interpretations (corresponding to different alternatives) can be compared in terms of
vectors acknowledging the satisfaction or the violation of the formulas associated
with the different goals, using suitable order relations. Thus, partial orderings of
interpretations can be obtained [13].

– Modeling desires: In contrast with static beliefs, (positive) desires are such that
endorsing a ∨ b as a desire means to desire a and to desire b. However, desiring
both a and ¬a does not sound rational. The modeling of desires can be achieved
using a “desirability” distribution δ : U → [0, 1] such that δ(u) = 0 for some



u ∈ U . The logic of desires is thus a inversed mirror image of classical logic.
Just as belief revision relies on an epistemic entrenchment relation (and thus on a
necessity measure), well-behaved desire revision relies on a guaranteed possibility
function ∆ [33].

– Qualitative decision. Possibility theory provides a valuable setting for qualitative
decision under uncertainty where pessimistic and optimistic decision criteria have
been axiomatized [44] and cast in possibilistic logic by means of two bases, one for
expressing knowledge, the other for expressing goals [32].

Let us also briefly mention different extensions of basic PL, where

– Lattice-valued possibilistic logic. Examples are i) a timed PL with logical formulas
associated with fuzzy sets of time instants where the formula is known to be certain
to some extent; ii) a logic of supporters [52], where formulas a are associated with
sets of arguments in their favor. Closely related to this latter logic is the idea of
associating each formula with a set of distinct explicit sources that support its truth
more or less strongly. This has led to the proposal of a “social” logic where formulas
are of the form (a,A), where A denotes a subset of agents and the formula means
that at least all the agents inA believe that a is true [6]. It can be extended to pieces
of information of the form “at least all agents in A believe a at least at level α”.

– Symbolic PL. Instead of using weights from a totally ordered scale, one may use
pairs (p, x) where x is a symbolic entity that stands for an unknown weight. Then
we can model the situation where only a partial ordering between ill-known weights
is specified by means of inequality constraints [9, 22].

– An extension of possibilistic inference has been proposed for handling paraconsis-
tent (conflicting) information [19].

In a computational perspective, possibilistic logic has also impacted logic program-
ming [1, 56, 57, 5]. Besides, the possibilistic handling of uncertainty in description logic
has been suggested [60, 67]. Computational advantages of description logic can then be
preserved for its PL extensions, in particular in the case of the possibilistic DL-Lite
family [7, 8]. Another application is the encoding of control access policies [14].

5 Generalized possibilistic logic

In the so-called generalized possibilistic logic (GPL) [46], negation and disjunction can
be used to combine possibilistic formulas, on top of conjunction as in PL. GPL use
graded necessity and possibility modalities, i.e., a PL formula (a, α), is encoded as
2αa in GPL.

GPL can be viewed as both a generalization of PL and a generalization of Meta-
Epistemic Logic (MEL) [3], the simplest logic of belief and partial ignorance - a frag-
ment of modal logic KD where all formulas are modal, and modalities cannot be nested.
See Figure 1 [41], which points out how GPL extends propositional logic through MEL
and PL. GPL is in fact just a two-tiered standard propositional logic, in which propo-
sitional formulas are encapsulated by weighted modal operators, forming higher order
propositional formulas, interpreted in terms of uncertainty measures from possibility



		
Proposi'onal	logic	
Language	L:	α, ¬p, p∧q
Epistemic	models	E≠∅ ⊆ S
E |= p iff E	⊆ [p] iff N(p)	=	1	
	N:	necessity	measure
Εncodes	strong	beliefs	

Minimal	Epistemic	Logic	(MEL)	
Language:	☐p, p ∈ 	L	|	¬φ | φ∧ψ
☐p stands	for	N(p)	=	1	(N=	KD	modality)	
models:	epistemic	states		
A	fragment	of	usual	epistemic	logics	KD	
Encodes	belief	and	lack	of	belief	

Possibilis'c	logic	
Language:		(p, α), p ∈ 	L | φ∧ψ
α ∈ Λk=	{1/k,	2/k…,	k/k	=1}, 
α	=		certainty	level	
Models:	possibility	distribuHons	π:		
π |= (p, α)  iff	Ν(p) ≥	α
Εncodes	graded	beliefs	

