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SPECIAL MACROSCOPIC MODES AND

HYPOCOERCIVITY

KLEBER CARRAPATOSO, JEAN DOLBEAULT, FRÉDÉRIC HÉRAU,

STÉPHANE MISCHLER, CLÉMENT MOUHOT, AND CHRISTIAN SCHMEISER

Abstract. We study linear inhomogeneous kinetic equations with an
external confining potential and a collision operator admitting several lo-
cal conservation laws (local density, momentum and energy). We classify
all special macroscopic modes (stationary solutions and time-periodic so-
lutions). We also prove the convergence of all solutions of the evolution
equation to such non-trivial modes, with a quantitative exponential rate.
This is the first hypocoercivity result with multiple special macroscopic
modes with constructive estimates depending on the geometry of the
potential.
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1. Introduction

Since the publication of Boltzmann’s paper [5] in 1876, the existence of
time-periodic steady states of the inhomogeneous Boltzmann equation in the
whole Euclidean space is known, in presence of an external harmonic poten-
tial. As explained in [10, p. 147], “equilibrium is not necessarily achieved
in an harmonic field. [...] [D]ensity, velocity and temperature oscillate with
the natural frequency of the field or with twice such a frequency.” Beyond
such remarks, the classification of the steady states according to the sym-
metries of the domain or the symmetries of the external potential remained
untouched for more than a century, although some special solutions were
known [43, 10]. When symmetry partially or completely breaks, this turns
out to be a difficult issue. With symmetry, special modes have to be taken
into account in some configurations and local collision laws of the collision
operator add significant difficulties to the understanding of the convergence
in asymptotic regimes in all cases, even if there is no particular symmetry.

Without external potential and for a bounded domain, the problem has
been studied in [12]. In presence of a given external potential, the question
was so far open and our first result is to classify all steady solutions for linear
kinetic equations with collision operators satisfying the local conservation
laws of physics. Even more difficult is the problem of the stability of the
(possibly time-periodic) steady states and the proof of the convergence to
such states, with an exponential rate, for inhomogeneous kinetic equations.
The question goes back to the celebrated H-theorem of Boltzmann, but
became quantitative only recently with the theory of hypocoercivity. All
results involving an external potential deal with collision operators admit-
ting only one collision invariant, up to a few attempts like [15, 16] which
discard special modes, with non-constructive methods. Our second result
gives the very first answer to the question of the convergence rate in the
whole space for an external potential without any a priori symmetry, using
an entirely new scheme made of a cascade of several hypocoercive estimates.
Alternatively we also propose a commutator method in the spirit of [27, 45].

Even when the potential has no specific symmetry, which forbids the
existence of any special mode other than the standard stationary solution,
the fact that the collision operator admits several collision invariants is a
source of difficulties: when the potential is almost symmetric, convergence
rates get deteriorated and the geometric properties of the potential have
therefore to be taken into account. The notion of steady states, defined as
the set of attractors in large time asymptotics, is widely used in physics, and
corresponds in our case to minimizers of the mathematical entropy (that is,
the physical entropy, up to the sign). In this paper we shall speak of special
macroscopic modes in relation with special symmetries of the potential.
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1.1. Equation and assumptions. Consider the kinetic equation

∂tf = L f := T f + C f , f|t=0 = f0 ,(1.1)

for the unknown distribution function f = f(t, x, v) depending on the time
variable t ≥ 0, the position variable x ∈ Rd, and the velocity variable v ∈ Rd,
where d ≥ 1 is an arbitrary dimension. The transport operator T is given by

T f := − v · ∇xf +∇xφ · ∇vf

with a stationary, position dependent potential φ : Rd → R. We assume
that the linear collision operator C is acting only along the velocity variable
v ∈ Rd, is self-adjoint in L2(µ−1), with weight given by the local Maxwellian
function

(1.2) ∀ v ∈ Rd , µ(v) :=
e−|v|

2/2

(2π)d/2
,

and has the (d+ 2)-dimensional kernel of collision invariants given by

(H0) Ker C = Span
{
µ, v1 µ, . . . , vd µ, |v|2 µ

}
,

corresponding to the local conservation of mass, momentum and energy.
Here L2(µ−1) is the subspace of L2

loc(Rd, dv) of the functions f such that

‖f‖L2(µ−1) :=

(∫
Rd

|f |2

µ(v)
dv

)1/2

is finite.

We assume that C satisfies the following spectral gap property (which is
a quantitative version of the spatially homogeneous linearized H-theorem)

−
∫
Rd

(
C f(v)

)
f(v)µ(v)−1 dv ≥ cC ‖f −Πf‖2L2(µ−1)(H1)

for some constant cC > 0 and all f in the domain of C , where Π denotes
the L2(µ−1)-orthogonal projection onto Ker C . Moreover, we suppose that
for any polynomial function p(v) : Rd → R of degree at most 4, the function
p µ is in the domain of C and

C(p) := ‖C (p µ)‖L2(µ−1) <∞ .(H2)

We provide examples of collision operators satisfying these conditions in
Appendix B.1, including the linearized Boltzmann and Landau operators.

Throughout the paper, we assume that the potential φ : Rd → R is such
that ρ(x) := e−φ(x) is a centred probability density, i.e.,

(H3)

∫
Rd
ρ(x) dx = 1 and

∫
Rd
x ρ(x) dx = 0 .

We also assume that φ is of class C2(Rd;R), and for all ε > 0, there exists
a constant Cε such that

(H4) ∀x ∈ Rd , |∇2
xφ(x)| ≤ ε |∇xφ(x)|2 + Cε ,
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where ∇2
xφ denotes the Hessian matrix of φ. We further assume that the

measure ρ(x) dx satisfies the Poincaré inequality with a constant cP > 0,

cP

∫
Rd
|ϕ− 〈ϕ〉|2 ρ dx ≤

∫
Rd
|∇xϕ|2 ρ dx ,(H5)

for all ϕ ∈ L2(ρ), where

〈ϕ〉 :=

∫
Rd
ϕρ dx

is the average of ϕ. Here L2(ρ) is the subspace of L2
loc(Rd, dx) of the func-

tions ϕ such that ‖ϕ‖2L2(ρ) =
∫
Rd |ϕ|

2 ρdx is finite.

We assume moment bounds on ρ, namely

(H6)

∫
Rd

(
|x|4 + |φ|2 + |∇xφ|4

)
ρ dx ≤ Cφ

for some constant Cφ > 0. We also introduce the normalization

(H7)
〈
∇2
xφ
〉

=

∫
Rd
∇2
xφ ρ dx = Idd×d ,

where Idd×d the identity matrix of size d. The assumption that 〈∇2
xφ〉 is

diagonal is not a restriction since it can be obtained through a rotation
in position space. Note that the same rotation in velocity space leaves the
kinetic equation invariant and all assumptions made so far remain valid. The
stronger assumption (H7) is made for notational simplicity, and a discussion
of the general case is given in Appendix B.3.

The potential φ(x) := (1 + |aγ x|2)γ/2 − Zγ , with γ > 1 and real normal-
ization constants aγ , Zγ , satisfies (H3)–(H4)–(H5)–(H6)–(H7). See Appen-
dix B.2 for other examples. No sign is assumed on f : one should think of f
as a real valued fluctuation around the equilibrium in the nonlinear Boltz-
mann or Landau equation (see Appendix B.1). Throughout this article we
shall refer to (H1) and (H5) as spectral gap properties, and to (H2) and (H6)
as bounded moment properties. These are the structural assumptions on C
and φ for our theory.

Finally, since we are concerned with large time asymptotic behaviour, we
require that the evolution equation (1.1) is well-posed, a condition which is
satisfied by our standard examples of application, and assume that

(H8) t 7→ etL is a strongly continuous semi-group on the space L2(M−1),

where M is the global Maxwellian equilibrium function given by

(1.3) ∀ (x, v) ∈ Rd × Rd , M(x, v) := ρ(x)µ(v) =
e−

1
2
|v|2−φ(x)

(2π)d/2
,
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and the space L2(M−1) is the subspace of L2
loc(Rd×Rd, dx dv) of the func-

tions f such that

‖f‖L2(M−1) :=

(∫∫
Rd×Rd

|f |2

M
dx dv

)1/2

is finite.

1.2. The main result. From here on, we assume the normalization con-
ditions (H3)–(H7). The function M defined by (1.3) is a stationary solu-
tion of (1.1) but it is not the unique attractor of the time-dependent solu-
tions of (1.1), even up to a mass normalization. Let us introduce a larger
class of steady states. Special macroscopic modes of (1.1) are the solutions
F = F (t, x, v) to the system

CF = 0 , ∂tF = T F .(1.4)

Of course we read from (H0) that F = αM, α ∈ R, is a special macroscopic
mode but we also look for solutions to (1.4) that can be written as

F =
(
r(t, x) +m(t, x) · v + e(t, x)E(v)

)
M ,(1.5)

for some functions r, m and e with values respectively in R, Rd and R, with

(1.6) E(v) :=
|v|2 − d√

2 d
.

The energy mode F = βHM, β ∈ R, is another stationary solution to (1.4)
where H defined by

(1.7) H(x, v) := 1
2

(
|v|2 − d

)
+ φ(x)− 〈φ〉

is the Hamiltonian energy associated with the characteristics of the trans-
port equation ∂tf = T f . As we shall see in Section 2.1, it turns out that
the linear combination of global Maxwellian equilibrium functions and en-
ergy modes are the only special macroscopic modes for “generic potentials”.
Other special macroscopic modes are available under additional symmetry
properties of φ as observed by L. Boltzmann in [5]. These modes deserve
some explanations.

The set of infinitesimal rotations compatible with φ defined as

(1.8) Rφ :=
{
x 7→ Ax : A ∈Mskew

d×d (R) s.t. ∀x ∈ Rd , ∇xφ(x) ·Ax = 0
}

is identified with a subset of the space of skew-symmetric matrices

Mskew
d×d (R) :=

{
A ∈Md×d(R) : TA = −A

}
.

In other words, we write A ∈ Rφ if and only if φ is invariant by the rotation

group θ 7→ eθA, i.e.,

∀ (θ, x) ∈ R× Rd , φ
(
eθAx

)
= φ(x) .
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The set Rφ gives rise to the corresponding set of rotation modes compatible
with φ defined by

Rφ :=
{

(x, v) 7→ (Ax · v)M(x, v) : A ∈ Rφ
}
.

Functions in Rφ are stationary solutions of (1.4) associated to all invariances
of φ under rotation.

There are also some time-periodic special macroscopic modes when φ has
harmonic directions. Let us define

(1.9) Eφ := SpanRd
(
{∇xφ(x)− x}x∈Rd

)
, dφ := dimEφ .

Notice that Eφ is a subspace of Rd and dφ ≤ d. Alternatively, we can
characterize dφ by

dφ = dim SpanL2(ρ)

(
{∂xiφ}i=1,...,d ∪ {xi}i=1,...,d

)
− d

and choose cartesian coordinates (x1, x2, . . . , xd) such that ∂xiφ = xi if and
only if i ∈ Iφ := {dφ + 1, . . . , d}. We face three different cases.

B The case dφ = d is called fully non-harmonic: Eφ = Rd and φ has no
harmonic direction and it that case, as we shall see below, there are no time-
periodic solutions.
B In the case 1 ≤ dφ ≤ d − 1, the potential is called partially harmonic.
In the harmonic coordinates xdφ+1, . . . , xd, we have ∂xiφ = xi and define
harmonic directional modes by

(1.10) Dφ := Span
{

(xi cos t−vi sin t)M , (xi sin t+vi cos t)M : i ∈ Iφ
}
.

Harmonic directional modes are also defined if dφ = 0. By convention,
we set Dφ := {0} if dφ = d. All functions in Dφ are solutions to (1.4)
which correspond to an inertia-driven oscillation of period 1 of particles in
a potential well along a direction in E⊥φ . These modes are independent of
each other.
B In the case dφ = 0, the potential is called fully harmonic and φ(x) =
1
2 |x|

2 + d
2 log(2π). In addition to the harmonic directional modes, the set

of harmonic pulsating modes

(1.11) Pφ := Span

{(
1
2

(
|x|2 − |v|2

)
cos(2 t)− x · v sin(2 t)

)
M ,

(
1
2

(
|x|2 − |v|2

)
sin(2 t) + x · v cos(2 t)

)
M
}

is also made of solutions to (1.4). By convention, we set Pφ = {0} if dφ ≥ 1.
These macroscopic modes correspond to a radially symmetric pulsation of
period 1/2 of particles in the potential well.

Summing up the above observations, we have obtained special macro-
scopic modes of the form

(1.12) F = αM+ βHM+Ax · vM+ Fdir + Fpul
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where α, β ∈ R, (x 7→ Ax) ∈ Rφ, Fdir ∈ Dφ and Fpul ∈ Pφ. With these
definitions at hand, we can now state the main result of this paper.

Theorem 1.1 (Special macroscopic modes and hypocoercivity). Assume
that the potential φ and the collision operator C satisfy the assump-
tions (H0)–(H1)–(H2)–(H3)–(H4)–(H5)–(H6)–(H7)–(H8). Then

(1) All special macroscopic modes of (1.4) are given by (1.12), i.e.,
are linear combinations of the Maxwellian, the energy mode, rota-
tion modes compatible with φ, and harmonic directional or pulsating
modes if allowed by φ.

(2) There are explicit constants C > 0 and κ > 0 such that, for any solu-
tion f ∈ C

(
R+; L2(M−1)

)
to (1.1) with initial datum f0 ∈ L2(M−1),

there exists a unique special macroscopic mode F such that

∀ t ≥ 0 , ‖f(t)− F (t)‖L2(M−1) ≤ C e
−κ t ‖f0 − F (0)‖L2(M−1) .

The constants in the decay estimate being explicit means that the proof is
constructive and provides a finite algorithm for computing C and κ.

In the following, the norm and scalar product without subscript, ‖ · ‖ and
〈·, ·〉, refer to the space L2(M), so that

‖h‖2 =

∫∫
Rd×Rd

|h|2Mdx dv = 〈h, h〉 .

With h := f/M, h0 := f0/M and h‖ := F/M, Part (2) of Theorem 1.1
amounts to

∀ t ≥ 0 ,
∥∥∥h(t)− h‖(t)

∥∥∥ ≤ C e−κ t ∥∥∥h0 − h‖(0)
∥∥∥ .

Note that when considering functions of x only, the L2(ρ)-norm coincides
with the L2(M)-norm. 〈·〉 stands for the average with respect to ρdx.

In Theorem 1.1, the constants C and κ depend only on bounded moments
constants, spectral gap constants or explicitly computable quantities asso-
ciated to φ such as the rigidity constant (to be defined later) which admits
a quantitative estimate. Moreover, the special macroscopic mode F can be
explicitly computed in terms of the initial data f0 (see Section 2.2).

1.3. Framework, comments and methods. During the last two decades,
new hypocoercive methods were developed for the study of spatially inhomo-
geneous kinetic equations. Many linear or nonlinear models were tackled,
including Fokker-Planck, Boltzmann and Landau equations in various ge-
ometries, ranging from bounded domains to the whole Euclidean space, with
or without confining potentials. The central issue is the trend to equilibrium
for these equations, in the spirit of the celebrated H-Theorem by Boltzmann
on the decay of the entropy, but with constructive estimates which measure
the rate of convergence towards asymptotic regimes described by steady
states. The set of steady states is not fully characterized by the entropy
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dissipation, but also depends on the transport operator and the geometric
setting governed either by boundary conditions or by properties of the po-
tential. The goal of this paper is to make the notion of steady states explicit
by classifying all special macroscopic modes, and to derive quantitative es-
timates on the rate of convergence, with explicit constants.

Let us give a brief account of the literature. In a series of pa-
pers [20, 21, 22] on Landau, Boltzmann and Vlasov-Boltzmann equations
in a periodic box, Y. Guo used micro-macro methods inspired from Grad’s
13 moments method introduced in [17]. The approach of [12] relies on the
derivation of a suitable set of ordinary differential inequalities and provides
an algebraic rate of convergence to equilibrium under strong smoothness as-
sumptions on the solution. The study of linear inhomogeneous kinetic equa-
tions with single conservation laws, such as the linear Boltzmann or Fokker-
Planck equations, and nonlinear equations in a nonlinear but perturbative
regime, took advantage of various ideas of the theory of hypoellipticity, for
instance of [29], and gave rise to robust Hilbertian hypocoercive methods.
T. Gallay coined the word hypocoercivity, by analogy with hypoellipticity,
when coercivity is degenerate in the ambient space but recovered using com-
mutators, in the context of convergence to steady states. Hypocoercivity is
well adapted to kinetic equations with general collision operators. We refer
to the memoir [45] by C. Villani for an overview of the initial developments
of this theory and to [27, 35, 26, 13, 14] for various other contributions in
exponentially weighted spaces. The theory of enlargement of spaces of [18]
allows to extend convergence rates to larger, and physically more relevant,
polynomially weighted spaces.

Usually, explicit and constructive estimates cannot be obtained via com-
pactness arguments. Such estimates are essential for applications in physics
(typical time-scale for relaxation) but also for a wide array of mathemat-
ical questions: range of validity of perturbation methods applied to non-
linear kinetic equations, conditions of convergence in the study of diffusive
or macroscopic limits, control of the limiting processes leading to hydrody-
namical equations when the Knudsen number tends to zero, control of the
range of parameters, time and length scales in the corresponding asymptotic
regimes, etc. Among a huge literature, we can refer for instance to [3, 44]
and to [23, 28, 7] in polynomially weighted spaces.

In this article, we focus on an important and old problem. We study
kinetic equations involving an external confining potential as well as sev-
eral local conservation laws in the collision process. The linear problem was
solved for a fully harmonic potential in [15] and under full asymmetry as-
sumptions on the potential in [16], both with non-constructive arguments
and for well-prepared initial data so that, in particular, there are no spe-
cial macroscopic modes beyond the Maxwellian stationary solution. Such
an assumption destroys the rich structure of special macroscopic modes and
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bypasses the non-trivial consequences of the geometric properties of the po-
tential on convergence rates. Our contribution is precisely the study of these
consequences, which requires new methods, by classifying all special macro-
scopic modes and proving hypocoercivity results with constructive conver-
gence rates in a natural Hilbertian structure. As in [15, 16], we restrict
our analysis to the linear framework and, for simplicity, to exponentially
weighted spaces, but cover rather general confining potentials and discuss
the consequences of their geometric properties in terms of symmetry, par-
tial symmetry or lack of symmetry under rotations. On the one hand, the
extension of our results to polynomially weighted spaces in the spirit of [18]
is probably doable. On the other hand, nonlinear stability for Boltzmann
and Landau equations with confining potentials, close to special macroscopic
modes, presents additional difficulties.

The special macroscopic modes other than the global Maxwellian station-
ary solutions and the energy modes are consequences of the symmetries of
the potential. Some of these modes are known in the literature, although
no systematic study seems to have been done. From the point of view of
mechanics, any function F (x, v) = G

(
H(x, v), A x·v

)
is a stationary solution

of the transport equation where Ax · v is known as the angular momentum
generated by A ∈Md×d(R). The property that there is no other stationary
solution, under appropriate conditions, is known in astrophysics as Jeans’
theorem (usually considered with a potential induced by a mean field cou-
pling) and has to do with Noether’s theorem: see [4] and references therein.
Of course the only profile G compatible with (H0) is G(h, a) = p(h, a) e−h

where p is a polynomial of order at most two. Proving that any stationary
solution of (1.1) has to solve (1.4) is also known as a factorization result.

The existence of time-periodic steady states for the fully harmonic po-
tential was shown by L. Boltzmann in [5] and is mentioned in some ref-
erences: see for instance [10, 43, 6, 19]. In [19], time-periodic modes are
called breathing modes. The consideration of partially harmonic potentials
and their corresponding harmonic directional modes seems to be new. The
fact that special macroscopic modes also exist for the nonlinear Boltzmann
equation is discussed in Appendix B.5.

