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Abstract   

Agarose hydrogels are poroviscoelastic materials that exhibit a waterlogged crosslinked microstructure. 
Despite an extensive use in biotechnologies and numerous studies of the elastic properties of agarose gels, little 
is known about the compressible behaviour and the microstructural changes of such fibrillar hydrogels under 
compression. The present work investigates the mechanical response of centimeter-sized pre-molded agarose 
cylinders when applying a compressive strain ramp over an extended range of loading speed and polymer 
concentration. One of the original contributions is the simultaneous monitoring of the changes in the hydrogel 
volume to determine the Poisson’s ratio through a spatiotemporal method. The linear poroelastic response of 

agarose hydrogels shows a compressible behaviour at strain rates less than -1s% 7.0 . The critical compressive 

strain of a few percent at the onset of the non linear regime and the always positive Poisson’s ratio decrease 
when applying a slow compressive ramp. The mechanical response in the linear regime is typical of a 
deformation mode either dominated by the bending of semiflexible strands (enthalpic regime) or by the 
stretching of the network (entropic regime) at higher agarose concentration. Cyclic linear shear deformations 
superimposed to a compressive strain from 0.5 % up to 40 % further give evidence of a compression-softening of 
the network at the origin of the transition to the non linear regime whatever the network topology and 
connectivity. Finally, the buckling-induced aging of the network under a weak compression and the 
poroviscoelasticity of the hydrogel are shown to impact the relaxation of the normal stress and the equilibrium 
stress. 
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1 Introduction 
Agarose is a linear neutral galactose polysaccharide containing a negligible amount of charged groups such 

as sulphate or pyruvate. Agarose often considered as a model biopolymer is extracted from the cell walls of red 
marine algae after an alkaline treatment of agarophytes and further removal of the more soluble agarose sulphate 
also referred as agaropectin (Djabourov et al. 2013; Zhang et al. 2019). Biopolymer hydrogels are suitable for a 
wide range of applications from food engineering as gelling agents (Mezzenga et al. 2005) to tissue engineering 
as porous scaffolds (Rinaudo 2008) and biotechnologies where uncharged agarose is widely used in gel 
electrophoresis (Kirkpatrick et al. 1993) and agar gel plates commonly serve as a growth medium for 
microorganisms (Divoux, Mao and Snabre 2015).  

 
Agarose macromolecules exhibit a coil configuration in hot aqueous solutions with an overlap threshold 

polymer concentration of %wt5.0  (San Biagio et al. 1984). As the temperature of the polymer solution is 

lowered below 55 °C, a coil-helix transition occurs spontaneously and the agarose chains transform into 
relatively rigid fibrils (Arnott J et al. 1974; Hayashi et al. 1977, Foord and Atkins 1989; Schafer and stevens 
1995) which aggregate by lateral association of 3010   filaments to form polydisperse strands with diameters 
from 5 nm up to 50 nm and length from 0.15 µm up to several micrometers depending on the agarose 
concentration (Laurent 1967; Dormoy and Candau 1991; Waki et al. 1982; Djabourov et al. 1989). The physical 
crosslinking of semiflexible strands through hydrogen bonds occurs below the gelation temperature of 

C35C40   at a mass concentration as low as %wt1.0  (Hayashi et al. 1977; Tokita and Hikichi 1987; 

Aymard et al. 2001) and gives rise to a fibrillar network that entraps a large amount of water. Many 
investigations have been carried out to clarify the growth kinetics of strands and the influence of the gelation 
conditions as the self-assembly of biopolymers involves an interplay between conformational changes, phase 
separation and molecular crosslinking (Feke and Prins 1974; Manno and Palma 1997; Xiong et al. 2005). A slow 
cooling rate or a low agarose concentration %wt1c  indeed promotes phase separation into polymer-rich and 

polymer-poor regions since water is not a good solvent for agarose (Morita et al. 2013). On the other hand, direct 
gelation without spinodal demixing is observed in the high concentration regime %wt2c  as phase separation 

becomes kinetically inhibited by crosslinking (San biagio et al. 1996). Recent normal force controlled rheology 
experiments supports the idea that lower cooling rates only delay the gelation process without affecting the 
terminal elastic properties of a %wt5.1  agar hydrogel at ambient temperature (Mao et al. 2016) 

 
Agarose hydrogels keep a constant volume without any significant swelling when placed in a relatively poor 

solvent as water and thus offer a suitable system for studying the mechanical properties of semi flexible 
biopolymer networks. Agarose hydrogels further display a sponge-like microstructure with a broad distribution 
of void spaces that becomes narrower as the polymer concentration increases (Righetti et al. 1981; Pernodet et al. 
1997; Maaloum et al. 1998; Nitta et al. 2003). The mechanical properties of agarose and biopolymer hydrogels 
have been extensively studied and the concentration dependence of the Young modulus of the porous 
waterlogged material assumed as incompressible is reported to obey scaling laws with elastic exponents 
depending on the concentration regime (Watase and Nishinari 1983; Clark and Ross-Murphy 1987; Tokita and 
Hikichi 1987; Ramzi et al. 1998; Mohammed et al. 1998; Normand et al. 2000; Aymard et al. 2001; Joly-
Duhamel et al. 2002). However, little information is available concerning the influence of the loading speed on 
the Young modulus and the compressibility of the hydrogel. 