Generalized	Possibilis'c	logic	(GPL)	
Language:		
										Nα p, p ∈ 	L,	α	∈	Λk	|	¬φ | φ∧ψ
Nap	stands	for	(p, a)	; N1p for ☐p
Παp stands	for		¬N1-α +1/k¬p	
Models:	possibility	distribuHons
π  |= Nα p iff	Ν(p) ≥	α
Εncodes	graded	belief	and	explicit	
lack	of	belief	

Fig. 1: From Propositional Logic to Generalized Possibilistic Logic

theory. GPL can be still extended to a logic involving both objective and non-nested
multimodal formulas [4].

GPL has applications such as:

– Reasoning about ignorance [46]: Some GPL formulas encode statements such as
“All that is known is a”. It means that a is known but nothing more (like, e.g., some
b entailing a). It semantically corresponds to the use of the guaranteed possibility
set function.

– Representing answer set programs [45, 46]: GPL can encode answer set programs,
adopting a three-valued scale S = {0, 1/2, 1}. In this case, we can discriminate
between propositions we are fully certain of and propositions we consider only
more plausible than not. This is sufficient to encode non-monotonic ASP rules (with
negation as failure) within GPL, which lays bare their epistemic semantics.

– Handling comparative certainty logic [23]. Rather than using weighted formulas,
one might wish to represent at a syntactic level statements of the form “a is more
certain than b”. This kind of statements can be to some extent captured by GPL
[46], which is thus more expressive than PL with symbolic weights.

– Encoding many-valued logics of uncertainty, such as Kleene and Łukasiewicz 3-
valued logics [24], as well as 3-valued paraconsistent logics such as Priest logic



of paradox [25]. MEL is enough for this task. GPL with 2 necessity modalities
(one weak and one strong) is needed to encode the 5-valued equilibrium logic [45].
Many-valued logics with more truth-values could be encoded in GPL with a suit-
able number of certainty levels.

As a perspective, a logic of arguments, similar to GPL, has been outlined in [2]. The
basic formulas are pairs (x, y) and stand for “y is a reason for believing x”. Another
perspective is reasoning about other agents’ beliefs as in the muddy children problem
[42].

6 Concluding remarks

Generally speaking, the interest and the strength of PL and GPL relies on a sound
alliance between classical logic and possibility theory which offers a rich representation
setting allowing an accurate modeling of partial ignorance.

An interesting feature of possibility theory (involving the four set functions) lies in
its capability of providing a bipolar representation of positive and negative information
using pairs of distributions (δ, π). This view applies both to knowledge and preferences.
Then, the distribution π describes the complement of the fuzzy set of values that are
ruled out (being impossible or rejected), while the distribution δ describes a fuzzy subset
of values that are actually possible to some extent or desired (positive information) [37].

Counterparts of the four possibility theory set functions also make sense in formal
concept analysis, where formal concepts in the usual sense are defined from the coun-
terpart of the ∆ function and the scale S is replaced by a power set [38].

Possibility theory still has several other noticeable applications such as the design
and the handling of uncertain databases [58, 55], or the numerical computation with
fuzzy intervals [30].

Lastly, possibility theory may have some potential in machine learning both on
the quantitative side due to its link with imprecise probabilities and the existence of
probability / possibility transformations, and on the qualitative side for its relation to
logic and its use in the modeling of different types of if-then rules, which may be also of
interest for explanation purposes; see [43] for a discussion and references. This is still to
be further explored. Let us more particularly mention some works on the qualitative side
in relation with possibilistic logic. PL can be applied to inductive logic programming
(ILP). Indeed having a stratified set of first-order logic rules as an hypothesis in ILP
is of interest for learning both rules covering normal cases and more specific rules
for exceptional cases [62]. A different approach to the induction of possibilistic logic
theories is proposed in [51]. It relies on the fact that any set of formulas in Markov logic
[61] can be exactly translated into possibilistic logic formulas [50, 46].
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