Now let us review some of the tools which are used in our paper. To
estimate the convergence rate, a major difficulty is to quantify “how far” the
potential φ is from having certain partial symmetries. Inspired by [11, 12],
we use some Korn inequalities for bounded domains which go back to [32, 33]
and adapt them to the Euclidean space, in presence of a confining potential:
see [9]. A typical quantity involved in our approach is the rigidity constant

(1.13) cK := min

{∫
Rd
|∇φ(x) ·Ax|2 ρ(x) dx :

A ∈ R⊥φ such that

∫
Rd
|Ax|2 ρ(x) dx = 1

}
> 0 ,
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where R⊥φ is the orthogonal complement in L2(ρ) of the set Rφ defined

in (1.8). The time-periodic special macroscopic modes in Dφ and Pφ, defined
in (1.10) and (1.11) respectively, are related to the (partial) harmonicity of φ
and another difficulty is to quantify “how far” the potential φ is from being
(partially) harmonic. As for Korn type inequalities, the analysis relies on
the finite dimension of the space Eφ defined in (1.9).

The spectral gap assumptions (H1) in v and (H5) in x reflect the cor-
responding confining properties respectively in velocity and space. The
Poincaré inequality introduced in (H5) is linked with the natural Hodge
Laplacian associated to the geometry, sometimes called the Witten Lapla-
cian. Denote by ∇∗x the adjoint of ∇x in L2(ρ) acting on vector fields
ϕ : Rd → Rd according to ∇∗x · ϕ = (−∇x +∇xφ) · ϕ. The Witten-Laplace
operator ∇∗x · ∇x is self-adjoint in L2(ρ), with kernel spanned by constant
functions and its first non-zero eigenvalue determines the optimal Poincaré
constant cP. The operator

(1.14) Ω := ∇∗x · ∇x + 1 = −∆x +∇xφ · ∇x + 1

is used in the 0th-order Poincaré inequality

cP,1 ‖ϕ− 〈ϕ〉‖2 ≤
∥∥Ω−

1
2 ∇xϕ

∥∥2

which holds for some constant cP,1 > 0 under assumptions (H5) and (H4),
in the spirit of Poincaré-Lions inequalities studied in [9].

We provide two proofs of Theorem 1.1. The first proof follows a micro-
macro decomposition as in [20, 21, 22] and [16]. Due to the lack of a priori
symmetry assumptions and the delicate interaction of local conservation laws
corresponding to the collision invariants with the potential, the complexity
is significantly increased. There are also deep similarities with the analysis of
hyperbolic equations with damping studied in [24, 38, 39] after the seminal
paper [30] by S. Kawashima and Y. Shizuta. The second proof is given under
slightly more restrictive hypotheses, namely that the collision operator C
is bounded and φ has bounded derivatives of order two and more. The
method is based on commutator estimates as in [27, 35, 45] in the spirit of
the hypoellipticity theory of [29]. In practice, an elegant triple cascade of
commutators based on the equality [∇v, v · ∇x] = ∇x is needed to control
all macroscopic quantities.

The plan of the article is the following. In Section 2, we review all possible
conservation laws and their relations with the special macroscopic modes.
Then we present the so-called macroscopic equations associated to the evo-
lution equation (1.1) and perform a change of unknown in order to work in
a simplified Hilbertian framework. In Section 3, we classify all steady states
of (1.1) and prove that they correspond to the special macroscopic modes.
At this stage, we already use entropy-dissipation arguments in order to prove
that factorization occurs and reduce the problem to (1.4). In Section 4, we
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prove the remaining part of Theorem 1.1, that is, the hypocoercivity re-
sult, using the micro-macro method. In Section 5 we expose the second
proof based on the commutator’s method. A number of technical results
are collected in two appendices. Appendix A collects some computations
and intermediate lemmata needed in the proofs. Appendix B is devoted to
examples and remarks, for instance on the normalization, including a spec-
tral interpretation of Theorem 1.1, the extension of our special macroscopic
modes to the fully nonlinear Boltzmann equation, and various examples of
collision operators and potentials.

2. Conservation laws and macroscopic equations

In this section we characterize the special macroscopic modes, as defined
by (1.4), for generic potentials. We also identify the global conservation laws
and the macroscopic equations associated to (1.1). From here on, we assume
that (H6) holds. This assumption is needed to justify the computations,
which are given below only at formal level, for sake of simplicity.

2.1. The equations for the special macroscopic modes. We recall that
by (1.5), any special macroscopic mode F can be written as

F = h‖M , h‖ = r +m · v + eE(v) .

By (1.4), we know that ∂tF = T F . By integrating in v the evolution
equation against 1, v, v ⊗ v and v E, we obtain macroscopic equations on
the macroscopic quantities r = r(t, x), m = m(t, x) and e = e(t, x):

∂tr = ∇∗x ·m,(2.1a)

∂tm = −∇xr +
√

2
d e∇xφ(2.1b)

∂te = −
√

2
d ∇x ·m,(2.1c)

1√
2 d

(∂te) Idd×d = −∇sym
x m,(2.1d)

0 = ∇xe ,(2.1e)

where the symmetric gradient is defined by

(2.2) ∀ i, j = 1, . . . , d , (∇sym
x m)ij :=

1

2
(∂jmi + ∂imj) .

From (2.1e), we deduce that e does not depend on the space variable, and
therefore

e = 〈e〉 =: c(2.3)

is a function t 7→ c(t) depending on t only. We recall that the average is
defined as 〈ϕ〉 :=

∫
Rd ϕρ dx. Then we read from (2.1d) that

(2.4) c′√
2 d

Idd×d = −∇sym
x m.
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By the Schwarz Lemma applied to m = (mk)
d
k=1, we have

(∇2
xmk)i,j = ∂2

xixjmk = ∂xi (∇symm)j,k + ∂xj (∇symm)i,k − ∂xk (∇symm)i,j

(2.5)

for any i, j, k = 1, . . . , d. By differentiating (2.4) with respect to xi, xj and
xk, we get that ∇2

xm = 0, so that in particular the skew-symmetric gradient,
defined by

(2.6) ∀ i, j = 1, . . . , d , (∇skew
x m)ij :=

1

2
(∂jmi − ∂imj) ,

is constant in the x-variable and equal to its average. Together with (2.4),
using ∇xm = ∇skew

x m+∇sym
x m, we deduce that

(2.7) m(t, x) = 〈∇m〉x+ 〈m〉 = A(t)x+ b(t)− 1√
2 d
c′(t)x ,

with A(t) := 〈∇skew
x m〉 and b(t) := 〈m〉. Taking (2.3) and (2.7) into account

in (2.1b) implies

∇xr = − ∂tm+
√

2
d e∇xφ = −A′ x− b′ + 1√

2 d
c′′ x+

√
2
d c∇φ .

Taking the skew-symmetric gradient of this equation gives 0 = −A′.
Hence A is a skew-symmetric matrix which does not depend on t and

(2.8) m(t, x) = Ax+ b(t)− 1√
2 d
c′(t)x .

Taking (2.3) and (2.8) into account, we can then take the primitive in space
of (2.1b) and we immediately deduce that the macroscopic density satisfies

(2.9) r(t, x) = r0 − b′(t) · x+ 1
2
√

2 d
c′′(t) ξ2(x) +

√
2
d c(t) ξφ(x)

where r0 is an integration constant,

(2.10) ξ2(x) := |x|2 − 〈|x|2〉

and

(2.11) ξφ(x) := φ− 〈φ〉 .

An integration against ρ shows that r0 = 〈r(t, ·)〉 is in fact independent of t.
Inserting the expressions of r and m given by (2.8) and (2.9) into (2.1a)
yields a differential equation satisfied by A, b(t) and c(t):

Proposition 2.1. Assume that r, m and e solve (2.1). With the above
notations, A(t) := 〈∇skew

x m〉, b(t) := 〈m〉 and c(t) := 〈e〉 solve

(2.12)
2 ξφ(x)+∇xφ·x−d√

2 d
c′ + ξ2(x)

2
√

2 d
c′′′ −∇xφ · b− b′′ · x−∇xφ ·Ax = 0 .

Equation (2.12) suggests, on the one hand, that (partial) harmonicity of
the potential φ allows for non-trivial choices of b and c, as we shall indeed
see later. On the other hand, for a generic potential φ in the sense that the
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functions 1, x, φ, ∇xφ · x, ∇φ, |x|2 and ∇xφ · Ax (if A 6= 0) are linearly
independent, equation (2.12) implies that

c′ = 0 , b = 0 and A = 0 ,

so that r = r0 + c
√

2
d ξφ, m = 0 and e = c, for two constants r0 and c ∈ R.

In other words, we have

h‖ = r0 +
√

2
d cH−

√
2
d c
(
〈φ〉 − d

2

)
if φ is not a (partially) harmonic potential: any special macroscopic mode
is then a linear combination of a Maxwellian function and an energy mode.

2.2. Global conservation laws. Consider a solution f ∈ C
(
R+; L2(M−1)

)
to (1.1) with initial datum f0 ∈ L2(M−1). Associated with the symmetries
of the equation, there are local conservations which, after integration on the
phase space Rd×Rd, give rise to global conservation laws. These laws allow
us to identify the special macroscopic modes compatible with φ which, as
we shall see later, attract the solutions to the Cauchy problem.

The conservation of mass writes

d

dt

∫∫
Rd×Rd

f(t, x, v) dx dv = 0 .

Hence αM is a solution to (1.4) with same mass

(2.13) α :=

∫∫
Rd×Rd

f0 dx dv

as f . With H defined by (1.7), the conservation of energy amounts to

d

dt

∫∫
Rd×Rd

H(x, v)f(t, x, v) dx dv = 0 .

The distribution function βHM, with

(2.14) β :=

∫∫
Rd×Rd H f0 dx dv∫∫

Rd×Rd H2M dx dv
,

is a solution to (1.4) with same energy as the conserved energy of f . With
f1 :=M and fH := HM/ ‖HM‖L2(M−1), we have that

αM = 〈f0, f1〉L2(M−1) f1 and βHM = 〈f0, fH〉L2(M−1) fH .

Moreover, the global conservations of mass and energy write

∀ t ≥ 0,

∫∫
Rd×Rd

(
f(t, x, v)− αM(x, v)

)
dx dv = 0 ,

∀ t ≥ 0,

∫∫
Rd×Rd

H(x, v)
(
f(t, x, v)− βH(x, v)M(x, v)

)
dx dv = 0 .
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The transport operator can be written as T f = X · ∇x,vf = ∇x,v · (X f),
where X = (−v,∇xφ) = (−∇vH,∇xH) is a divergence free vector field, in
the sense that

(2.15) ∇x,v ·X = 0 .

As a consequence, the volume conservation in the phase space under the ac-
tion of the flow induces the local mass conservation and the (2.15) symmetry
gives rise to the global mass conservation. Another symmetry is associated
with the fact that H is conserved along the characteristics of Newton’s equa-
tions ẋ = v and v̇ = −∇xφ. This is reflected by the Poisson brackets: a
stationary solution F satisfies

(2.16) 0 = {F,H} := ∇vH · ∇xF −∇xH · ∇vF ,

but by replacing F by HF , it is also clear that

{HF,H} = H{F,H}+ {H,H}H = 0 .

The underlying reason is that the transport dynamics involving a time-inde-
pendent potential is invariant under a translation in time, which gives rise to
the global conservation of energy. These considerations can be generalized.
To any continuous group of transformations which leaves T invariant, we
can associate an infinitesimal transformation G(x, v) such that {G,H} = 0
and as a consequence, if f solves the transport equation ∂tf = T f , then

(2.17)
d

dt

∫∫
Rd×Rd

G(x, v) f(t, x, v) dx dv = 0 .

Additionally, if v 7→ G(x, v)µ(v) is in the kernel of the collision operator C
for any x ∈ Rd, then γ GM is a solution of (1.4), i.e., a special macroscopic
mode, for any γ ∈ R. Then (2.17) holds for any solution f of (1.1) with
initial datum f0 and there is a unique γ ∈ R such that∫∫

Rd×Rd
G(x, v)

(
f0(x, v)− γ G(x, v)M(x, v)

)
dx dv = 0 .

More considerations on symmetries, local and global conservation laws, and
Noether’s theorem can be found in textbooks on classical mechanics like, for
instance, [31, 41]. The case of rotational symmetries enters this framework:

When φ is invariant under a rotation, stationary rotation modes appear.
Let A ∈ Rφ as defined in (1.8) and consider the rotation group (Rθ)θ∈R
defined by Rθ := eθA and a point x0 ∈ Rd so that φ

(
Rθ(x−x0)+x0

)
= φ(x)

for any θ ∈ R. By differentiation with respect to θ, we get

∀x ∈ Rd , (Ax+ u) · ∇xφ(x) = 0

with u = −Ax0. Integrating the above identity against (u · x) ρ yields
u = 0 after an integration by parts because ρ(x) dx is centred according to
Assumption (H3). Rotation modes compatible with φ are therefore restricted
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to x0 = 0: see [9] for similar computations. As a consequence, if we compute
the Poisson bracket as defined in (2.16), we find that

{G,H} = 0 if G(x, v) = (Ax · v)

and the conservation of the total angular momentum associated with this
rotation writes

d

dt

∫∫
Rd×Rd

(Ax · v) f(t, x, v) dx dv = 0 .

Given f0, let us identify the corresponding special macroscopic mode.

Associated with f0, we introduce the initial momentum m0(x) :=(∫
Rd v f0(x, v) dv

)
eφ(x) and the infinitesimal rotation x 7→ Ax := Pφm0(x),

where Pφ is the orthogonal projection onto the vector space Rφ in L2(ρ). We
can then check that x 7→ Ax belongs toRφ and thus the function (rotational
mode compatible with φ)

(2.18) Frot(x, v) := (Ax · v)M
belongs to Rφ, so that Frot is a solution to (1.4) with same conserved total
angular momentum as f . Denoting

mf (t, x) :=

(∫
Rd
v f(t, x, v) dv

)
eφ(x)

the momentum of f , the associated conservation law then reads

(2.19) Pφmf (t) = Pφm0 or equivalently P(mf −m0) ∈ R⊥φ ,
where P is the orthogonal projection onto the vector space of all infinitesimal
rotations R := {x 7→ Ax : A ∈ Mskew

d×d (R)}, identified with Mskew
d×d (R), in

L2(ρ), and R⊥φ is the orthogonal of Rφ, seen as a subspace of R, for the

scalar product induced by L2(ρ). We refer to Lemma A.1 in Appendix A.1
for a precise statement and a short proof.

If we denote by (Aj)j∈Jφ = (x 7→ Aj x)j∈Jφ a basis of Rφ normalized
by the condition ‖frot,j‖L2(M−1) = 1 for any j ∈ Jφ, where frot,j(x, v) :=

(Aj x · v)M(x, v), then the conservation of the total angular momentum
implies for all j ∈ Jφ:

∀ t ≥ 0,

∫∫
Rd×Rd

[
f(t, x, v)− 〈f0, frot,j〉L2(M−1) frot,j(x, v)

]
dx dv = 0.

Now let us turn our attention to the time-periodic special macroscopic
modes and start with the harmonic directional modes, which appear when
dφ ≤ d− 1. We choose a coordinate system such that ∂xiφ = xi for i ∈
Iφ = {dφ + 1, . . . , d}. In that case, the potential φ is such that x 7→ φ(x)−
1
2

∑
i∈Iφ x

2
i depends only on (x1, . . . , xdφ) and for any i ∈ Iφ the harmonic

directional modes, defined for all (t, x, v) ∈ R+ × Rd × Rd by

f+dir,i(t, x, v) :=
(
xi cos t+ vi sin t

)
M(x, v) ,
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f−dir,i(t, x, v) :=
(
vi cos t− xi sin t

)
M(x, v) ,

solve (1.4). A direct computation of the solution of (1.1) with initial datum
f0 ∈ L2(M−1) shows that

d

dt

∫∫
Rd×Rd

xi f dx dv =

∫∫
Rd×Rd

vi f dx dv ,

d

dt

∫∫
Rd×Rd

vi f dx dv = −
∫∫

Rd×Rd
xi f dx dv ,

which implies that these two global quantities evolve as an harmonic oscil-
lator with period equal to 1. For any i ∈ Iφ, let us define

γi :=

∫∫
Rd×Rd

xi f0 dx dv , γ̄i :=

∫∫
Rd×Rd

vi f0 dx dv .

The function

(2.20) Fdir :=
d∑

i=dφ+1

(
γi f

+
dir,i + γ̄i f

−
dir,i

)
solves (1.4) and belongs to Dφ as defined by (1.10). Moreover (f − Fdir)
satisfies the following two global conservation laws: for any t ≥ 0,∫∫

Rd×Rd
xi
(
f(t, x, v)− Fdir(t, x, v)

)
dx dv = 0 ,∫∫

Rd×Rd
vi
(
f(t, x, v)− Fdir(t, x, v)

)
dx dv = 0 .

When all coordinates are harmonic (dφ = 0), then φ(x) = 1
2 |x|

2 +
d
2 log(2π) due to the normalization (H7) and the harmonic pulsating modes,

defined for all (t, x, v) ∈ R+ × Rd × Rd by

f+pul(t, x, v) := 1√
d

(
x · v cos(2 t) + 1

2

(
|x|2 − |v|2

)
sin(2 t)

)
M(x, v) ,

f−pul(t, x, v) := 1√
d

(
1
2

(
|x|2 − |v|2

)
cos(2 t)− x · v sin(2 t)

)
M(x, v) ,

solve (1.4). A direct computation of the solution of (1.1) with initial datum
f0 ∈ L2(M−1) shows that

d

dt

∫∫
Rd×Rd

(x · v) f dx dv = − 2

∫∫
Rd×Rd

1

2

(
|x|2 − |v|2

)
f dx dv ,

d

dt

∫∫
Rd×Rd

1

2

(
|x|2 − |v|2

)
f dx dv = 2

∫∫
Rd×Rd

(x · v) f dx dv ,

which implies that these two global quantities evolve as an harmonic oscil-
lator with period equal to 1/2. With

δ :=
1√
d

∫∫
Rd×Rd

(x·v) f0 dx dv , δ̄ :=
1√
d

∫∫
Rd×Rd

1

2

(
|x|2 − |v|2

)
f0 dx dv ,
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the function

(2.21) Fpul := δ f+pul + δ̄ f−pul

solves (1.4) and belongs to Pφ as defined by (1.11). Moreover (f − Fpul)
satisfies the following two global conservation laws: for any t ≥ 0,∫∫

Rd×Rd
(x · v)

(
f(t, x, v)− Fpul(t, x, v)

)
dx dv = 0 ,∫∫

Rd×Rd

1

2

(
|x|2 − |v|2

) (
f(t, x, v)− Fpul(t, x, v)

)
dx dv = 0 .

Let us consider the set of the generators of all above special macroscopic
modes

Ŝ := {f1, fH} ∪ {frot,j}j∈Jφ ∪ {f
±
dir,i}i∈Iφ,± ∪ {f

±
pul}± .

We have the following orthogonality property.

Lemma 2.2. The functions of Ŝ are orthonormal in L2(M).

Proof of Lemma 2.2. This follows from direct computation using standard
properties of Hermite functions. �

As a straightforward consequence of Lemma 2.2, we obtain

Corollary 2.3. Assume that f ∈ C
(
R+; L2(M−1)

)
is a solution to (1.1)

with initial datum f0 ∈ L2(M−1). With the above notations, for any f ∈ Ŝ
and any t ≥ 0, we have∫∫

Rd×Rd

(
f(t)− αM− βHM− Frot − Fdir(t)− Fpul(t)

) f

M
dx dv = 0 .