Similar to a waterlogged sponge, an agarose hydrogel under a mechanical stress undergoes an elastic 
deformation and then water sweeps out from the compressible gel under the action of the applied stress. Kaneda 
and Iwasaki (2015) recently established a correlation between the time relaxation of the normal stress and water 
exudation from a %wt5.1  agarose hydrogel at a low compressive strain of 5%. The mechanical behaviour of 

hydrogels indeed strongly depends upon time and length scales involved in both the transport process of water 
and the reorganization of the network as predicted by the linear poroelastic theory.  

The theory of linear poroelasticity was first introduced by von Terzaghi (1925) and extended later by Biot 
(1941) to describe the settlement of soils before being applied to the osmotic swelling and the mechanical 
compression of articular cartilage (Armstrong et al. 1984) and hydrogels (Armstrong et al. 1984; Yamaue and 
Doi 2005; Yamaue and Doi 2004; Doi 2009; Cai et al. 2010; Hu et al. 2010). The extent of water exudation from 
a constrained hydrogel and the time relaxation of the normal stress are closely related both to the elastic 
deformation and the compressibility of the soft material.  

Hydrogels may further display some viscoelasticity and thus exhibit a time-dependent elastic behaviour as 
the network relaxes in response to an applied compressive strain (Hu and Suo 2012; Strange et al. 2013). Most of 
works on the poroviscoelasticity of biopolymer hydrogels assume a transiently incompressible material when 
appyling a fast compression strain ramp before holding a constant compressive strain without special attention to 
non linear effects (Strange et al 2013; Caccavo et al. 2017). Studies of agarose hydrogels generally misregard the 
influence of both the strain amplitude and the strain rate of the compressive ramp on the poroviscoelastic 
response. The few experimental contributions with different loading velocities address the stress-induced 
fracture of hydrogels (Nakamura et al. 2001; Normand et al. 2003; Forte et al. 2015). Interestingly, a 
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compression-softening of fibrin networks has recently been reported due to the elastic buckling of the network 
under compression (Kim et al 2014). The weakness of a fibrillar network in the compressive direction can thus 
give rise to early non linear effects and have a significant impact on the mechanical properties of agarose 
hydrogels. Recent numerilcal simulations of the shear deformation of 3d semiflexible networks indeed highlight 
a strain-softening mechanism dependent on the network topology but limited to enthalpic ansd sparsely 
connected strands (Bouzid et Del Gado 2018).     

 
The present paper focuses on the coupling between the mechanical response of agarose hydrogels under 

compression, the squeezing out of water from the network and the compression-induced microstructural changes.  
Centimeter-sized pre-molded cylindrical agarose hydrogels were compressed between impermeable and 
frictionless rigid glass plates by applying a compressive strain ramp over a wide range of loading speeds from 
0.1 µm/s up to 1 mm/s and polymer concentrations from %wt3.0  up to %wt23 . Changes in the volume of the 

hydrogel under compression were further monitored with a digital camera using a homemade spatiotemporal 
analysis (Mao et al. 2017a) to determine the Poisson’s ratio in the linear regime. The accuracy of unconfined 
uniaxial compression experiments requires a precise adjustment of the parallelism of the compression plates as 
well as pre-molded hydrogels with perfectly controlled cylindrical geometry. From this point of view, microscale 
or macroscale indentation tests are easier to implement but unfortunately less suited to a study of the mechanical 
properties of hydrogels as the Young modulus cannot be measured without an a priori estimate of the Poisson’s 
ratio in the linear regime (Hay and Wolf 2001). The non linear elastic behaviour of agarose gels under 
compression was finally investigated through the measurement of both the critical compressive strain at the onset 
of the non linear regime and the storage shear modulus of equilibrium hydrogels at high compressive strains up 
to 40%.    