2.3. A micro-macro decomposition. Let us consider a solution f ∈
C
(
R+; L2(M−1)

)
to (1.1). We get rid of the special macroscopic modes built

in (2.13)–(2.14)–(2.18)–(2.20)–(2.21) and rewrite the evolution problem in
L2(M) in terms of

(2.22) h :=
f − αM− βHM− Frot − Fdir − Fpul

M
for all (t, x, v), where only h, f , Fdir and Fpul depend on t. Then h satisfies

(2.23) ∂th = Lh := T h+ Ch , h|t=0 = h0

with T defined as before by T h = ∇xφ ·∇vh−v ·∇xh and the new collision
operator

(2.24) Ch := µ−1 C (µh)

where µ is defined in (1.2).

The operator C acts only on the velocity variable, is self-adjoint in L2(M)
(when integrating in x, v) and L2(µ) (when integrating in v) and

Ker C = Span
{

1, v1, . . . , vd, |v|2
}
.
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Let us consider the micro-macro decomposition

h = h‖ + h⊥ , h‖ := r +m · v + eE(v) ,

where h‖ is the L2(µ)-orthogonal projection of h on Ker C and E defined
by (1.6) is a normalized Hermite polynomial of degree 2. In other words,

(2.25)

r(t, x) :=

∫
Rd
h(t, x, v)µ(v) dv

m(t, x) :=

∫
Rd
v h(t, x, v)µ(v) dv

e(t, x) :=

∫
Rd

E(v)h(t, x, v)µ(v) dv

are the macroscopic quantities corresponding to the spatial density, the lo-
cal flux and thermal energy, while h⊥ is the microscopic part of the decom-
position. The definition (2.25) coincides with the definition (1.5) used in
Section 2.1 to define the special macroscopic modes.

With these notations (H1) reads

−〈Ch, h〉 ≥ cC ‖h⊥‖2 .
According to Corollary 2.3, h has multiple global conservation laws.

Corollary 2.4. Assume that f ∈ C
(
R+; L2(M−1)

)
is a solution to (1.1)

with initial datum f0 ∈ L2(M−1). With h and (r,m, e) respectively defined
by (2.22)–(2.23) and (2.25), we have the following properties.

B Conservation of total mass and total energy

(2.26) 〈r〉 = 0 and
√

d
2 〈e〉+ 〈φ r〉 = 0 .

B Global conservation laws associated to rotational symmetries of φ

(2.27) Pφm = 0 .

This also means P(m) ∈ R⊥φ as in (2.19).

B Global conservation laws corresponding to the harmonic directional modes

(2.28) ∀ i ∈ Iφ , 〈r xi〉 = 0 and 〈mi〉 = 0 .

B In the fully harmonic case dφ = 0, global conservation laws corresponding
to the harmonic pulsating modes

(2.29) 〈m · x〉 = 0 and
√

d
2 〈e〉 − 〈φ r〉 = 0 .

2.4. The equations for the macroscopic modes. We write the evolu-
tion equations for r, m and e defined in (2.25). In the mathematical litera-
ture, such equations are sometimes called local conservation laws but as this
might introduce confusions with the local conservation law of the collision
operator, which we call here collision invariants, and the global conservation
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laws studied in Section 2.2, we shall simply refer to these equations as the
equations for the macroscopic modes or simply the macroscopic equations.

Assume that h solves (2.23). For any Hermite polynomial p : Rd → R con-
sidered as a function of the velocity variable, we compute Jp[h] =

∫
Rd p hµ dv

using standard properties of Hermite functions:

Jp[h] = r

∫
Rd
p µdv +m ·

∫
Rd
v p µ dv + e

∫
Rd

E p µdv + Jp[h
⊥]

and, using (2.23), we also get

∂tJp[h] =−∇xr ·
∫
Rd
v p µ dv −∇xm :

∫
Rd
v ⊗ v p µ dv +m · ∇xφ

∫
Rd
p µdv

−∇xe ·
∫
Rd
v E p µdv +

√
2
d e∇φ ·

∫
Rd
v p µ dv +

∫
Rd

(Lh⊥) p µdv .

Plugging successively p = 1, v, E, v ⊗ v − Idd×d and v(E−
√

2
d) we get

∂tr = ∇∗x ·m,(2.30a)

∂tm = −∇xr +
√

2
d ∇
∗
xe+∇∗x · E[h⊥] ,(2.30b)

∂te = −
√

2
d ∇x ·m+∇∗x ·Θ[h⊥] ,(2.30c)

∂tE[h] = − 2∇sym
x m+ E[Lh⊥] ,(2.30d)

∂tΘ[h] = −
(
1 + 2

d

)
∇xe+ Θ[Lh⊥] ,(2.30e)

where ∇sym
x m is defined by (2.2) and the matrix valued function E[h] and

the vector valued function Θ[h] are higher-order moments of h defined by

E[h] :=

∫
Rd

(v ⊗ v − Idd×d)hµdv =
√

2
d e Idd×d + E[h⊥] ,(2.31a)

Θ[h] :=

∫
Rd
v
(
E(v)−

√
2
d

)
hµdv = Θ[h⊥] .(2.31b)

If f is a special macroscopic mode, then (2.30) is reduced to (2.1) because,

in that case, h⊥ = 0 and Θ[h‖] = 0.

3. Classification of the special macroscopic modes

In this section, we prove Part (1) of Theorem 1.1. We write a . b if
there is some positive constant c such that a ≤ b c and a ' b if and only if
a . b . a. Throughout this section, we assume that (H0)–(H1)–(H2)–(H3)–
(H4)–(H5)–(H6)–(H7)–(H8) hold, without further notice.
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3.1. Statement and preliminary results. Theorem 1.1–(1) writes:

Proposition 3.1 (Special macroscopic modes). If f is a solution of (1.4),
then h given by (2.22) is such that h = 0.

We recall that f is a special macroscopic mode if and only if, by defini-
tion (1.4), C f = 0 and ∂tf = T f . With the definitions of (2.13)–(2.14)–
(2.18)–(2.20)–(2.21), the function

F := f − αM− βHM− Frot − Fdir − Fpul

is also a special macroscopic mode and (1.5) implies that h defined in (2.22)

satisfies h = h‖ = r + m · v + eE(v). According to (2.23), h solves the
transport equation ∂th = T h because Ch = 0 (with C defined by (2.24))
and Section 2.1 proved that r, m and e solve (2.1). Proposition 3.1 means
that r = 0, m = 0, and e = 0. We split the proof into several steps. To start
with, since 1, v and E(v) are orthonormal Hermite polynomials, we have

(3.1) ‖h‖2 = ‖r‖2 + ‖m‖2 + ‖e‖2 .

Lemma 3.2. With the above notations, the function h as in Proposition 3.1
satisfies

d

dt
‖h‖2 = 0 .

Proof of Lemma 3.2. The result follows from Ch = 0, T ∗ = −T and
d
dt‖h‖

2 = 2 (h,T h) = 0. �

Collecting the results of Section 2.1 and using r0 = 〈r〉 = 0, we get:

Lemma 3.3. Consider the function h as in Proposition 3.1. With the above
notations, let A := 〈∇skew

x m〉, b(t) := 〈m〉 and c(t) := 〈e〉. Then we have

r(t, x) = −x · b′(t) + ξ2(x)

2
√

2 d
c′′(t) +

√
2
d ξφ c(t) ,(3.2a)

m(t, x) = Ax+ b(t)− x√
2 d
c′(t) ,(3.2b)

e(t, x) = c(t) ,(3.2c)

where A is a constant skew-symmetric matrix, while b and c are respectively
vector valued and scalar functions of t related by (2.12).

We recall that the functions ξ2 and ξφ are defined respectively by (2.10)
and (2.11). Equation (2.12) in Proposition (2.1) provides us with various
estimates on A, b and c which are collected in Sections 3.2, 3.3 and 3.4 in
order to prove Proposition 3.1 in Section 3.5.
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3.2. Control of A. For any A ∈Mskew
d×d (R), let us define

|A|2 :=

∫
Rd
|Ax|2 ρ(x) dx .

The vector space Mskew
d×d (R) is of finite dimension: all norms are equivalent

to | · |. This is also why the rigidity constant cK given by (1.13) is positive,
which implies the Korn-type inequality

(3.3) ∀A ∈ R⊥φ , ‖∇xφ ·Ax‖2 ≥ cK |A|2 .

By multiplying (2.12) by xk for k = 1, . . . , d, then integrating against ρ(x)
and performing some integrations by part, using that ρ(x) dx is centred and
that the terms involving ∇φ vanish, we obtain

(3.4) 1√
2 d
〈2φx〉 c′ + 1

2
√

2 d
〈|x|2 x〉 c′′′ − 〈x⊗ x〉 b′′ = b .

With the notation of (3.2), let us define X and Y by

(3.5) X := 1√
2 d

(
2 ξφ +∇xφ · x− d

)
c+ ξ2

2
√

2 d
c′′ − x · b′

and

(3.6) Y :=
√

2
d 〈φx〉 c+ 1

2
√

2 d
〈|x|2 x〉 c′′ − 〈x⊗ x〉 b′ .

Identities (2.12) and (3.4) yield

d

dt
(X − Y · ∇xφ) = ∇xφ ·Ax

where, according to Lemma 3.3, the r.h.s. is independent of t. As a conse-
quence, we have the following estimate.

Lemma 3.4. Consider the function h as in Proposition 3.1. The infinites-
imal rotation matrix A of Lemma 3.3 satisfies

− d

dt

〈
(X − Y · ∇xφ) ,∇xφ ·Ax

〉
= −‖∇xφ ·Ax‖2 ≤ − cK |A|2 .

Proof. By the conservation law (2.27), we know that Ax = P(m) ∈ R⊥φ , so

that (3.3) applies. �

3.3. Control of b, b′′, c′ and c′′′.

Lemma 3.5. Consider the function h as in Proposition 3.1. The functions b
and c as defined in Lemma 3.3 are such that

(3.7) |b|+ |b′′|+ |c′|+ |c′′′| . |A| .

Proof of Lemma 3.5. Multiplying (2.12) by ∇xφ and integrating against
ρ(x), after integration by parts, using that ρ is centred and observing that
the terms involving 2 ξφ − d and c′′′ vanish, it follows that

(3.8) b′′ = −〈∇2
xφ〉 b+ 1√

2 d
〈∇2

xφx〉 c′ +R1 = − b+ 1√
2 d
〈∇2

xφx〉 c′ +R1
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with R0 := −∇xφ · Ax and R1 := 〈R0∇xφ〉 = O(A). By inserting (3.8)
into (2.12), one gets

(3.9) Ψ1(x) c′ + Ψ2(x) c′′′ − Φ(x) · b = R2

with

Φ(x) := ∇xφ− 〈∇2
xφ〉x = ∇xφ− x ,

Ψ1(x) :=
2 ξφ(x)+∇xφ·x−d√

2 d
− x · 〈∇

2
xφx〉√
2 d

, Ψ2(x) := ξ2(x)

2
√

2 d
,

and R2 := R1 · x−R0. Let

(3.10) Mφ := 〈Φ⊗ Φ〉 ∈Msym
d×d(R) , αi := 〈Ψi Φ〉 ∈ Rd

with i = 1, 2. A multiplication of (3.9) by Φ and an integration against ρ
yields

(3.11) Mφ b = α1 c
′ + α2 c

′′′ +R3

where R3 := −〈R2 Φ〉 = O(A) thanks to the moment bounds on φ deduced
from (H6). Inverting the matrix Mφ allows to control b by c and c′′, and
rewrite (3.9) as an ordinary differential equation on c, up to an error term
of the order of O(A). If Mφ is not invertible, a similar estimate can still be
done after taking into account the global conservation laws of Corollary 2.4.

We recall that Eφ is defined by (1.9). We distinguish three cases.

B Fully non-harmonic case (dφ = d). The matrix Mφ is invertible (see
Lemma A.2 in Appendix A) and (3.11) yields

(3.12) b = M−1
φ

(
α1 c

′ + α2 c
′′′ +R3

)
and hence, together with (3.9), it follows that

(3.13) Ψ̃1(x) c′ + Ψ̃2(x) c′′′ = R4 ,

with R4 := R2 + Φ(x) ·M−1
φ R3 and

(3.14) Ψ̃1(x) := Ψ1(x)−Φ(x) ·M−1
φ α1 , Ψ̃2(x) := Ψ2(x)−Φ(x) ·M−1

φ α2 .

From Lemma A.3 we know that Rank(Ψ̃1, Ψ̃2) = 2 and deduce from (3.13)
that c′ = O(A) and c′′′ = O(A). Using then (3.12) and (3.8), we also deduce
b = O(A) and b′′ = O(A), and the proof is complete in this case.

B Partially harmonic case (1 ≤ dφ ≤ d− 1). Let {e1, . . . , edφ , edφ+1, . . . , ed}
be a basis of Rd such that {e1, . . . , edφ} generates Eφ. For any vector x ∈ Rd,
we shall write x = (x̂, x̌) with x̂ ∈ Rdφ and x̌ ∈ Rd−dφ . Similarly, we use the

notation ξ(x) = (ξ̂(x), ξ̌(x)) for a vector-field ξ : Rd → Rd. In particular one

has Φ = (Φ̂, 0) and also b̌ = 0 so that b = (b̂, 0) as a consequence of (2.28).
Hence (3.9) becomes

(3.15) Ψ1 c
′ + Ψ2 c

′′′ − Φ̂ · b̂ = R2 .
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The matrix Mφ defined in (3.10) is given by

Mφ =

(
M̂φ 0
0 0

)
where

(3.16) M̂φ := 〈Φ̂⊗ Φ̂〉 ∈Msym
dφ×dφ(R) .

Following the same procedure as in the fully non-harmonic case, we obtain

after multiplication by Φ̂ and integration in L2(ρ) that

(3.17) M̂φ b̂ = α̂1 c
′ + α̂2 c

′′′ + R̂3 ,

with R̂3 := −〈R2 Φ̂〉 = O(A), α̂1 := 〈Ψ1 Φ̂〉 and α̂2 := 〈Ψ2 Φ̂〉. The matrix

M̂φ is invertible (see Lemma A.2 in Appendix A) and (3.17) yields

(3.18) b̂ = M̂−1
φ

(
α̂1 c

′ + α̂2 c
′′′ + R̂3

)
.

Hence, together with (3.15), it follows that

Ψ̂1(x) c′ + Ψ̂2(x) c′′′ = R̂4

with R̂4 := R2 + Φ̂(x) · M̂−1
φ R̂3 = O(A) and

(3.19) Ψ̂1(x) := Ψ1(x)−Φ̂(x) ·M̂−1
φ α̂1 , Ψ̂2(x) := Ψ2(x)−Φ̂(x) ·M̂−1

φ α̂2 .

As in the full rank case, Rank(Ψ̂1, Ψ̂2) = 2 according to Lemma A.3 and we
deduce that c′ = O(A) and c′′′ = O(A). From (3.18) and (3.8), we also get

b̂ = O(A) and b̂′′ = O(A), and since b̌ = 0 we eventually get b = O(A) and
b′′ = O(A), which completes the proof of the case partially harmonic case.

B Fully harmonic case (dφ = 0). We read from (3.2c) and (2.29) that 〈e〉 =
c = 0 = c′ = c′′ and from (3.2b), (2.28) and (H3) that 〈m〉 = b = 0 = b′ = b′′,
which completes the proof of the case fully harmonic case. �

3.4. Control of b′, c′′ and c.

Lemma 3.6. Consider the function h as in Proposition 3.1. The functions b
and c as defined in Lemma 3.3 obey the two differential inequalities

d

dt
〈−b, b′〉 ≤ − |b′|2 +O(|A|2) and

d

dt
〈−c′, c′′〉 ≤ − |c′′|2 +O(|A|2) .

Proof of Lemma 3.6. We write

d

dt
〈−b, b′〉 = 〈−b′, b′〉+ 〈−b, b′′〉 and

d

dt
〈−c′, c′′〉 = 〈−c′′, c′′〉+ 〈−c′, c′′′〉

and notice that 〈−b, b′′〉 = O(|A|2) and 〈−c′, c′′′〉 = O(|A|2) by (3.7). �

Lemma 3.7. The function c as defined in Lemma 3.3 is such that

(3.20) |c| . |b′|+ |c′′| and |c′′| . |b′|+ |c| .
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Proof of Lemma 3.7. Multiplying (3.2a) by ξφ and integrating against ρ, we
obtain

c

(√
2
d

〈
ξ2
φ

〉
+
√

d
2

)
= 〈x ξφ〉 · b′ −

〈ξ2 ξφ〉
2
√

2 d
c′′

using 〈r φ〉 = −
√

d
2 c and 〈r〉 = 0 by (2.26), which completes the proof. �

3.5. A Lyapunov function method. We define the Lyapunov function

F [h] := ‖h‖2 − εA
〈
(X − Y · ∇xφ),∇xφ ·Ax

〉
− εb 〈b, b′〉 − εc 〈c′, c′′〉 ,

for some positive constants εA, εb and εc to be chosen later.

Lemma 3.8. With the above notations, if h is defined as in Proposition 3.1,
then

(3.21) F [h] ' ‖h‖2

for εA, εb and εc small enough.

Proof of Lemma 3.8. From (3.1), we know that ‖h‖2 = ‖r‖2 + ‖m‖2 + ‖e‖2
and it follows from (3.2a), (3.2b) and (3.2c) that
(3.22)
‖r‖2 . |b′|2 + |c|2 + |c′′|2 , ‖m‖2 ' |b|2 + |A|2 + |c′|2 and ‖e‖2 = |c|2 .

By Lemma 3.5, we obtain

‖m‖2 . |A|2 ,
∣∣〈b, b′〉∣∣ . |A|2 + |b′|2 ,

∣∣〈c′, c′′〉∣∣ . |A|2 + |c′′|2 .

By Lemma 3.7, we know that |c|2 . |b′|2 + |c′′|2 and obtain

‖r‖2 . |b′|2 + |c′′|2 , ‖c‖2 . |b′|2 + |c′′|2 , ‖e‖2 . |b′|2 + |c′′|2 ,∣∣〈(X − Y · ∇xφ),∇xφ ·Ax
〉∣∣ . |A|2 + |b′|2 + |c′′|2 .

Altogether we have the upper estimate

(3.23) F [h] . |A|2 + |b′|2 + |c′′|2

and, using (3.20),

F [h] . |A|2 + |b′|2 + |c|2 .
Using (2.1b), we notice that

(3.24) b′ = 〈∂tm〉 = −〈∇xr〉 = −〈r∇xφ〉 ≤ ‖r‖ ‖∇xφ‖ . ‖r‖
performing one integration by parts and using Cauchy-Schwarz inequality.
It is then clear that |A|2 . ‖m‖2 and |c|2 = ‖e‖2, so that by (3.1),

F [h] . ‖r‖2 + ‖m‖2 + ‖e‖2 = ‖h‖2 .

Then, using (3.22) again, we have the lower bound estimate

2F [h]− ‖h‖2 & ‖r‖2 +
(
|b|2 + |A|2 + |c′|2

)
+ |c|2

− 2 εA
(
|A|2+|b′|2+|c′′|2

)
−2 εb

(
|A|2+|b′|2

)
−2 εc

(
|A|2+|c′′|2

)
.
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We know from (3.24) that |b′|2 . ‖r‖2 and, using (3.20), we also have that
|c′′|2 . |b′|2 + |c|2 . ‖r‖2 + |A|2. As a consequence, we have that

2F [h]− ‖h‖2 ≥ 0

if εA, εb and εc are chosen small enough, which completes the proof. �

Lemma 3.9. With the above notations, if h is defined as in Proposition 3.1,
then for some εA, εb and εc small enough, there is a positive constant λ such
that

d

dt
F [h] ≤ −λF [h] .

Proof of Lemma 3.9. Using Lemma 3.4, Lemma 3.6 and (3.3), we have

− d

dt
F [h] = − εA ‖∇xφ ·Ax‖2 + εb |b′|2 + εc |c′′|2 − (εb + εc)O(|A|2)

≥ ε′A |A|2 + εb |b′|2 + εc |c′′|2 & F [h] ,

by choosing εb and εc small enough compared to εA and using (3.23) in the
last inequality. �

Proof of Proposition 3.1. Let h0 = h(t = 0). Thanks to Grönwall’s lemma
and the equivalence (3.21), we deduce

∀ t ≥ 0 , ‖h(t)‖2 . F [h(t)] ≤ e−λ tF [h0] . e−λ t ‖h0‖2 .

By Lemma 3.3, we know thatA is constant in time. Using for instance (3.22),
we deduce from

|A|2 . lim
t→+∞

‖h(t)‖2 = 0

that A = 0. By Lemma 3.5, we get that b = 0 and c′ = 0 for any t ≥ 0
so that c is independent of t. Taking for instance (3.23) into account, we
conclude that h = 0. �

Completing the proof of Proposition 3.1 means that Part (1) of Theo-
rem 1.1 is established.

4. Proof of hypocoercivity by the micro-macro method

In this section we prove Part (2) of Theorem 1.1 on hypocoercivity using
the micro-macro decomposition of the solution as in Section 2.3. The proof
of Proposition 3.1 is our a guideline for a new cascade of estimates, but the
analysis is however more complex due to the presence of microscopic terms.
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4.1. Statement. Theorem 1.1, Part (2) can be rewritten as follows.

Proposition 4.1. Consider a solution h to (2.22)–(2.23) in L2(M) with
initial datum h0. There exist two positive constants C and κ such that

∀ t ≥ 0 , ‖h(t)‖ ≤ C e−κ t ‖h0‖ .

Here C and κ depend only on bounded moments constants, spectral gap
constants or explicitly computable quantities associated to φ such as the
rigidity constant defined in (1.13). We split h into a microscopic part h⊥

and a macroscopic part h‖ such that

h = h‖ + h⊥ = r +m · v + eE(v) + h⊥

where r, m and e defined by (2.25) evolve according to the macroscopic equa-
tions (2.30) involving the matrix valued function E[h] and the vector valued
function Θ[h] defined by (2.31a) and (2.31b). By construction, we have

(4.1) ‖h‖2 = ‖r‖2 + ‖m‖2 + ‖e‖2 + ‖h⊥‖2 .

Let deviations from averages, or space inhomogeneous, terms be defined by

rs := r − 〈∇xr〉 · x− 1
2 d 〈∆xr〉 ξ2 ,(4.2a)

ms := m− 〈∇skew
x m〉x− 1

d 〈∇x ·m〉x− 〈m〉 ,(4.2b)

es := e− 〈e〉 ,(4.2c)

w := r −
√

2
d 〈e〉φ ,(4.2d)

ws := rs −
√

2
d 〈e〉φs with φs := ξφ − 1

2 d 〈∆xφ〉 ξ2 .(4.2e)

We recall that ξ2(x) := |x|2−〈|x|2〉 and ξφ(x) := φ−〈φ〉 were already defined
in (2.10) and (2.11) while ∇skew

x m refers to (2.6). In particular

(4.3) ws = w − 〈∇xw〉x− 1
2 d 〈∆w〉 ξ2 +

√
2
d 〈e〉 〈φ〉 .

After introducing some geometric tools in Section 4.2, we split the proof of
Proposition 4.1 by considering infinite-dimensional quantities in Section 4.3
and finite-dimensional quantities in Section 4.4; in the latter the analysis
closely follows the strategy of Section 3. From now on, we assume that h is
as in Proposition 4.1.

4.2. Witten-Hodge operator and Korn inequality: a toolbox. Here
we collect several classical and less classical estimates that will be used
to control the macroscopic quantities. We refer to [9] for references and
details of constructive proofs. Assumptions (H3)–(H4)–(H5) coincide with
the hypotheses of [9, Section 1.2]. Let

b∇φe :=
√

1 + |∇φ|2 .
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B The strong Poincaré inequality

∀ϕ ∈ H1(ρ) ,

∫
Rd
|ϕ− 〈ϕ〉|2 b∇xφe2 ρ dx .

∫
Rd
|∇xϕ|2 ρ dx(4.4)

is proven in [9, Proposition 5].
B In order to work in L2(ρ), we shall use the operator Ω introduced in (1.14)
and considered as an operator acting either on scalar or vector-valued func-
tions. As a consequence of (4.4), we have the zeroth-order strong Poincaré
inequality (see [9, Proposition 8]) according to which, for any ϕ ∈ L2(ρ),

(4.5)
∥∥Ω−1∇2

xϕ
∥∥+

∥∥Ω−1
(
b∇xφe∇xϕ

)∥∥+
∥∥Ω−1

(
b∇xφe2 ϕ

)∥∥ . ‖ϕ‖ .
B The following zeroth order Poincaré inequality, sometimes called the
Poincaré-Lions inequality,

(4.6) ∀ϕ ∈ L2(ρ) , ‖ϕ− 〈ϕ〉‖ .
∥∥Ω−

1
2 ∇xϕ

∥∥ . ‖ϕ− 〈ϕ〉‖ ,
is proven in [9, Proposition 5].
B The (−1)th order Poincaré-Lions inequality
(4.7)

∀ϕ ∈ H−1(ρ) ,
∥∥Ω−

1
2
(
ϕ− 〈ϕ〉

)∥∥ . ∥∥Ω−1∇xϕ
∥∥ . ∥∥Ω−

1
2
(
ϕ− 〈ϕ〉

)∥∥ ,
is proven in [9, Lemma 10] as well as its variant

(4.8) ∀ϕ ∈ L2(ρ) , ‖ϕ−〈ϕ〉‖ .
∥∥∇x Ω−

1
2 ϕ
∥∥+

∥∥Ω−
1
2 ∇xϕ

∥∥ . ∥∥ϕ−〈ϕ〉∥∥ .
B Another key estimate is the zeroth-order Korn-Poincaré inequality : for
any vector field u : Rd → Rd such that 〈u〉 = 0 and 〈∇skew

x u〉 = 0,

(4.9) ‖u‖ .
∥∥Ω−

1
2 ∇sym

x u
∥∥ ,

which is established in [9, Theorem 4] using (2.5).

4.3. Control of infinite-dimensional quantities. We build an entropy
function by assembling dissipative functionals for h⊥ and the space inhomo-
geneous terms defined in (4.2).

4.3.1. Control of h⊥. We first control the dissipation of the microscopic part.

Lemma 4.2. If h is a solution to (2.23) in L2(M), then

(4.10)
d

dt
‖h‖2 ≤ − 2 cC ‖h⊥‖2 .

Proof of Lemma 4.2. Since C∗ = C and T ∗ = −T , there holds

1

2

d

dt
‖h‖2 = 〈Ch, h〉 .

We conclude that (4.10) holds by the spectral gap assumption (H1) on C . �
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4.3.2. Control of es. Let us consider es as defined in (4.2c).

Lemma 4.3. There are some positive constants κ1 and C such that

(4.11)
d

dt

〈
Ω−1∇xe,Θ[h]

〉
≤ −κ1 ‖es‖2 + C ‖h⊥‖ ‖h‖ .

Proof of Lemma 4.3. Recall that Θ[h] = Θ[h⊥] from (2.31b). We compute

d

dt

〈
Ω−1∇xe,Θ[h]

〉
=
〈

Ω−1∇xe ,−
(
1 + 2

d

)
∇xe+ Θ[Lh⊥]

〉
+
〈
Ω−1∇x(∂te) ,Θ[h]

〉
≤ −1

2

(
1 + 2

d

) ∥∥Ω−
1
2 ∇xe

∥∥2
+ C

∥∥Ω−
1
2 Θ[Lh⊥]

∥∥2
+ C

∥∥Ω−1∇x(∂te)
∥∥ ‖h⊥‖ ,

by using Cauchy-Schwarz and Young inequalities. We read from (4.6) that

‖Ω−1/2∇xe‖2 & ‖es‖2. According to (4.6), (H2) and (H6), we have∥∥Ω−
1
2 Θ[Lh⊥] . ‖h⊥‖ .

It follows from (2.30c) that

Ω−1∇x(∂te) = −
√

2
d Ω−1∇x(∇x ·m) + Ω−1∇x

(
∇∗x ·Θ[h⊥]

)
,

so that
∥∥Ω−1∇x(∂te)

∥∥ . ‖h‖ by (4.5). This completes the proof of (4.11).
�

4.3.3. Control of ms. Let us consider ∇sym
x ms as defined by (2.6) and (4.2b).

Lemma 4.4. There are some positive constants κ2 and C such that
(4.12)
d

dt

〈
Ω−1∇sym

x ms, E[h]−
√

2
d 〈e〉 Idd×d

〉
≤ −κ2 ‖ms‖2 +C

(
‖es‖+‖h⊥‖

)
‖h‖ .

Proof of Lemma 4.4. Let us remark that from (4.2b) one has

∇sym
x m = ∇sym

x ms + 1
d 〈∇x ·m〉 Idd×d ,

and from (2.31a),

E[h]−
√

2
d 〈e〉 Idd×d =

√
2
d es Idd×d + E[h⊥] .

Moreover, from (2.30c), one gets

d

dt
〈e〉 = −

√
2
d 〈∇x ·m〉 .

As a consequence, from (2.30d), one obtains

d

dt

〈
Ω−1∇sym

x ms, E[h]−
√

2
d 〈e〉 Idd×d

〉
=
〈

Ω−1∇sym
x ms,−2∇sym

x m+ E[Lh⊥] + 2
d〈∇x ·m〉 Idd×d

〉
+
〈

Ω−1∇sym
x (∂tms), E[h]−

√
2
d 〈e〉 Idd×d

〉
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= − 2
∥∥Ω−

1
2 ∇sym

x ms

∥∥2
+
〈

Ω−
1
2 ∇sym

x ms ,Ω
− 1

2 E[Lh⊥]
〉

+
〈

Ω−1∇sym
x (∂tms),

√
2
d es Idd×d + E[h⊥]

〉
.

Using the Cauchy-Schwarz inequality, we deduce

d

dt

〈
Ω−1∇sym

x ms, E[h]−
√

2
d 〈e〉Idd×d

〉
≤ −

∥∥Ω−
1
2 ∇sym

x ms

∥∥2
+ C

∥∥Ω−
1
2 E[Lh⊥]

∥∥2

+ C
∥∥Ω−1∇sym

x (∂tms)
∥∥∥∥∥√2

d esIdd×d + E[h⊥]
∥∥∥ .

Using Korn’s inequality (4.9) and observing by (2.30b) that∥∥Ω−1∇sym
x (∂tms)

∥∥ = O(‖h‖) and
∥∥Ω−

1
2 E[Lh⊥]

∥∥ = O(‖h⊥‖)
from (4.5) and (4.8) as in the proof of Lemma 4.3, we prove (4.12). �

4.3.4. Control of ws. Let us consider ws as defined in (4.2e).

Lemma 4.5. There are some positive constants κ3 and C such that

(4.13)
d

dt

〈
Ω−1∇xws,ms

〉
≤ −κ3 ‖ws‖2 +C ‖es‖2 +C ‖h⊥‖2 +C ‖ms‖ ‖h‖

and

(4.14)
d

dt

〈
−Ω−1 ∂tws, ws

〉
≤ −

∥∥Ω−
1
2 ∂tws

∥∥2
+ C ‖ws‖ ‖h‖ .

Proof of Lemma 4.5. Observe that (2.30b), (4.2c) and (4.3) imply

∂tm = −∇xw +
√

2
d ∇
∗
xes +∇∗x · E[h⊥]

= −∇xws − 〈∇xw〉 − 1
d 〈∆xw〉x+

√
2
d ∇
∗
xes +∇∗x · E[h⊥] .

Integrating (2.30b) and using (4.2d), one gets

d

dt
〈m〉 = −〈∇xr〉 = −〈∇xw〉

and

d

dt
〈∇x ·m〉 = −〈∆xr〉+

√
2
d 〈e∆xφ〉+

〈
Tr(E[h⊥]∇2

xφ)
〉

= −〈∆xw〉+
√

2
d 〈es ∆xφ〉+

〈
Tr(E[h⊥]∇2

xφ)
〉
.

Finally, by differentiating (2.30b), one has

∂t∇xm = −∇2
xr+

√
2
d ∇
∗
x∇xe+

√
2
d ∇

2
xφ e+∇∗x · (∇x⊗E[h⊥])+E[h⊥]∇2

xφ

and the integration of the skew-symmetric part yields

(4.15)
d

dt
〈∇skew

x m〉 =
〈(
E[h⊥]∇2

xφ
)skew〉

.
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As a consequence of these identities and (4.2b), one gets

∂tms = −∇xws +
√

2
d

(
∇∗xes − 1

d 〈es ∆xφ〉x
)

+mE

wheremE := ∇∗x·E[h⊥]−
〈(
E[h⊥]∇2

xφ
)skew〉

x− 1
d

〈
Tr
(
E[h⊥]∇2

xφ
)〉
x. Hence〈

Ω−1∇xws, ∂tms

〉
=−

∥∥Ω−
1
2 ∇xws

∥∥2
+
∥∥Ω−

1
2 ∇xws

∥∥∥∥Ω−
1
2 mE

∥∥
+
√

2
d

∥∥Ω−
1
2 ∇xws

∥∥∥∥Ω−
1
2
(
∇∗xes − 1

d 〈es ∆xφ〉x
)∥∥

Using the zeroth order Poincaré inequality (4.6) and (4.2c), we can estimate

‖Ω−1/2∇∗xes‖ by ‖es‖. Up to a few integrations by parts, using (H4), (H6)
and (H7), we end up for some constant C > 0 with

(4.16)
〈
Ω−1∇xws, ∂tms

〉
≤ − 1

2

∥∥Ω−
1
2 ∇xws

∥∥2
+ C

(
‖es‖2 + ‖h⊥‖2

)
.

From the definitions (4.2a) and (4.2e), we have

∂tws = ∂tr − 〈∇x∂tr〉 · x− 1
2 d 〈∆x∂tr〉 ξ2,−

√
2
d 〈∂te〉φs ,

so that, by (2.30a) and (2.30c),

(4.17) ∂tws = ∇∗xm− 〈∇x∇∗x ·m〉 · x− 1
2 d 〈∆x∇∗x ·m〉 ξ2 − 2

d〈∇x ·m〉φs .
Using (4.5) in order to estimate the first term, and performing several inte-
gration by parts and using the boundedness assumption (H6) on φ in order
to estimate the three last terms, we obtain

(4.18) ‖Ω−1∇x ∂tws‖ . ‖m‖ . ‖h‖ .
Inserting (4.16) and (4.18) in

d

dt

〈
Ω−1∇xws,ms

〉
=
〈
Ω−1∇x ∂tws,ms

〉
+
〈
Ω−1∇xws, ∂tms

〉
completes the proof of (4.13).

In order to control the time-derivative of ws, we write

(4.19)
d

dt

〈
− Ω−1 ∂tws, ws

〉
= −

∥∥Ω−
1
2 ∂tws

∥∥2 −
〈
Ω−1 ∂2

ttws , ws
〉
.

Differentiating (4.17) with respect to t, we have

∂2
ttws = ∇∗x·(∂tm)−〈∇x∇∗x·(∂tm)〉·x− 1

2 d〈∆x∇∗x·(∂tm)〉 ξ2− 2
d〈∇x·(∂tm)〉φs ,

where the first term is obtained by differentiating (2.30b) and amounts to

∇∗x(∂tm) = −∇∗x · ∇xw +
√

2
d ∇
∗
x · ∇∗xes +∇∗x · ∇∗x · E[h⊥] ,

using (4.2c) and (4.2d). Similar expressions hold for the three next terms.
Arguing similarly as for (4.18), we have

Ω−1 ∂2
ttws = O(‖h‖) .

Together with (4.19) this proves (4.14). �
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4.3.5. First Lyapunov functional. We end this section by introducing a first,
partial Lyapunov functional

(4.20)

F1[h] := ‖h‖2+ε1

〈
Ω−1∇xe,Θ[h]

〉
+ε2

〈
Ω−1∇sym

x ms, E[h]−
√

2
d 〈e〉 Idd×d

〉
+ ε3

〈
Ω−1∇xws,ms

〉
+ ε4 〈−Ω−1 ∂tws, ws〉

where

(4.21) ε1 = ε , ε2 = ε3/2 , ε3 = ε7/4 , ε4 = ε15/8 .

Let us define the dissipation functional

(4.22) D1[h] := ‖h⊥‖2 + ‖es‖2 + ‖ms‖2 + ‖ws‖2 + ‖Ω−
1
2 ∂tws

∥∥2
.

Lemma 4.6. There are some positive constants κ0, C0 and κ such that for
any ε > 0 small enough, we have

d

dt
F1[h] ≤ −κ0 ‖h⊥‖2 − ε

15
8 κD1[h] + ε2C0 ‖h‖2 .

Proof of Lemma 4.6. By collecting the results of Lemmata 4.2, 4.3, 4.4
and 4.5, we obtain

d

dt
F1[h] ≤ − 2 cC ‖h⊥‖2 − ε1 κ1 ‖es‖2 + ε1C ‖h⊥‖ ‖h‖

− ε2 κ2 ‖ms‖2 + ε2C
(
‖h⊥‖+ ‖es‖

)
‖h‖

− ε3 κ3 ‖ws‖2 + ε3C
(
‖es‖2 + ‖h⊥‖2 + ‖ms‖ ‖h‖

)
− ε4 ‖Ω−

1
2 ∂tws‖2 + ε4C ‖ws‖ ‖h‖

for any εi ∈ (0, 1), i = 1, 2, 3, 4, up to a renaming of the generic constant
C > 0. Using repeatedly Young’s inequality, we have

ε1C ‖h⊥‖ ‖h‖ ≤ 1
2 cC ‖h⊥‖2 + ε2

1
C2

2 cC
‖h‖2 ,

ε2C ‖h⊥‖ ‖h‖ ≤ 1
2 cC ‖h⊥‖2 + ε2

2
C2

2 cC
‖h‖2 ,

ε2C ‖es‖ ‖h‖ ≤ 1
2 ε1 κ1 ‖es‖2 +

ε22
ε1

C2

2κ1
‖h‖2 ,

ε3C ‖ms‖ ‖h‖ ≤ 1
2 ε2 κ2 ‖ms‖2 +

ε23
ε2

C2

2κ2
‖h‖2 ,

ε4C ‖ws‖ ‖h‖ ≤ 1
2 ε3 κ3 ‖ws‖2 +

ε24
ε3

C2

2κ3
‖h‖2 ,

and therefore

d

dt
F1[h] ≤ − (cC − ε3C) ‖h⊥‖2 − ε1 κ1

(
1
2 −

ε3
κ1 ε1

C
)
‖es‖2 − 1

2 ε2 κ2 ‖ms‖2

− 1
2 ε3 κ3 ‖ws‖2 − ε4

∥∥Ω−
1
2 ∂tws

∥∥2

+ 1
2 C

2
(
ε21
cC

+
ε22
cC

+
ε22
κ1 ε1

+
ε23
κ2 ε2

+
ε24
κ3 ε3

)
‖h‖2 .
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The choice κ0 = 1
4 cC , κ = min

{
cC
4 ,

κ1
4 ,

κ2
2 ,

κ3
2 , 1

}
and C0 = 1

2 C
2
(

2
cC

+ 1
κ1

+
1
κ2

+ 1
κ3

)
with εi, i = 1, . . . , 4, given by (4.21) and

0 < ε < min
{

1, (4C
κ1

)−4/3, (2C
cC

)−4/7
}

completes the proof. �

4.4. Control of finite-dimensional quantities. After estimating the de-
cay of the deviations from averages terms defined by (4.2), let us consider
the time-dependent global scalar quantities 〈e〉, 〈∇skew

x m〉, 〈∇x · m〉, 〈m〉,
〈∇xr〉, 〈∆xr〉. We proceed as in the proof of Proposition 3.1. Let

A(t) := 〈∇skew
x m〉 , b(t) := 〈m〉 , c(t) := 〈e〉 ,(4.23a)

z(t, x) := r(t, x) + b′(t) · x− c′′(t) ξ2(x)

2
√

2 d
− c(t)

√
2
d ξφ(x) .(4.23b)

By comparison with (3.2a), we know that z = 0 if h corresponds to a special
macroscopic mode. We observe here that there is no reason for A(t) to be
neither the orthogonal projection of m onto infinitesimal rotation matrices
nor independent of t. We shall have to take this fact into account later and
remember that, according to (4.15),

(4.24) A′(t) =
〈(
E[h⊥]∇2

xφ
)skew〉

.

4.4.1. The macroscopic equations. As defined by (2.25), the functions r, m
and e can be rewritten in the new variables as follows.

Lemma 4.7. With previous notations, if h solves (2.22)–(2.23) in L2(M),
then

r(t, x) = − b′(t) · x+ c′′(t) ξ2(x)

2
√

2 d
+ c(t)

√
2
d ξφ(x) + z(t, x) ,(4.25a)

m(t, x) = A(t)x+ b(t)− c′(t) 1√
2 d
x+ms(t, x) ,(4.25b)

e(t, x) = c(t) + es(t, x) ,(4.25c)

where z obeys the bounds

‖z‖2 . ‖ws‖2 + ‖es‖2 + ‖h⊥‖2,(4.26a) ∥∥Ω−
1
2 ∂tz

∥∥2
.
∥∥Ω−

1
2 ∂tws

∥∥2
+ ‖ms‖2 + ‖h⊥‖2 .(4.26b)

Proof of Lemma 4.7. The expression (4.25a) follows from the definition of z
in (4.23b), while (4.25c) is no more than a rewriting of (4.2c). From (2.30c)
one observes that

(4.27) c′ =
d

dt
〈e〉 = −

√
2
d 〈∇x ·m〉 ,

so that (4.25b) follows from the definition (4.2b) of ms.
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From (2.30b) we have

(4.28) b′ =
d

dt
〈m〉 = −〈∇xr〉 .

Using (4.2a) and (4.2e), we write

r = ws +
√

2
d 〈e〉φs + 〈∇xr〉 · x+ 1

2 d 〈∆xr〉 ξ2

= ws +
√

2
d c
(
ξφ − 1

2 d 〈∆xφ〉 ξ2

)
− b′ · x+ 1

2 d 〈∆xr〉 ξ2 .

From (4.25a), we deduce

(4.29) z = ws + 1√
2 d

(
1√
2 d
〈∆xr〉 − 1

2 c
′′ − 1

d 〈∆xφ〉 c
)
ξ2 .

Finally, thanks to (4.27) and (2.30b), we compute

c′′ = −
√

2
d 〈∇x · ∂tm〉 =

√
2
d 〈∆xr〉− 2

d 〈∇x · ∇
∗
xe〉−

√
2
d

〈
∇x ·

(
∇∗x ·E[h⊥]

)〉
,

and thus obtain

(4.30) c′′ =
√

2
d 〈∆xr〉 − 2

d 〈e∆φ〉 −
√

2
d

〈
Tr
(
E[h⊥]∇2

xφ
)〉
.

By inserting (4.30) in (4.29), we obtain

z = ws + 1
2 d

〈
E[h⊥] : ∇2

xφ
〉
ξ2 + 1

d
√

2 d
〈es ∆xφ〉 ξ2 ,

from which (4.26a) follows. By differentiating z with respect to t, we get

∂tz = ∂tws + 1
2 d

〈
∂tE[h⊥] : ∇2

xφ
〉
ξ2 + 1

d
√

2 d
〈∂tes ∆xφ〉 ξ2 .

By (2.30d) and (2.31a), we know that

∂tE[h] = − 2∇sym
x m+ E[Lh⊥] =

√
2
d ∂te Idd×d + ∂tE[h⊥] .

Besides, we learn from (4.2b) and (4.27) that

∇sym
x m = ∇sym

x ms + 1
d 〈∇x ·m〉 Idd×d = ∇sym

x ms − 1√
2 d
〈∂te〉 Idd×d

and, as a consequence,

∂tE[h⊥] = − 2∇sym
x ms + E[Lh⊥]−

√
2
d ∂tes Idd×d .

Hence

∂tz = ∂tws − 1
d

〈
∇sym
x ms : ∇2

xφ
〉
ξ2 + 1

2 d

〈
E[Lh⊥] : ∇2

xφ
〉
ξ2

and Estimate (4.26b) follows using an integration by parts and (H6). �

Using (4.25a) on the one hand, and (2.30a) combined with (4.25b) on the
other hand, we write

∂tr =
√

2
d ξφ c

′ − x · b′′ + ξ2
2
√

2 d
c′′′ + ∂tz

= ∇∗x ·ms +∇xφ ·Ax− 1√
2 d

(∇xφ · x− d) c′ +∇xφ · b .
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We deduce a differential equation which is very similar to (2.12) up to ad-
ditional terms involving ms and z, namely

Proposition 4.8. The functions A, b, c, z and ms defined by (4.23)
and (4.2b) solve

(4.31)
2 ξφ(x)+∇xφ·x−d√

2 d
c′ + ξ2

2
√

2 d
c′′′ −∇xφ · b− x · b′′ −∇xφ ·Ax

= ∇∗x ·ms − ∂tz .

4.4.2. Control of A. The counterpart of Section 3.2 goes as follows.

Lemma 4.9. There are some positive constants κ4 and C such that
(4.32)

− d

dt

〈
(X − Y · ∇xφ) ,∇xφ ·Ax

〉
≤ −κ4 |A|2 + C

(
D1[h] + C ‖h⊥‖ ‖h‖

)
,

where X = X(b′, c, c′′), Y = Y (b′, c, c′′) and D1[h] are defined respectively
in (3.5), (3.6) and (4.22).

Proof of Lemma 4.9. We argue as for Lemma 3.4. We multiply (4.31) by xk
for k = 1, . . . , d and after integration, we get

(4.33)
√

2
d

〈
ξφ x

〉
c′ + 1

2
√

2 d
〈ξ2 x 〉 c′′′ − b− 〈x⊗ x〉 b′′ = 〈ms〉 − 〈x ∂tz〉 .

Using the definitions of X and Y , (4.31) and (4.33) yield

d

dt
(X − Y · ∇xφ) = ∇xφ ·Ax+∇∗x ·ms − 〈ms〉 · ∇xφ− ∂tz + 〈x ∂tz〉 · ∇xφ .

Using (4.23a) and (4.24), we obtain

d

dt

〈
− (X − Y · ∇xφ),∇xφ ·Ax

〉
= −‖∇xφ ·Ax‖2 − 〈∇∗x ·ms,∇xφ ·Ax〉+

〈
〈ms〉 · ∇xφ ,∇xφ ·Ax

〉
+ 〈∂tz,∇xφ ·Ax〉 −

〈
〈x ∂tz〉 · ∇xφ ,∇xφ ·Ax

〉
−
〈(
X − Y · ∇xφ

)
,∇xφ ·

〈(
E[h⊥]∇2

xφ
)skew〉

x
〉
.

For the first term and thanks to the conservation law (2.27), we note that

R⊥φ 3 P(m) = Ax+ P(ms) ,

so that we can apply inequality (3.3) to x 7→ Ax+ P(ms) to get

cK ‖Ax+ P(ms)‖2 ≤ ‖∇xφ ·Ax+∇xφ · P(ms)‖2 ,
which yields

(4.34) cK |A|2 = cK ‖Ax‖2 ≤ 4 ‖∇xφ ·Ax‖2 + C ‖ms‖2

for any C > 4 + cK. In order to estimate the other terms, we use〈(
X − Y · ∇xφ

)
,∇xφ ·

〈(
E[h⊥]∇2

xφ
)skew〉

x
〉
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.
∥∥Ω−1 (X − Y · ∇xφ)

∥∥∥∥Ω
(
∇xφx

)∥∥ ∣∣〈(E[h⊥]∇2
xφ
)skew〉∣∣

.
(
|b′|+ |c|+ |c′′|

)
‖h⊥‖ ,

and 〈
〈ms〉 · ∇xφ ,∇xφ ·Ax

〉
. ‖ms‖ ‖∇xφ ·Ax‖ . ‖ms‖ |A| .

Thanks to the zeroth order Poincaré inequality (4.6), we also have〈
∇∗x ·ms,∇xφ ·Ax

〉
=
〈
Ω−

1
2
(
∇∗x ·ms

)
, Ω

1
2
(
∇xφ ·Ax

)〉
. ‖ms‖ |A|

as well as similar estimates for the terms in ∂tz and 〈x ∂tz〉 ·∇xφ. Collecting
these estimates with (4.34), we get

d

dt

〈
−
(
X − Y · ∇xφ

)
,∇xφ ·Ax

〉
≤ − 1

4 cK |A|2 + C
(
‖ms‖+

∥∥Ω−
1
2 ∂tz

∥∥ ) |A|+ (|b′|+ |c|+ |c′′|) ‖h⊥‖ ,
for some κ4 <

1
4 cK and C > 0 large enough. Young’s inequality and (4.26b)

conclude the proof of (4.32). �

4.4.3. Control of b, b′, b′′ and c, c′, c′′ and c′′′. It follows from three lemmata.

Lemma 4.10. The following estimate holds

(4.35) |b|+ |b′′|+ |c′|+ |c′′′| . |A|+
∥∥Ω−

1
2 ∂tws

∥∥+ ‖ms‖+ ‖h⊥‖ .

Proof. Using (4.31), we can write

2 ξφ+∇xφ·x−d√
2 d

c′ + ξ2
2
√

2 d
c′′′ −∇xφ · b− x · b′′ = R0

with R0 := ∇xφ ·Ax+∇∗x ·ms− ∂tz. Arguing as in the proof of Lemma 3.5
with this new definition of R0, we obtain that (3.11) holds with

R3 := −〈R0 Φ̃〉 , Φ̃ := ∇φ− x− 〈(∇φ− x)⊗ x〉∇φ .

Observing that

R3 = −
〈
∇xφ ·Ax Φ̃

〉
−
〈
T
(
D Φ̃

)
ms

〉
+
〈
Ω

1
2 Φ̃,Ω−

1
2 ∂tz

〉
= O

(
|A|+ ‖ms‖+

∥∥Ω−
1
2 ∂tz

∥∥ )
and using (4.26b), the proof of (4.35) follows for the same reasons as in the
proof of Lemma 3.5. �

With D1[h] defined in (4.22), we obtain the counterpart of Lemma 3.6.

Lemma 4.11. There exists a constant C > 0 so that

d

dt
〈−b, b′〉 ≤ − |b′|2 + C |A|2 + C D1[h] ,

d

dt
〈−c′, c′′〉 ≤ − |c′′|2 + C |A|2 + C D1[h] .
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Lemma 4.12. The following estimates hold

|c| . |b′|+ |c′′|+ ‖ws‖2 + ‖es‖2 + ‖h⊥‖2,(4.36)

‖r‖ . |b′|+ |c′′|+ ‖ws‖2 + ‖es‖2 + ‖h⊥‖2 .(4.37)

Proof. According to (4.25a), we can write r as

(4.38) r =
√

2
d ξφ c+R5

where R5 := z − x · b′ + ξ2
2
√

2 d
c′′ = O(|b′|+ |c′′|+D1[h]) because of (4.26a).

Using this expression in (2.26) and recalling that 〈e〉 = c yields√
d
2 c
(
1 + 2

d 〈ξ
2
φ

〉)
= −〈ξφR5〉 ,

from which (4.36) follows. Coming back to (4.38), we establish (4.37). �

4.4.4. Second Lyapunov functional. Let us introduce the Lyapunov function

(4.39) F2[h] := F1[h]− ε5 〈(X − Y · ∇xφ),∇xφ ·Ax〉− ε6 〈b, b′〉− ε6 〈c′, c′′〉

for some additional small parameters ε5 and ε6, and the associated dissipa-
tion functional

D2[h] := D1[h] + |A|2 + |b′|2 + |c′′|2 .

Lemma 4.13. For any 0 < ε6 < ε5 < ε4 < ε3 < ε2 < ε1 with ε1 small
enough, there holds

(4.40) ‖h‖2 . F2[h] . D2[h] . ‖h‖2 .

Proof of Lemma 4.13. We can control all quantities involved in the defini-
tions of F2 and D2 by ‖h‖2. Indeed, from (4.1) and (4.23a), we have

(4.41) ‖r‖+ ‖m‖+ ‖e‖+ ‖h⊥‖+ |b|+ |c| . ‖h‖

and thus also ‖es‖ . ‖e‖ + |c| . ‖h‖ from (4.25c). Next, we observe
from (4.27) that

|c′| =
√

2
d |〈m · ∇φ〉| . ‖m‖ ≤ ‖h‖ ,

from (4.23a) that

|A| = |〈m∇skew
x φ〉| . ‖m‖ ≤ ‖h‖ ,

and thus also ‖ms‖ . ‖m‖ + |A| + |b| + |c′| . ‖h‖ from (4.25b). Similarly,
we observe from (4.28) that

|b′| = |〈r∇xφ〉| . ‖r‖ ≤ ‖h‖ .

Coming back to the definition of ws and using (4.28), we get

ws = r −
√

2
d c
(
ξφ − 1

2 d 〈∆xφ〉 ξ2

)
+ b′ · x− 1

2 d

〈
r
(
|∇φ|2 −∆φ

)〉
ξ2 ,
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and deduce ‖ws‖ . ‖r‖ + |c| + |b′| . ‖h‖. Similarly, from (4.30), we also
have |c′′| . ‖r‖+ ‖e‖+ ‖h⊥‖ ≤ ‖h‖. Summing up, we have proved

(4.42) ‖es‖+ ‖ms‖+ ‖ws‖+ |A|+ |c′|+ |b′|+ |c′′| . ‖h‖ .

We finally have to control the terms ‖Ω−1/2 ∂tws‖. From (4.2e), (4.2a)
and (2.30), we have

∂tws = ∇∗x ·m− 〈∇x∇∗x ·m〉 · x− 1
2 d 〈∆x∇∗x ·m〉 ξ2 −

√
2
d c
′φs

and, after performing several integration by parts,

(4.43)
∥∥∥Ω−

1
2 ∂tws

∥∥∥ . ‖m‖+ |c′| . ‖h‖ .

As a consequence of the estimates (4.41), (4.42), (4.43) and of the defini-
tion (4.39) of F2 (also see (4.20)), we have∣∣‖h‖2 −F2[h]

∣∣ ≤ C ε1 ‖h‖2 .
This completes the proof of the first equivalence in (4.40). For the same rea-
son, we have D2[h] . ‖h‖2. On the other way round, from (4.25a) and (4.36),
we have

‖r‖ . |b′|+ |c′′|+ |c|+ ‖ws‖+ ‖es‖+ ‖h⊥‖ . |b′|+ |c′′|+ ‖ws‖+ ‖es‖+ ‖h⊥‖
and similarly, from (4.25b) and (4.35), we have

‖m‖ . |A|+ |b|+ |c′|+ ‖ms‖ . |A|+ |c′|+ ‖ms‖+ ‖Ω−
1
2 ∂tws‖+ ‖h⊥‖ .

Combining the last two estimates, (4.1), (4.25c) and the definition (4.22)
of D2, we deduce the reverse inequality ‖h‖2 . D2[h], which completes the
proof of the second equivalence in (4.40). �

4.5. Proof of Proposition 4.1.

Proof of Proposition 4.1. We differentiate with respect to t the Lyapunov
function F2[h] and use Lemmata 4.6, 4.9 and 4.11 to get

d

dt
F2[h] ≤ − κ0 ‖h⊥‖2 − ε

15
8 κD1[h] + ε2C0 ‖h‖2

− κ4 ε5 |A|2 + C ε5

(
D1[h] + C ‖h⊥‖ ‖h‖

)
+ ε6

(
− |b′|2 − |c′′|2 + 2C |A|2 + 2C D1[h]

)
.

Using Young’s inequality we have

ε5C
2 ‖h⊥‖ ‖h‖ ≤ κ0 ‖h⊥‖2 + ε2

5 κ
−1
0 C4 ‖h‖2

and we deduce for some new constants C1, C2, C3 > 0 that

d

dt
F2[h] ≤ − ε

15
8 κD1[h] + ε2C0 ‖h‖2

− κ4 ε5 |A|2 + C1 (ε5 + ε6)D1[h] + C2 ε
2
5 ‖h‖2

− ε6

(
|b′|2 + |c′′|2

)
+ C3 ε6 |A|2.
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As in the proof of Lemma 4.6, we choose appropriately the small parame-
ters εi such that the quantities ε5, ε6, ε5/ε4 and ε6/ε5 are small enough in

terms of ε. With ε5 := ε61/32 and ε6 := ε62/32, we obtain

d

dt
F2[h] ≤− ε15/8

(
κ− 2 ε1/32C1

)
D1[h]− ε61/32

(
κ4 − ε1/32C3

)
|A|2

− ε62/32
(
|b′|2 + |c′′|2

)
+ ε2

(
C0 + C2 ε

29/16
)
‖h‖2 .

Choosing ε > 0 small enough, the differential inequality simplifies into

d

dt
F2[h] ≤ − ε62/32D2[h] + 5C ε2 ‖h‖2 .

Because of the equivalences established in Lemma 4.13, there are two con-
stants Ki > 0, such that

d

dt
F2[h] ≤ − ε62/32

(
K1 −K2 ε

2/32
)
F2[h] .

Choosing ε > 0 smaller if necessary, we obtain

d

dt
F2[h] ≤ −κF2[h] ,

for some κ > 0, which implies F2[h(t)] ≤ e−κ tF2[h0]. This completes the
proof of Proposition 4.1, that is, of Part (2) of Theorem 1.1, by using once
again the equivalences of Lemma 4.13. �

5. Proof of hypocoercivity by the commutator method

In this section we give an alternative proof of our main result in Theo-
rem 1.1 using a commutator method, under the additional hypotheses that

(H9) The linear collision operator C is bounded in L2(µ−1) ,

(H10) ‖∇2
x φ‖L∞(Rd) <∞ and

∫
Rd
xφ(x) e−φ(x) dx = 0 .

Assumption (H9) means that the operator C as defined in (2.24) is bounded
on L2(µ) while (H10) means that the potential φ has bounded second deriva-
tives and is superlinear at infinity. These assumptions are added merely in
order to simplify the computations but the bound (H9) on the collision op-

erator can be relaxed into just (H2) by using Ãi := Π∗AiΠ instead of the

Ai’s defined in (5.2) in Proposition 5.2 (where Πh = h‖ is the orthogonal
projection on the macroscopic part), and the bound in (H10) can be relaxed
into simply |∇2

xφ| . 1 + |∇xφ| thanks to the additional weight b∇xφe in
the Poincaré inequality (H5). We include the commutator method because
of its interesting algebraic properties and potential applications to a larger
class of equations. Then part (2) of Theorem 1.1 writes:
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Proposition 5.1. Assume that (H0)–(H10) hold and consider a solution h
to (2.22)–(2.23) in L2(M). Then there are explicit constants C > 0 and
κ > 0 such that

‖h(t)‖ ≤ C e−κ t ‖h0‖
where C and κ depend only on bounded moments constants, spectral gap con-
stants or explicitly computable quantities associated to φ such as the rigidity
constant defined in (1.13).

While ∇x and ∇v map scalar functions to vector-valued functions, their
L2(M)-adjoints are ∇∗x = −∇x · +∇xφ and ∇∗v = −∇v · + v · and map
vector-valued functions back to scalar functions. The operators ∇x and ∇v
commute but each does not commute with its adjoint. We have

(5.1)
[∇v,T ] = −∇x , [∇x,T ] = Hφ∇v ,

[∇∗v,T ] = −∇∗x , [∇∗x,T ] =
(
∇2
x∇v

)∗
,

where [A,B] = AB −BA is the commutator and Hφ := (∂2
xixjφ)i,j .

In addition to Ω = ∇∗x · ∇x + 1 defined in (1.14), we also introduce

Γ = ∇∗v · ∇v + 1 , Λ = ∇∗v · ∇v +∇∗x · ∇x + 1 .

These scalar operators also act, coordinate by coordinate, on tensors.

From, e.g., [9] (see Sections 4.4-4.5) or [25, 27], these operators are self-
adjoint in L2(M). As in Section 4, we construct a cascade of estimates.

5.1. Cascade of infinite-dimensional correctors. The three following
operators play the role of correctors:

(5.2)


A0 := ∇∗x ⊗∇∗x ⊗∇∗x Λ−

3
2 : Λ−

3
2 ∇v ⊗∇x ⊗∇x ,

A1 := ∇∗x ⊗∇∗v ⊗∇∗x Γ−
1
2 Λ−1 : Λ−1 Γ−

1
2 ∇v ⊗∇v ⊗∇x ,

A2 := ∇∗v ⊗∇∗v ⊗∇∗x Γ−1 Λ−
1
2 : Λ−

1
2 Γ−1∇v ⊗∇v ⊗∇v .

From [25, 27] or by standard pseudo-differential calculus arguments (see
Lemma A.4), A0, A1, A2 are bounded operators in L2(M). Let Rn[V ] be
the space of real polynomials of v with degree less or equal than n ∈ N, then∇

⊗3
v (R2[V ]) = {0} , ∇⊗2

v (R1[V ]) = {0} , ∇v (R0[V ]) = {0} ,

A2 (R2[V ]) = {0} , A1 (R1[V ]) = {0} , A0 (R0[V ]) = {0} .

This means for instance that A2 can access the local energy without seeing
the local density and local momentum, in a descending cascade. Note that
the simplest “order 1” corrector A0 is inspired by the corrector ∇∗x Λ−1/2 :
Λ−1/2∇v introduced in [27] for Fokker-Planck type equations. We define
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macroscopic deviations from averages quantities that are slighlty different
from (4.2a)–(4.2c):

ẽ := e− 〈e〉 ,
m̃ := m− 〈∇xm〉x− 〈m〉 ,

r̃ := r − 1

2
〈∇⊗2

x r〉 :
(
x⊗ x− 〈x⊗ x〉

)
− 〈∇xr〉 · x− 〈r〉 .

The core commutator estimates are:

Proposition 5.2. For all i ∈ {0, 1, 2}, we have

(5.3)
d

dt
〈Ai h, h〉 = −〈Λi h, h〉+ 〈Bih, h〉

where the Bi’s are bounded operators that satisfy

〈B0h, h〉 . ‖h‖
(
‖h⊥‖+ ‖ẽ‖+ ‖m̃‖

)
,

〈B1h, h〉 . ‖h‖
(
‖h⊥‖+ ‖ẽ‖

)
,

〈B2h, h〉 . ‖h‖ ‖h⊥‖ ,
and where the Λi’s are nonnegative self-adjoint operators that satisfy, for
some C0, C1, C2 > 0 and λ̄0, λ̄1, λ̄2 > 0

− 〈Λ0 h, h〉 ≤ −λ̄0 ‖r̃‖2 + C0

(
‖m̃‖+ ‖ẽ‖+ ‖h⊥‖

)
‖h‖ ,

− 〈Λ1 h, h〉 ≤ −λ̄1 ‖m̃‖2 + C1

(
‖ẽ‖+ ‖h⊥‖

)
‖h‖ ,

− 〈Λ2 h, h〉 ≤ −λ̄2 ‖ẽ‖2 + C2 ‖h⊥‖ ‖h‖ .

Proof of Proposition 5.2. Since C is self-adjoint and T is skew-adjoint,

d

dt
〈Ai h, h〉 =

〈
([Ai,T ] +Ai C + C Ai)h, h

〉
for i ∈ {0, 1, 2}.

We can therefore write [Ai,T ]+Ai C+C Ai =: Bi−Λi where, by using (5.1),
we have the following explicit formulas

B0 := A0 C + C A0

+ ∇∗x ⊗∇∗x ⊗∇∗x
[
Λ−

3
2 ,T

]
: Λ−

3
2 ∇v ⊗∇x ⊗∇x

+ ∇∗x ⊗∇∗x ⊗∇∗x Λ−
3
2 :
[
Λ−

3
2 ,T

]
∇v ⊗∇x ⊗∇x

+ ∇∗x ⊗∇∗x ⊗∇∗x Λ−
3
2 : Λ−

3
2 ∇v ⊗∇x ⊗ (Hφ∇v)

+ ∇∗x ⊗∇∗x ⊗∇∗xΛ−
3
2 : Λ−

3
2 ∇v ⊗ (Hφ∇v)⊗∇x

+ (Hφ∇v)∗ ⊗∇∗x ⊗∇∗x Λ−
3
2 : Λ−

3
2 ∇v ⊗∇x ⊗∇x

+ ∇∗x ⊗∇∗x ⊗ (Hφ∇v)∗ Λ−
3
2 : Λ−

3
2 ∇v ⊗∇x ⊗∇x

+ ∇∗x ⊗ (Hφ∇v)∗ ⊗∇∗xΛ−
3
2 : Λ−

3
2 ∇v ⊗∇x ⊗∇x ,

B1 := A1 C + C A1
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+ ∇∗x ⊗∇∗v ⊗∇∗x
[
Λ−1 Γ−

1
2 ,T

]
: Λ−

3
2 ∇v ⊗∇v ⊗∇x

+ ∇∗x ⊗∇∗v ⊗∇∗x Λ−
3
2 :
[
Λ−1 Γ−

1
2 ,T

]
∇v ⊗∇v ⊗∇x

+ ∇∗x ⊗∇∗v ⊗∇∗x Γ−
1
2 Λ−1 : Λ−1 Γ−

1
2 ∇v ⊗∇v ⊗ (Hφ∇v)

+ ∇∗x ⊗∇∗v ⊗ (Hφ∇v)∗ Γ−
1
2 Λ−1 : Λ−1 Γ−

1
2 ∇v ⊗∇v ⊗∇x

− ∇∗x ⊗∇∗x ⊗∇∗x Γ−
1
2 Λ−1 : Λ−1 Γ−

1
2 ∇v ⊗∇v ⊗∇x

+ (Hφ∇v)∗ ⊗∇∗v ⊗∇∗x Γ−
1
2 Λ−1 : Λ−1 Γ−

1
2 ∇v ⊗∇v ⊗∇x ,

B2 := A2 C + CA2

+∇∗v ⊗∇∗v ⊗∇∗x
[
Λ−

1
2 Γ−1,T

]
: Γ−1 Λ−

1
2 ∇v ⊗∇v ⊗∇v

+∇∗v ⊗∇∗v ⊗∇∗x Λ−
1
2 Γ−1 :

[
Γ−1 Λ−

1
2 ,T

]
∇v ⊗∇v ⊗∇v

+∇∗v ⊗∇∗v ⊗ (Hφ∇v)∗ Γ−1 Λ−
1
2 : Λ−

1
2 Γ−1∇v ⊗∇v ⊗∇v

−∇∗v ⊗∇∗x ⊗∇∗x Γ−1 Λ−
1
2 : Λ−

1
2 Γ−1∇v ⊗∇v ⊗∇v ,

−∇∗x ⊗∇∗v ⊗∇∗x Γ−1 Λ−
1
2 : Λ−

1
2 Γ−1 : ∇v ⊗∇v ⊗∇v ,

and

Λ0 :=∇∗x ⊗∇∗x ⊗∇∗x Λ−
3
2 : Λ−

3
2 ∇x ⊗∇x ⊗∇x ,

Λ1 :=∇∗x ⊗∇∗v ⊗∇∗x Γ−
1
2 Λ−1 : Λ−1 Γ−

1
2 ∇x ⊗∇v ⊗∇x

+ ∇∗x ⊗∇∗v ⊗∇∗x Γ−
1
2 Λ−1 : Λ−1 Γ−

1
2 ∇v ⊗∇x ⊗∇x ,

Λ2 :=∇∗v ⊗∇∗v ⊗∇∗x Γ−1 Λ−
1
2 : Λ−

1
2 Γ−1∇x ⊗∇v ⊗∇v

+ ∇∗v ⊗∇∗v ⊗∇∗x Γ−1 Λ−
1
2 : Λ−

1
2 Γ−1∇v ⊗∇x ⊗∇v

+ ∇∗v ⊗∇∗v ⊗∇∗x Γ−1 Λ−
1
2 : Λ−

1
2 Γ−1∇v ⊗∇v ⊗∇x .

The Λi’s operators are nonnegative, self-adjoint (see Appendix A.3) and
bounded (see Lemma A.4 again).

Note that for all i ∈ {0, 1, 2}:

|〈Ai C h, h〉| = |〈Ai C h⊥, h〉| . ‖h⊥‖ ‖h‖ ,

|〈CAi h, h〉| = |〈Ai h, Ch〉| = |〈Ai h, Ch⊥〉| . ‖h‖ ‖h⊥‖ ,

because C is self-adjoint and bounded by (H9).

Now we deal with B2. Let us denote by B2,` the `-th line. Since

Λ1/2 Γ [Λ−1/2 Γ−1,T ] is bounded by standard pseudo-differential calculus

(see [25]), b2,2 := ∇∗v ⊗∇∗v ⊗∇∗x [Λ−
1
2 Γ−1,T ] is bounded and

|〈B2,2 h, h〉| =
∣∣∣〈b2,2 : Γ−1 Λ−

1
2 ∇v ⊗∇v ⊗∇vh, h

〉∣∣∣
=
∣∣∣〈b2,2 : Γ−1 Λ−

1
2 ∇v ⊗∇v ⊗∇vh⊥, h

〉∣∣∣ . ‖h‖ ‖h⊥‖
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since the three derivatives in velocity on the right hand side cancel all macro-
scopic quantities. The other lines are dealt with similarly, using the bound-
edness of Hφ, and we deduce |〈B2h, h〉| . ‖h‖ ‖h⊥‖.

Now we deal with B1. We consider the second line B1,2. Then

Λ Γ1/2 [Λ−1 Γ−1/2,T ] is bounded by standard pseudo-differential calculus

and so b1,2 := ∇∗x ⊗∇∗v ⊗∇∗x
[
Λ−1 Γ−

1
2 ,T

]
is bounded. Thus

|〈B1,2h, h〉| =
∣∣∣〈b1,2 : Γ−

1
2 Λ−1∇v ⊗∇v ⊗∇xh, h

〉∣∣∣
.
∣∣∣〈B1,2 : Γ−

1
2 Λ−1∇v ⊗∇v ⊗∇x(eE + h⊥), h

〉∣∣∣ .
The macroscopic quantities r and m are canceled since two derivatives in
velocity are involved. We then use ∇v ⊗ ∇v ⊗ ∇xeE = ∇xe ⊗ Idd×d and
Appendix A.4 shows (using Ω ≥ 1 for the first inequality)∥∥Ω−1∇xe

∥∥ ≤ ∥∥Ω−
1
2 ∇xe

∥∥ . ‖ẽ‖ so |〈B1,2h, h〉| . ‖h‖
(
‖ẽ‖+ ‖h⊥‖

)
.

The other lines are similar and yield the same estimate.

We then deal with B0, and focus on the second line B0,2 again. The

operator b0,2 := ∇∗v ⊗∇∗v ⊗∇∗x
[
Λ−

3
2 ,T

]
is bounded arguing as before, and

(5.4)

|〈B0,2h, h〉|=
∣∣∣〈b0,2 : Λ−

3
2 ∇v ⊗∇x ⊗∇xh, h

〉∣∣∣ . ‖h‖(‖ẽ‖+ ‖m̃‖+ ‖h⊥‖
)
.

Indeed a direct computation gives

Γ−1 Λ−
1
2 ∇v ⊗∇x ⊗∇xh = Ω−

3
2 ∇x ⊗∇xm+ Ω̃−

3
2 ∇x ⊗∇x ⊗ (v e)

with Ω̃ := (∇∗x∇x + 2). The factor 2 comes from the fact that for all α ∈ R,

Λα(v e) = (∇∗x∇x +∇∗v∇v + 1)α (v e) = (∇∗x∇x + 1 + 1)α (v e)

since v is an eigenfunction of ∇∗v∇v with eigenvalue 1. To complete the

proof of (5.4), it is sufficient to notice that ‖Ω−
3
2 ∇2

xe‖ ≤ ‖Ω−1∇2
xe‖ . ‖ẽ‖

and, by Appendix A.4, ‖Ω−
3
2 ∇2

xm‖ ≤ ‖Ω−1∇2
xm‖ . ‖m̃‖. The other lines

in B0 are treated similarly again.

Now we deal with the main nonnegative terms 〈Λi h, h〉 in (5.3). We first
compute the contribution of Λ0, Λ1 and Λ2 acting respectively on r, m and e.
Due to the number of derivatives in velocity in the right hand side of the
expressions giving the Λi’s, we have Λi(Ri−1[V ]) = {0} for i ∈ {1, 2} and
Λi(Ri[V ]) ⊂ Ri[V ] for i ∈ {0, 1, 2} and

(5.5) 〈Λ0 r, r〉 =

∫∫
Rd×Rd

∣∣∣Ω− 3
2 ∇3

xr
∣∣∣2M dx dv =

∫
Rd

∣∣∣Ω− 3
2 ∇3

xr
∣∣∣2 ρ dx ,
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(5.6)〈
Λ1 (m(x) · v) , (m(x) · v)

〉
=

∫∫
Rd×Rd

( (
Ω−1∂2

xixk
mj

) (
Ω−1 ∂2

xixk
mj

)
+
(
Ω−1∂2

xixk
mj

) (
Ω−1 ∂2

xjxk
mi

))
M dx dv

= 2

∫
Rd

∣∣Ω−1∇x∇sym
x m

∣∣2 ρdx ,

〈
Λ2 (e(x)E(v)) , (e(x)E(v))

〉
(5.7)

=

∫∫
Rd×Rd

((
Ω−

1
2 ∂xke

)(
∂2
vi vj E

)(
Ω−

1
2 ∂xke

)(
∂2
vi vj E

)
+
(

Ω−
1
2 ∂xje

) (
∂2
vivk

E
) (

Ω−
1
2 ∂xke

)(
∂2
vi vj E

)
+
(

Ω−
1
2 ∂xie

)(
∂2
vjvk

E
)(

Ω−
1
2 ∂xke

)(
∂2
vi vj E

))
M dx dv

=

∫
Rd

(
2
(

Ω−
1
2 ∂xke

)2
+

2

d

(
Ω−

1
2 ∂xie

)2
+

2

d

(
Ω−

1
2 ∂xje

)2
)
ρdx

=

(
4

d
+ 2

)∫
Rd

∣∣∣Ω− 1
2 ∇xe

∣∣∣2 ρ dx .

Next we use the cascade of Poincaré inequalities of Lemma A.6. For the
density r, this implies that there isa constant λ0 > 0 such that
(5.8)

〈Λ0 r, r〉 =

∫
Rd

∣∣∣Ω− 3
2 ∇3

xr
∣∣∣2 ρ dx

≥ 2λ0

∥∥ r − 〈r〉 − 〈∇xr〉 · x− 1
2 〈∇

2
xr〉 : (x⊗ x− 〈x⊗ x〉)

∥∥2
= 2λ0 ‖r̃‖2 .

Regarding the momentum m, one first observes that

|Ω−1∇x∇sym
x m|2 ≥ 1

9
|Ω−1∇2

xm|2

thanks to the Schwarz lemma written as

∀ i, j, k ∈ {1, . . . , d} , ∂2
ijmk = ∂i (∇symm)jk+∂j (∇sym

x m)ik−∂k (∇sym
x m)ij .

Applied to (5.5)– (5.7), the cascade of Poincaré inequalities at order 2 stated
in Lemma A.6 implies that there exists a constant λ1 such that

(5.9)
〈Λ1 (m · v), (m · v)〉 ≥ 2

9
‖Ω−1∇2

xm‖2

≥ 2λ1 ‖m− 〈m〉 − 〈∇xm〉x‖2 = 2λ1‖m̃‖2.

Regarding the energy e, we use the standard Poincaré inequality in L2(ρ)
(the order 1 inequality of Lemma A.6) to get λ2 > 0 such that
(5.10)

〈Λ2 (eE(v)), (eE(v))〉 =
(

4
d + 2

)
‖Ω−

1
2 ∇xe‖2 ≥ 2λ2 ‖e− 〈e〉‖2 = 2λ2 ‖ẽ‖2 .
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With the above estimates in hand, we can investigate all terms appearing
in 〈Λi h, h〉. According to the number of velocity and space gradients in Λ2,
we get that

〈Λ2 h, h〉 =
〈

Λ2 (eE(v)), eE(v)
〉

+
〈

Λ2 (eE(v)), h⊥
〉

+
〈

Λ2 h
⊥, h

〉
,

from which one obtains with (5.10) that

−〈Λ2 h, h〉 ≤ −λ2 ‖ẽ‖2 +O
(
‖h⊥‖ ‖h‖

)
.

Similarly for m, using in addition that Λ1 is self-adjoint and Λ1 (eE(v)) =
Λ1 (ẽE(v)), one has

〈Λ1 h, h〉 = 〈Λ1 (m · v),m · v〉+
〈

Λ1 (m · v), (e− 〈e〉)E(v) + h⊥
〉

+
〈

Λ1

(
(e− 〈e〉)E(v) + h⊥

)
, h
〉
,

which implies using (5.9) that

−〈Λ1 h, h〉 ≤ −λ1 ‖m̃‖2 +O
(
‖ẽ‖ ‖h‖

)
+O

(
‖h⊥‖ ‖h‖

)
.

Finally, regarding the local density r, we get similarly

〈Λ0 h, h〉 = 〈Λ0 r, r〉

+
〈

Λ0 r, m̃ · v + ẽE(v) + h⊥
〉

+
〈

Λ0 (m̃ · v + ẽE(v) + h⊥), h
〉

and it follows from (5.8) that

−〈Λ0 h, h〉 ≤ −λ0 ‖r̃‖2 +O
(
‖m̃‖ ‖h‖

)
+O

(
‖ẽ‖ ‖h‖

)
+O

(
‖h⊥‖ ‖h‖

)
.

The proof of the proposition is complete. �

We collect the previous estimates into a first partial Lyapunov inequality:

Lemma 5.3. Define the following norm

‖h‖2H1
:= ‖h‖2 + ε0 〈A0 h , h〉+ ε1 〈A1 h, h〉+ ε2 〈A2 h, h〉

for ε0, ε1, ε2 > 0, then for cC � ε2 � ε1 � ε0, we have

1

2

d

dt
‖h‖2H1

≤ − cC

2
‖h⊥‖2 − ε2

2
λ̄2 ‖ẽ‖2 −

ε1

2
λ1 ‖m̃‖2 − ε0 λ0 ‖r̃‖2 + η1 ‖h‖2 ,

for some 0 < η1 � ε0.

Proof of Lemma 5.3. Propositions 5.2 combined with Lemma 4.2 imply

1

2

d

dt
‖h‖2H1

≤ − cC ‖h⊥‖2 − ε2 λ̄2 ‖ẽ‖2 − ε1 λ1 ‖m̃‖2 − ε0 λ0 ‖r̃‖2

+ C ε2 ‖h‖ ‖h⊥‖+ C ε1 ‖h‖
(
‖h⊥‖+ ‖ẽ‖

)
+ C ε0 ‖h‖

(
‖h⊥‖+ ‖m̃‖+ ‖ẽ‖

)
for some constant C > 0. The statement then follows from repeated uses of
Young’s inequality for products. �
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In fact the time derivatives of the local density, momentum and energy
can also be controlled as follows:

(5.11)



d

dt

〈
∂tr̃ ,Ω

−1 r̃
〉
≥
∥∥Ω−

1
2 ∂tr̃

∥∥2 −O
(
‖h‖ ‖r̃‖

)
,

d

dt

〈
∂tm̃ ,Ω−1 m̃

〉
≥ ‖Ω−

1
2 ∂tm̃ ‖2 −O

(
‖h‖ ‖m̃‖

)
,

d

dt

〈
∂tẽ ,Ω

−1 ẽ
〉
≥ ‖Ω−

1
2 ∂tẽ ‖2 −O

(
‖h‖ ‖ẽ‖

)
.

This leads to second improved partial Lyapunov inequality:

Lemma 5.4. Given 1� ε2 � ε′2 � ε1 � ε′1 � ε0 � ε′0 � η1, the norm

‖h‖2H2
:= ‖h‖2H1

− ε′2
〈
∂tẽ ,Ω

−1 ẽ
〉
− ε′1

〈
∂tm̃ ,Ω−1 m̃

〉
− ε′0

〈
∂tr̃ ,Ω

−1 r̃
〉
.

satisfies

1

2

d

dt
‖h‖2H2

≤ − cC

4
‖h⊥‖2 − ε2

4
λ̄2 ‖ẽ‖2 −

ε1

4
λ1 ‖m̃‖2 −

ε0

2
λ0 ‖r̃‖2

− ε′2 λ2

∥∥Ω−
1
2 ∂tẽ

∥∥2 − ε′1 λ1

∥∥Ω−
1
2 ∂tm̃

∥∥2 − ε′0 λ0

∥∥Ω−
1
2 ∂tr̃

∥∥2

+ η2 ‖h‖2

for some 0 < η2 � ε′0.

Proof of Lemma 5.4. This follows from (5.11) and∣∣〈∂tẽ ,Ω−1 ẽ
〉∣∣+

∣∣〈∂tm̃ ,Ω−1 m̃
〉∣∣+

∣∣〈∂tr̃ ,Ω−1 r̃
〉∣∣ . ‖h‖2

and the fact that second order time derivatives of the macroscopic quantities
can be controlled by Ω (as in Section 4). �

5.2. Cascade of finite-dimensional correctors. In view of Lemma 5.3,
what remains to be controlled are the finite dimensional terms

〈r〉 , 〈∇xm〉x+ 〈m〉 and
1

2
〈∇⊗2

x r〉 :
(
x⊗ x−〈x⊗ x〉

)
−〈∇xr〉 · x−〈r〉 .

5.2.1. Control of moments of the local momentum. We compute

d

dt
〈vi vj h〉 = 2

〈
(∇sym

x m)ij

〉
+
〈(

T (vi vj) + C(vi vj)
)
h⊥
〉
,

which yields

d

dt

(
〈vi vj h〉

d

dt
〈vi vj h〉

)
≥ 2

〈
(∇sym

x m)i,j

〉2
−
∣∣∣〈(T (vi vj) + C(vi vj)

)
h⊥
〉2
∣∣∣+ 〈vi vj h〉

d2

d2t
〈vi vj h〉

and 
〈vi vj h〉

d

dt
〈vi vj h〉 . ‖h‖ ‖h⊥‖ ,∣∣∣〈(T (vi vj) + C(vi vj)

)
h⊥
〉2
∣∣∣+ 〈vi vj h〉

d2

d2t
〈vi vj h〉 . ‖h‖ ‖h⊥‖ .
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Define for all i ∈ {1, . . . , d}

ψi(v) := 1 +
√

d
2

(
1 + 4

d

)
E(v)−

√
d
2 |vi|

2 E(v)

which is orthogonal to 1, v, |v|2. We then compute

d

dt
〈ψi h〉 = 4

〈
1
d ∇x ·m− ∂ximi

〉
+
〈

[T (ψi) + C (ψi)]h
⊥
〉
,

which yields

d

dt

(
〈ψi h〉

d

dt
〈ψi h〉

)
≥ 8

〈
1
d ∇x ·m− ∂ximi

〉2 −
〈

[T (ψi(v)) + C(ψi(v))]h⊥
〉2

+ 〈ψi h〉
d2

d2t
〈ψi h〉

and 
〈ψi h〉

d

dt
〈ψi h〉 . ‖h‖2 ,∣∣∣〈[T (ψi(v)) + C(ψi(v))]h⊥

〉∣∣∣2 + 〈ψi h〉
d2

d2t
〈ψi h〉 . ‖h‖ ‖h⊥‖ .

We finally introduce the third norm

‖h‖2H3
:= ‖h‖2H2

− ε3

∑
i 6=j
〈vi vj h〉

d

dt
〈vi vj h〉 − ε3 〈ψi h〉

d

dt
〈ψi h〉

− ε′3
∑
i 6=j

〈 d

dt
(∇sym

x m)i,j
〉〈

(∇sym
x m)i,j

〉
− ε′3

〈 d

dt

(
1
d ∇x ·m− ∂ximi

) 〉 〈
1
d ∇x ·m− ∂ximi

〉
for 1� ε3 � ε′3 � ε2 � ε′2 � ε1 � ε′1 � ε0 � ε′0. Therefore, defining as
in (4.2b) and (4.2c) the space inhomogeneous terms

ms := m− 〈∇skew
x m〉x− 1

d 〈∇x ·m〉x− 〈m〉 and es := ẽ = e− 〈e〉 ,

we obtain

1

2

d

dt
‖h‖2H3

≤− cC

8
‖h⊥‖2 − ε2

4
λ̄2 ‖es‖2

− ε1

8
λ1 ‖m̃‖2 −

ε1

8
λ1 ‖ms‖2 −

ε0

2
λ0 ‖r̃‖2

− ε′2
2
λ2

∥∥Ω−
1
2 ∂tẽ

∥∥2

− ε′1
2
λ1

∥∥Ω−
1
2 ∂tm̃

∥∥2 − ε′1
2
λ1

∥∥Ω−
1
2 ∂tms

∥∥2

− ε′0 λ0

∥∥Ω−
1
2 ∂tr̃

∥∥2
+ η3 ‖h‖2

for another 0 < η3 � ε′0.
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5.2.2. Control of moments of the local density and energy. We now control
the difference between the finite dimensional quantities

r − 1

2
〈∇⊗2

x r〉 :
(
x⊗ x− 〈x⊗ x〉

)
− 〈∇xr〉 · x− 〈r〉

and

ws := r − 1

2 d
〈∆xr〉

(
|x|2 − 〈|x|2

)
− 〈∇xr〉 · x

−
√

2

d
〈e〉
[
φ− 〈φ〉 − 1

2 d
〈∆xφ〉

(
|x|2 − 〈|x|2〉

)]
defined in (4.2e) in Section 4, which is made of the two terms (using that
〈r〉 = 0)

I1 := −1

2

∑
1≤i,j≤d

(
〈∂2
xixjr〉 −

1

d
〈∆xr〉δij

)
(xi xj − 〈xixj〉) ,

I2 :=

√
2

d
〈e〉
[
φ− 〈φ〉 − 1

2 d
〈∆xφ〉

(
|x|2 − 〈|x|2〉

)]
.

The first term is controlled by using

d

dt

(〈
(∇sym

x m)ij
〉
− 1

d
〈∇x ·m〉 δij

)
= −

(
〈∂2
xixjr〉 −

1

d
〈∆xr〉δij

)
+ controlled terms

since the left hand side is already under control, and the second term is
controlled by observing that 〈e〉 = 〈r φ〉 due to the energy conservation, and

〈r φ〉 = 〈r̃ φ〉+
1

2
〈∇2

xr〉 : 〈(x⊗ x− 〈x⊗ x〉)φ〉

provided that
∫
Rd xφ e

−φ dx = 0, and ∇2
xr = ∇2

xr̃, so finally

|〈e〉| = |〈r φ〉| . ‖r̃‖ .

This allows to define the final and fourth norm

‖h‖2H4
:= ‖h‖2H3

+ εw
d

dt

(〈
(∇sym

x m)ij
〉
− 1

d
〈∇x ·m〉 δij

)(
〈∂2
xixjr〉 −

1

d
〈∆xr〉 δij

)
− ε′w

(
〈∂2
xixjr〉 −

1

d
〈∆xr〉 δij

)
d

dt

(
〈∂2
xixjr〉 −

1

d
〈∆xr〉 δij

)
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for 1� ε3 � ε′3 � ε2 � ε′2 � ε1 � ε′1 � ε0 � ε′0 � εw � ε′w, with

1

2

d

dt
‖h‖2H4

≤− cC

16
‖h⊥‖2 − ε2

8
λ̄2 ‖es‖2 −

εw
2
‖ws‖2

− ε1

8
λ1 ‖m̃‖2 −

ε1

16
λ1 ‖ms‖2 −

ε0

2
λ0 ‖r̃‖2

− ε′2
2
λ2

∥∥Ω−
1
2 ∂tẽ

∥∥2 − ε′1
2
λ1

∥∥Ω−
1
2 ∂tm̃

∥∥2

− ε′1
2
λ1

∥∥Ω−
1
2 ∂tms

∥∥2 − ε′0 λ0

∥∥Ω−
1
2 ∂tr̃

∥∥2

− ε′w
∥∥Ω−

1
2 ∂tws

∥∥2
+ η4 ‖h‖2

for 0 < η4 � ε′w. Denote by C4[h] the semi-norm of the controlled quantities

C4[h] :=
(
‖h⊥‖2 + ‖ẽ‖2 + ‖m̃‖2 + ‖ms‖2 + ‖r̃‖2 + ‖ws‖2 +

∥∥Ω−
1
2 ∂tes

∥∥2

+
∥∥Ω−

1
2 ∂tm̃

∥∥2
+
∥∥Ω−

1
2 ∂tms

∥∥2
+
∥∥Ω−

1
2 ∂tr̃

∥∥2
+
∥∥Ω−

1
2 ∂tws

∥∥2
)1/2

and adjust the constants to get, for some 0 < η � ε� 1,

(5.12)
1

2

d

dt
‖h‖2H4

≤ − ε C4[h]2 + η ‖h‖2 .

5.3. Control of the remaining finite-dimensional quantities related
to the special macroscopic modes. Estimate (5.12) controls the same
microscopic and macroscopic parts of the solution as in Lemma 4.6 in the
micro-macro method. The remaining finite-dimensional quantities related to
the special macroscopic modes can then be treated exactly as in Sections 4.4
and 4.5. This completes the proof of Proposition 5.1.

Appendix A. Some technical computations

A.1. Momentum conservation versus infinitesimal rotations. Here
we prove (2.19) for a solution f ∈ C

(
R+; L2(M−1)

)
to (1.1) with initial

datum f0 ∈ L2(M−1). With x 7→ Ax := Pφm0(x),

m0(x) := eφ(x)

∫
Rd
v f0(x, v) dv , mf (t, x) := eφ(x)

∫
Rd
v f(t, x, v) dv ,

rf (t, x) := eφ(x)

∫
Rd
f(t, x, v) dv , ef (t, x) := eφ(x)

∫
Rd

E(v) f(t, x, v) dv ,

let us define h⊥ such that f = rfM+mf · vM+ ef EM+ h⊥M.

Lemma A.1. With the above notations, we have have P(mf −m0) ∈ R⊥φ .

Proof of Lemma A.1. At t = 0, we have Pmf (0)− Pm0 = 0. Let B ∈ Rφ.
To prove that P(mf −m0) is orthogonal to x 7→ B x, it is sufficient to prove
that

∀ t ≥ 0 , 〈mf (t)−m0, B x〉 = 0 .
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By direct computation, we have

∂tmf = −∇xrf +
√

2
d ∇
∗
x ef +∇∗x · E[h⊥]

where E[h⊥] =
∫
Rd (v ⊗ v − Idd×d)h

⊥ µdv, and use it to compute

d

dt
〈mf−m0, B x〉

= 〈∂tmf , B x〉

=
〈
−∇xrf +

√
2
d ∇
∗
x ef +∇∗x · E (h⊥), B x

〉
= −

〈
rf ,∇∗x ·B x

〉
+
√

2
d

〈
ef ,∇x ·B x

〉
+
〈
E[h⊥] : ∇⊗B x

〉
where the last line follows from an integration by parts. The first term in the
right hand side vanishes because ∇∗x ·B x = −∇x ·B x+∇φ ·B x = 0 since B
is skew-symmetric and (x 7→ B x) ∈ Rφ. The second term vanishes as well

because ∇x · B x = 0. Since E[h⊥] : ∇ ⊗ B x = −E[h⊥] : B = 0 because
E[h⊥] is symmetric and B is skew-symmetric, the third term also vanishes.
This proves that d

dt〈m(t)−m0, B x〉 = 0 and completes the proof. �

A.2. Special macroscopic modes: the invertibility and rank. We
state and prove two results used in Section 3.3 and implicitely in Section 4.5.

The first result deals with the invertibility of the matrices Mφ and M̂φ

defined respectively in (3.10) and (3.16).

Lemma A.2. If dφ = d, the matrix Mφ is invertible. If 1 ≤ dφ ≤ d− 1, the

matrix M̂φ is invertible.

Proof of Lemma A.2. Assume that dφ = d in (1.9). Let u ∈ Rd be such that
Mφu = 0. Then Mφu · u = 〈|Φ · u|2〉 = 0, which implies that Φ(x) · u = 0 for

any x ∈ Rd, hence u = 0. This means that KerMφ = {0}. The proof in the
case dφ ≤ d− 1 follows exactly the same scheme. �

The second result deals with the linear independence of the two functions

Ψ̃1 and Ψ̃2 defined in (3.14), and similarly for Ψ̂1 and Ψ̂2 defined in (3.19).

Lemma A.3. If dφ = d, we have Rank(Ψ̃1, Ψ̃2) = 2. If 1 ≤ dφ ≤ d− 1, we

have Rank(Ψ̂1, Ψ̂2) = 2.

Proof of Lemma A.3. Let us assume that dφ = d and argue by contradiction.

Assume that Ψ̃1 = λ Ψ̃2 for some λ ∈ R∗, that is, there are constants α,
β ∈ Rd and γ ∈ R such that

(A.1) φ+ 1
2 ∇xφ · x+ α · ∇xφ = λ

4 |x|
2 + β · x+ γ .

We first look for quadratic solutions to (A.1) of the form φ0 = x ·M0 x +
b0 ·x+ c0 with M0 ∈Md×d(R), b0 ∈ Rd and c0 ∈ R. Plugging φ0 into (A.1),
one obtains M0 = λ

8 Idd×d, b0 = 2
3

(
β − λ

4 α
)

and c0 = γ − 2
3 α ·

(
β − λ

4 α
)
.
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Now let φ be a solution to (A.1). Define ψ0(x) = φ(x) − φ0(x) and then
ψ(y) = ψ0(y − 2α), which hence verifies

ψ(y)− 1
2 ∇yψ(y) · y = 0 .

Let ζ(y) = |y|2 ψ(y) so that ∇yζ(y) · y = 2 |y|2
(
ψ(y)− 1

2 ∇yψ(y) · y
)

= 0 for

any y ∈ Rd. In polar coordinates (r, θ), this implies that ζ(y) = ζ(θ) and
hence

∀ r > 0 , ψ(r, θ) =
ζ(θ)

r2
.

But ψ is by assumption continuous at the origin, therefore limr→0 ψ(r, θ) is fi-
nite, which in turn implies that ψ(r, θ) = 0. Finally one gets φ = φ0. Thanks
to the normalizations (H3) and (H7), one gets φ(x) = 1

2 |x|
2+ d

2 log(2π) and,

by definition (1.9), Eφ = {0
}

, which contradicts the hypothesis dφ = d. This
completes the proof when dφ = d. When dφ ≤ d− 1, we argue similarly on

Ψ̂1 and Ψ̂2. �

A.3. Some computations for the commutator method. Here we prove
technical claims used in Section 5. The first result is concerned with bound-
edness of the operators defined in Section 5.1 under Assumptions (H9)
and (H10).

Lemma A.4. Assume (H0)–(H1)–(H2)–(H3)–(H4)–(H5)–(H6)–(H7)–(H8)
plus (H9)–(H10). The operators Λi, Ai and Bi, i ∈ {1, . . . , 3}, are bounded.

Proof of Lemma A.4. As a typical example, we focus on Λ1 for which it is
sufficient to show that Λ−1 Γ−1/2 ∂xi∂vj∂vk is bounded in L2(M). Adopting

the point of view of [25, Proposition A.7], we first conjugate withM1/2 and

only have to check that Γ̃−1/2 (∂vk + vk/2) and Λ̃−1 (∂xi + xi/2) (∂vj + vj/2)

are bounded in L2(Rd,dxdv), where

Λ̃ =
∑
i

(
− ∂xi +

xi
2

)(
∂xi +

xi
2

)
+
(
− ∂vi +

vi
2

)(
∂vi +

vi
2

)
,

Γ̃ =
∑
i

(
− ∂vi +

vi
2

)(
∂vi +

vi
2

)
.

For Γ̃−1/2(∂vk + vk/2) this is due to the fact that Γ̃−1/2 is of order −1
and ∂vk + vk/2 of order 1 in the pseudo-differential calculus associated to
the metric (dv2 + dη2)/(1 + |v|2 + |η|2), η being the dual variable of v.
The composition is then of order 0 and the Calderón-Vaillancourt Theorem
(see [8]) implies the boundedness. For Λ̃−1(∂xi + xi/2)(∂vj + vj/2), the

result is also true because Λ−1 is of order −2 and (∂xi + xi/2)(∂vj + vj/2)
is of order 2 in the pseudo-differential calculus associated to the metric
(dx2 + dv2 + dξ2 + dη2)/(1 + |η|2 + |v|2 + |∇φ|2 + |ξ|2), ξ being the dual
variable of v. This implies the desired boundedness. Such calculus with two
levels (involving Λ in all variable and Γ only in velocity variables) is also at

the core of the boundedness of terms like Λ Γ1/2
[
Λ−1 Γ−1/2,T

]
where we use
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that Λ and Γ commute and that the commutation decrease the order by 1,
so that this operator is of order 0 and therefore bounded by the Calderón-
Vaillancourt Theorem. Note in addition that Hφ (which appears, e.g., in
the Bi’s) is of order 0 which greatly simplifies the proofs. For all other terms
Λi, Ai and Bi, similar computations give the result. �

The second result deals with the symmetry and nonnegativity of Λ1.

Lemma A.5. The operator Λ1 is symmetric and nonnegative.

Proof of Lemma A.5. First we check that

∇∗x∇∗v∇∗x Γ−
1
2 Λ−1 : Λ−1 Γ−

1
2 ∇v∇x∇x

is symmetric, since for the other part of Λ1 this is obvious:〈
∇∗x∇∗v∇∗x Γ−

1
2 Λ−1 : Λ−1 Γ−

1
2 ∇v∇x∇xf, g

〉
=
∑
i,j,k

〈
∂∗xi ∂

∗
vj ∂
∗
xk

Γ−
1
2 Λ−1 : Λ−1 Γ−

1
2 ∂vk ∂xj ∂xi f, g

〉
=
∑
i,j,k

〈
Λ−1 Γ−

1
2 ∂vk ∂xj ∂xi f, Λ−1 Γ−

1
2 ∂xk ∂vj ∂xi g

〉
=
∑
i,j,k

〈
Λ−1 Γ−

1
2 ∂xj ∂vk ∂xi f, Λ−1 Γ−

1
2 ∂vj ∂xk ∂xi g

〉
=
∑
i,j,k

〈f, ∂∗xi ∂
∗
vk
∂∗xj Γ−

1
2 Λ−2 Γ−

1
2 ∂vj ∂xk ∂xi g〉

=
〈
f, ∇∗x∇∗v∇∗x Γ−

1
2 Λ−1 : Λ−1 Γ−

1
2 ∇v∇x∇x g

〉
.

Next check that Λ1 is indeed a nonnegative operator:

〈Λ1 f, f
〉

=
〈
∇∗x ⊗∇∗v ⊗∇∗x Γ−

1
2 Λ−1 : Λ−1 Γ−

1
2 ∇∗x ⊗∇∗v ⊗∇∗x f, f

〉
+
〈
∇∗x ⊗∇∗v ⊗∇∗x Γ−

1
2 Λ−1 : Λ−1 Γ−

1
2 ∇∗v ⊗∇∗x ⊗∇∗x f, f

〉
=
∑
i,j,k

〈
Λ−1 Γ−

1
2 ∂xk ∂vj ∂xi f, Λ−1 Γ−

1
2 ∂xk ∂vj ∂xi f

〉
+
〈
Λ−1 Γ−

1
2 ∂vk ∂xj ∂xi f, Λ−1 Γ−

1
2 ∂xk ∂vj ∂xi f

〉
=
∑
i,j,k

1

2

∥∥∥Λ−1 Γ−
1
2 (∂xk ∂vj + ∂vk ∂xj ) ∂xi f

∥∥∥2
.

This completes the proof. �

A.4. A cascade of Poincaré-Lions inequalities. Under Assumptions
(H9) and (H10), we prove several inequalities used in Section 5.1. Let ϕ
a smooth function in L2(ρ) with compact support and

P0(ϕ) := 〈ϕ〉 ,

P1(ϕ) := 〈ϕ〉+ 〈∇xϕ〉 · x ,
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P2(ϕ) := 〈ϕ〉+ 〈∇xϕ〉 · x+
1

2
〈(∇x ⊗∇x)ϕ〉 :

(
x⊗ x− 〈x⊗ x〉

)
.

Lemma A.6. Let n ∈ {1, 2, 3}. Then there exists a constant cP,n > 0 such
that for all smooth ϕ with compact support we have

cP,n ‖ϕ− Pn−1(ϕ)‖2 ≤
∥∥Ω−n/2∇⊗nx ϕ

∥∥2
.

Proof of Lemma A.6. For n = 1 this is exactly the Poincaré-Lions Theorem
as stated in [9, Proposition 5] and recalled in (4.6). Let us prove the result
for n = 2. Let ϕ be smooth and with compact support. We have

〈ϕ− P1(ϕ)〉 = 〈ϕ〉 − 〈ϕ〉 − 〈∇xϕ〉 · 〈x〉 = 0

because 〈x〉 = 0. We therefore apply the Poincaré-Lions inequality (i.e., the
case n = 1) to ϕ− P1(ϕ), which gives

‖ϕ− P1(ϕ)‖2 ≤ c−1
P,1

∥∥Ω−
1
2 ∇x (ϕ− P1(ϕ))

∥∥2
= c−1

P,1

∥∥Ω−
1
2
(
∇xϕ−〈∇xϕ〉

)∥∥2
.

We then apply the “−1-order” Poincaré-Lions inequality in [9, Lemma 10]
recalled in (4.7) to ∇xϕ to get, for some CLPL > 0 depending only on φ,∥∥Ω−

1
2
(
∇xϕ− 〈∇xϕ〉

)∥∥2 ≤ CLPL

∥∥Ω−1∇2
xϕ
∥∥2
.

This proves the case n = 2 with cP,2 = cP,1/CLPL.

In the case n = 3, we define ψ := ϕ− 1
2 〈∇

2φ〉 : x⊗ x and we compute

ψ − P1(ψ) = ψ − 〈ψ〉 − 〈∇xψ〉 · x
= ϕ− 1

2 〈∇
2ϕ〉 : x⊗ x− 〈ϕ〉

+ 1
2 〈∇

2ϕ〉 : 〈x⊗ x〉 − 〈∇xϕ〉 · x+ 〈∇2
xϕ〉 : 〈x〉 ⊗ x

= ϕ− P2(ϕ)

since 〈x〉 = 0. We apply the inequality for n = 2 and obtain

(A.2) ‖ϕ− P2(ϕ)‖2 = ‖ψ − P1(ψ)‖2

≤ c−1
P,2

∥∥Ω−1∇2
xψ
∥∥2

= c−1
P,2

∥∥Ω−1(∇2
xϕ− 〈∇2

xϕ〉)
∥∥2
.

Arguing as for the proof of the “−1 order” Poincaré-Lions inequality in [9,
Lemma 10], we prove the “−2 order” Poincaré-Lions inequality with con-
stant CLPL > 0: ∥∥Ω−1(f − 〈f〉)

∥∥2 ≤ CLPL

∥∥Ω−
3
2 ∇xf

∥∥2

for any f ∈ C∞c . Applying this estimate in (A.2) to ∇2
xϕ gives

‖ϕ− P2(ϕ)‖2 ≤ c−1
P,2CLPL

∥∥Ω−
3
2 ∇3

xϕ
∥∥2

and concludes for n = 3 with cP,3 = cP,2/CLPL, and completes the proof. �
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Appendix B. Examples and remarks

B.1. Examples of collision operators. We list some examples of linear
collision operators C satisfying the hypotheses of Theorem 1.1, in particular
the spectral gap property (H1) and the bounded moment property (H2).

Example B.1 (The full linear Boltzmann operator). Consider

C f := − (f − rfM−mf · vM− ef EM)

where rf , mf and ef are defined by

rf (t, x) :=

(∫
Rd
f(t, x, v) dv

)
eφ(x) , (local) density ,

mf (t, x) :=

(∫
Rd
v f(t, x, v) dv

)
eφ(x) , (local) momentum ,

ef (t, x) :=

(∫
Rd

E(v) f(t, x, v) dv

)
eφ(x) (local) thermal energy .

By construction, C satisfies the spectral gap condition (H1) and since it is
bounded, it satisfies also the bounded moment property (H2).

Example B.2 (The linearized Boltzmann collision operator). Consider

C f :=

∫
Rd

∫
Sd−1

(
f ′ µ′∗ + f ′∗ µ

′ − f µ∗ − f∗ µ
)
|v − v∗|γ b(θ) dσ dv∗

with the notation f ′ = f(v′), f∗ = f(v∗) and f ′∗ = f(v′∗) and

(B.1) v′ :=
v + v∗

2
+ σ
|v − v∗|

2
, v′∗ :=

v + v∗
2
− σ |v − v∗|

2
,

and θ is the deviation angle defined by cos θ := (v−v∗)
|v−v∗| · σ, and where

γ ∈ (−d,+∞). We assume that b is positive, smooth away from θ = 0 and

bounded by b(θ) . θ−(d−1)−s with s ∈ [0, 2), and the constraint γ + s ≥ 0
between the two parts of the collision kernel. This framework includes the
short-range so-called hard spheres interactions, as well as the long-range
so-called hard potentials and moderately soft potentials interactions. This
operator satisfies the spectral gap property (H1) (see [2, 34, 36] for quanti-
tative estimates) but it is not bounded on L2(µ−1). Polynomials multiplied
by µ are however in the domain of C and it satisfies the boundedness prop-
erty (H2).

Example B.3 (The linearized Landau collision operator). With same con-
vention as in Example B.2, consider C f = µ Ch with h = f/µ and

Ch := ∇v ·
(∫

Rd
Bγ(v, v∗)

(
∇h−∇h∗

)
µµ∗ dv∗

)
where the cross-section is defined by

Bγ(v, v∗) := |v − v∗|γ+2

(
Id− v − v∗

|v − v∗|
⊗ v − v∗
|v − v∗|

)
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with parameter γ ∈ [−2, 1]. This operator is non-local, of order 2 in ve-
locity (of diffusive type) and therefore not bounded. It satisfies the spectral
gap condition (H1) when γ ∈ [−2, 1] (see, e.g., [2, 36] for constructive es-
timates) and again all polynomials in velocity multiplied by µ are in its
domain and it satisfies the boundedness property (H2). Note that the most
important physical case, the linearisation of the so-called Landau-Coulomb
collision operator (describing statistically collisions for a gas of electrons
with Coulomb interactions) corresponds to γ = −3 in dimension d = 3 and
is not covered by our assumption. It is however likely that our method could
be extended for weakened versions of the condition (H1), leading also to a
weaker conclusion, with a stretched exponential relaxation rate, rather than
an exponential one, in the spirit of [42].

Remark B.4. Examples B.2 and B.3 are obtained after a linearization
of the bilinear form associated with the original nonlinear collision kernel
around the Gaussian µ and not around the MaxwellianM: when linearizing
the full nonlinear inhomogeneous kinetic models around a Maxwellian M,
one gets an additional term ρ(x) in front of the collision operator that goes to
zero at infinity. We have not considered this degeneracy in the present paper:
it is likely to create significant difficulties since there is then no uniform-in-x
spectral gap for ρC .

B.2. Examples of potentials. Let us discuss and illustrate the hypothe-
ses (H5) and (H6) on the potential φ. The bounded moment hypothesis (H6)
is not restrictive. Functions like φ(x) = d+5

2 ln(1 + |x|2)−Zφ which are very
slowly increasing at infinity satisfy this hypothesis, as well as fast-increasing

ones like φ(x) = e|x|
4 − Zφ (here Zφ is the constant of normalization of e−φ

in L1). Regarding the Poincaré inequality (H5), many works have been de-
voted to the study of sufficient conditions in order to guarantee the existence
of a spectral gap. Here are some examples.

Example B.5. The harmonic potential φ(x) = 1
2 |x|

2 + d
2 log(2π) satisfies

the Poincaré inequality with constant cP = 1. The inequality is equivalent
to the spectral gap inequality for the operator Ω defined in (1.14). In the

flat L2 space, the change of unknown u = v e−φ/2 shows that the Poincaré
inequality is also equivalent to the spectral gap inequality for the quantum
harmonic oscillator operator −∆x + 1

4 |x|
2 − d

2 .

Example B.6. For a general φ, the change of unknown u = v e−φ/2 yields
the following Schrödinger-type operator

Pφ = −∆x +
1

4
|∇xφ|2 −

1

2
∆xφ .

According to the so-called Bakry-Emery theory (see for instance to [1]), there
is a spectral gap as soon as the Hessian ∇2

xφ is uniformly strictly positive
at infinity. When it is uniformly strictly positive everywhere the following
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estimate is available on the spectral gap cP:

cP ≥
1

2
inf
x∈Rd

λ1(∇2
xφ)

where λ1(∇2
xφ) > 0 is the lowest eigenvalue of ∇2

xφ.

Example B.7. All potentials φ such that Pφ has compact resolvent satisfy
the Poincaré inequality (H5). This happens in particular when

lim
|x|→∞

(
1
4 |∇xφ|

2 − 1
2 ∆xφ

)
= +∞ ,

which is implied for instance by the stronger assumption

(B.2) lim
|x|→∞

|∇xφ| = +∞ , and lim
|x|→∞

∆xφ(x)

|∇xφ(x)|2
= 0 .

This is a standard result on Schrödinger operators, see for instance [37,
Theorem XIII.67 p. 249], and 0 is then a simple discrete eigenvalue. The
argument in the latter reference is not constructive, and for a simpler con-
structive argument we refer for instance to [45, Theorem A.1] or the IMS
truncation method in [40].

Example B.8. Here is an exotic example of potential that does not sat-
isfy (B.2) nor the Bakry-Émery criterion (uniform convexity of φ) and for
which the Poincaré inequality holds. Consider on R2

φ(x, y) = x2
(
1 + y2

)2 − Zφ
where Zφ is the normalization constant so that ρ = e−φ is a probability
density. One can check that Pφ has a spectral gap, although φ is constant
on the unbounded set {x = 0}.

B.3. Change of coordinates. Let us discuss the reduction to the normal-
ization (H7). Note that the formulas for Ker C are invariant by orthonormal
change of coordinates in the velocity variable. By orthonormal change of
coordinates in both the velocity and space variables, we can then reduce to
the case when φ satisfies

(B.3) 〈∇2
xφ〉 =


p2

1 0 0 · · · 0
0 p2

2 0 · · · 0
...

...
0 0 0 . . . p2

d

 .

where we suppose without loss of generality that all pj ’s are positive. The
analysis of the present paper can be adapted to this case, including the
main Theorem 1.1, with the following changes. We define the set of adapted
centred rotational modes compatible with φ as in (1.8):

(B.4) Rφ = {(x, v) 7→ (Ax · v)M : A ∈ Rφ} .
We then choose orthonormal coordinates x = (x1, x2, . . . , xd) such that
∂xjφ = p2

j xj for some pj > 0 if and only if j ∈ Iφ := {dφ + 1, . . . , d},
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and xj = 0 for any j ∈ Iφ if x ∈ Eφ (the linear subspace defined in (1.9)).
We define the set of harmonic directional modes by

(B.5) Dφ = Span
{
f−j (t, x, v) , f+

j (t, x, v)
}
j∈Iφ

,

where

f−j (t, x, v) := (pj xj cos(pj t)− vj sin(pj t))M(x, v) ,

f+
j (t, x, v) := (pj xj sin(pj t) + vj cos(pj t))M(x, v) .

If dφ = 0 and for some p > 0, pj = p for all j ∈ {1 , . . . , d}, we define the set
of harmonic pulsating modes by

Pφ = Span
{
f−(t, x, v) , f+(t, x, v)

}
where

f−(t, x, v) :=
(

1
2

(
|p x|2 − |v|2

)
cos(2 p t)− p x · v sin(2 p t)

)
M(x, v) ,

f+(t, x, v) :=
(

1
2

(
|p x|2 − |v|2

)
sin(2 p t) + p x · v cos(2 p t)

)
M(x, v) .

The functions in Rφ, Dφ and Pφ are special macroscopic modes of (1.1).
With these definitions, the proof of Theorem 1.1 can be adapted to prove a
hypocoercivity result taking into account all special macroscopic modes.

B.4. Spectral interpretation. We have focused so far on real solutions
to (1.1), which is natural since physical solutions (densities of probability)
are real valued. By considering complex solutions, we can interpret the
results in terms of the complex spectrum of the nonnegative operator

−L = v · ∇x −∇xφ · ∇v − C

in L2
C(M−1), the complexification of L2(M−1). We consider φ as in (B.3).

We can then describe precisely the spectrum of −L and obtain resolvent
estimates in a half-plane that includes the imaginary axis. Notice first that 0
is in the spectrum of −L with associated eigenspace

Span
C

(M)⊕ Span
C

(HM)⊕Rφ,C

where Rφ,C is the set of rotation modes as defined in (B.4) but extended to
the corresponding C-vector space. This set is then of (complex) dimension
2 + dim(Rφ). Depending on the harmonicity of φ we have three cases which
are summarized in Figure 1.

(a) Case with no harmonic modes (dφ = d). In this case φ has no
harmonic directions and there no non-zero eigenvalue on the imaginary axis.

(b) Case with harmonic directional modes but no pulsating modes
(1 ≤ dφ ≤ d−1). In this case, the real vector space of functions Dφ in (B.5)
yields the complex set

Dφ,C = Span
C

{
(pj xj − i vj) e−i pj tM(x, v) , (pj xj + i vj) e

i pj tM(x, v)
}
j∈Iφ
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κ

Spectrum

(a) No harmonic modes

κ

Spectrumip1

ip2

ip3

−ip1

−ip2

−ip3

(b) Harmonic directional modes

κ

Spectrum
ip

−ip

2ip

−2ip

(c) Harmonic directional and pul-
sating modes

Figure 1. Complex spectrum of −L .

where Iφ := {dφ + 1, . . . , d}, to which we can associate the eigenfunctions
of (−L ) corresponding to the eigenvalues ∓ i pj and given by

(x, v) 7→ f±j (x, v) = (pj xj ± i vj)M(x, v) .

(c) Case with harmonic directional and pulsating modes (dφ = 0).
In this last case necessarily all pj ’s are equal to a common value p > 0

and φ(x) = 1
2 |p x|

2 + d
2 log(2π)− d log(p). All possible harmonic directional

modes exist, as well as all possible infinitesimal rotational modes Rφ,C with
Rφ = Mskew

d×d (C). The complexification of the set Pφ defined in (B.5) is

Pφ,C = Span
{
e2 i p t f+(x, v) , e− 2 i p t f−(x, v)

}
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where f±(x, v) :=
[
p x · v ± i

2

(
|p x|2 − |v|2

)]
M(x, v) are eigenfunctions of

(−L ) with eigenvalues ± 2 i p.

The analysis of the paper can be extended to the complex Hilbertian
space L2

C(M−1) with a set of special macroscopic modes defined by

S := Span
C

(M)⊕ Span
C

(HM)⊕Rφ,C ⊕ Span
{
f±j
}
j∈Iφ
⊕ Span

{
f±
}

where the fj ’s and the f±’s are defined above (when φ has the relevant

harmonicity). Let S⊥ be the orthogonal of S in L2
C(M−1). We note that

since L is a real operator, both S and S⊥ are stable by conjugation and
therefore stable by L and L ∗. Using the Laplace transform, we obtain
from Theorem 1.1 the following resolvent estimate for −L |S⊥ :

∀ z ∈ C with <(z) < κ ,
∥∥(zId + L |S⊥)−1

∥∥
B(S⊥)

≤ C̃

κ−<(z)

where C̃ is an explicit constant depending on κ and C in Theorem 1.1 and
‖ · ‖B(S⊥) stands for the operator norm on S⊥. The provides the resolvent
estimates in the left half-planes in Figure 1.

B.5. Special macroscopic modes for the full nonlinear Boltzmann
equation. The special macroscopic modes which minimize the entropy for
the full nonlinear Boltzmann equation are the nonlinear counterparts to the
linearized special macroscopic modes studied in the present paper. They
appear for the first time in the literature in Boltzmann’s paper [5] as men-
tioned in the introduction. The full nonlinear inhomogeneous Boltzmann
equation is

∂tF + v · ∇xF −∇xφ · ∇vF = ∂tF + T F = Q(F, F )(B.6)

where, with the classical notations F ′ = F (v′), F∗ = F (v∗) and F ′∗ = F (v′∗)
associated to elastic collisions (v, v∗) 7→ (v′, v′∗), such that the microscopic
conservation of momentum v′ + v′∗ = v + v∗ and energy |v′|2 + |v′∗|2 =
|v|2 + |v∗|2 hold, the Boltzmann collision operator writes

Q(F, F ) :=

∫
Rd

∫
Sd−1

B(v − v∗, σ)
(
F ′F ′∗ − FF∗

)
dσ dv∗ .

Here B ≥ 0 is the cross-section. We refer to [10] for more details. Let
us assume the normalization (H7) on φ. We consider the functions in the
space S of special macroscopic modes generated by
B the set Rφ of rotation modes compatible with φ if φ admits any,
B the set Dφ of harmonic directional modes if φ has harmonic directions,
B the set Pφ of harmonic pulsating modes if φ is fully harmonic.

For any f ∈ S, the function F (t, x, v) := eh(t,x,v)M(x, v) with h = f/M is
a time-periodic solution to (B.6). Indeed h(t, x, ·) is a linear combination
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of 1, vi, i ∈ {1, . . . , d} and |v|2 for each t, x, and therefore the microscopic
conservation of momentum and energy imply

∀ t, x, v, σ, h(t, x, v′) + h(t, x, v′∗) = h(t, x, v) + h(t, x, v∗)

where the four velocities v, v∗, v
′, v′∗ satisfy (B.1). This proves the identity

eh
′M′eh′∗M′∗ = ehMeh∗M∗ and thus Q(ehM, ehM) = 0. Finally we obtain

T (ehM) = T (eh)M + ehT (M) = eh [T (h)M+ T (M)] = 0, where we
have used that T is a first order operator and T (M) = T (h) = 0 as
calculated before.

© 2022 by the authors. This paper may be reproduced, in its entirety, for non-commercial pur-

poses.
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fläche. Akad. der Wissensch., Munich, Math. phys. KI., 36:351, 1906.
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MADE, CNRS UMR n◦ 7534), Universités PSL & Paris-Dauphine, Place de
Lattre de Tassigny, 75775 Paris 16, France

Email address: mischler@ceremade.dauphine.fr

(C. Mouhot) Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

Email address: C.Mouhot@dpmms.cam.ac.uk

(C. Schmeiser) Fakultät für Mathematik, Universität Wien, Oskar-Morgen-
stern-Platz 1, 1090 Wien, Austria

Email address: Christian.Schmeiser@univie.ac.at


	1. Introduction
	2. Conservation laws and macroscopic equations
	3. Classification of the special macroscopic modes
	4. Proof of hypocoercivity by the micro-macro method
	5. Proof of hypocoercivity by the commutator method
	Appendix A. Some technical computations
	Appendix B. Examples and remarks
	References