  
The paper is organized as follows. Section 2 first describes the preparation of pre-molded agarose hydrogels 

and the Cryo-Scanning Electron Microscopy (Cryo-SEM) observations before introducing the unconfined 
uniaxial compression methods. The different protocols used to investigate the shear rheology of constrained 
hydrogels are then presented, namely the Small Amplitude Oscillatory Shear (SAOS) measurements and the 
shear stress relaxation tests in the linear shear regime. Section 2 ends with the presentation of the spatiotemporal 
method used to determine the Poisson’s ratio of hydrogels in the linear regime. Sections 3.1 and 3.2 show the 
compressive stress - strain curves and discuss the influence of the loading speed and the agarose concentration 
on both the Young modulus and the Poisson’s ratio of hydrogels using the linear poroelasticity theory. Section 
3.3 provides an interpretation of the results in terms of the network microstructure through the enthalpic and 
entropic elasticity of fibrillar networks first introduced by Jones and Marques (1990) and Ramzi et al. (1998). 
Section 3.4 focuses on the physical mechanism at the origin of the transition to the nonlinear regime in relation 
with the compression-softening of agarose hydrogels. Finally, section 3.5 examines the viscoelasticity of agarose 
hydrogels on longer timescale and discusses the influence of both the buckling-induced aging of the network and 
the poroviscoelasticity of the hydrogel on the relaxation of the normal stress and the equilibrium stress on long 
timescale. 

 
 

2 Materials and methods 
2.1 Preparation of agarose hydrogels 

Agarose powders with a sulphate content less than 0.2% were supplied by Setexam (type SHF, Lot S18063, 
Morocco) and Sigma-Aldrich (type EEO, Lot SLBW0321). A size exclusion chromatography method coupled 
with low-angle laser light scattering (Mitsuiki et al. 1999) was used to determine the molecular weight 

distribution of polysaccharides (average molecular weight g/mol 10 88.1 5wM  and g/mol 10 05.3 5wM  for 

Setexam and Sigma agarose, respectively). Agarose solutions were prepared by mixing the agarose powder with 
cold milli-Q water (17 M cm at 25°C) and boiling at 100°C for 5 min with continuous magnetic stirring. Some 
water may be added in the bottle to compensate water evaporation. The clear hot solution was then kept at 

C )180(   for one hour in a climate chamber (Binder MK53) for complete polymer dissolution and bubble 

removal. Solutions with a high agarose mass fraction ml 100per  g 9  become highly viscous and the 

formation of many bubbles under stirring made the conventional method inappropriate. In a way similar to the 
hydrothermal method proposed by Ayyad et al. (2010), the cold mixture was placed in a closed Pyrex bottle and 
heated at 110°C for 30 min under mild stirring in a climate chamber until the solution became clear. Heating at 
high temperature for too long time is not recommended due to thermal hydrolysis and intramolecular oxidation 
of agarose molecules with a consequent alteration in the mechanical properties of agarose gels (Mao et al. 
2017b). An agarose mass fraction of ml 100per  g 03  represents the upper limit for the preparation of 

homogeneous highly concentrated agarose hydrogels. 
Mechanical characterization of hydrogels using standard compression tests requires special care to ensure a 

perfect parallelism of the top and bottom surfaces of the pre-molded bubble-free hydrogels. A Duralumin 
cylindrical mold (internal radius mm 01.07 R , height mm 01.014H , surface roughness µm 2µm 4   as 
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determined with a Contour Elite Bruker profilometer) was thus placed on a smooth glass surface (surface 
roughness nm 1.0nm .530  ) to prevent any adhesion of the hydrogel on the bottom surface and the mold was 
further sealed with an external bead of adhesive paste. The hot aqueous solution of agarose was then poured into 
the mold with a slight excess of liquid and immediately sealed with a circular glass coverslip before gelation 
occured under natural cooling at 20°C (Fig. 1a) after a time period of about 7 min as determined with a 

thermocouple immersed in the gel ( -1minC 5/ dtdT ). After 1 hour curation at 20°C, the glass coverslip was 

gently slid off and the agarose cylinder was carefully removed from the mold (Fig. 1) before placing the 
hydrogel sample in a tank for 30 min equilibration and starting the compression test.  

 
 

 
 
Fig. 1 (a) Duralumin cylindrical mold (internal radius mm 01.07 R , height mm 01.014H ) placed on a 
smooth glass plate; filled with a hot agarose solution ( C80 ) and soon covered with a circular glass coverslip 
(a circular bead of adhesive paste seals the lower part of the mold). Pre-molded agarose cylinders 5.1L  (b), 3L  

(c) and 9L  (d) after 1 hour curing at ambient temperature and subsequent removal of the hydrogels from the 

molds. Setexam agarose hydrogels with a polymer mass concentration  wt%48.1c  ( 5.1L ),  wt%91.2c  

( 3L ) or  wt%26.8c  ( 9L ). 

 
Aqueous solutions of agarose with a powder mass fraction  in the range from 0.5 g up to 30 g per 100 ml 

water were prepared. Agarose hydrogels will be referred to as L or H with L or H standing either for Setexam 
samples (of lower wM ) or Sigma samples (of higher wM ) and  for the powder mass added in 100 ml water 

(see Table 1 for the respective values of  en g per 100 ml and the concentration c in wt%).  The agarose powder 

density 3g/cm )01.065.1( s  was measured by pycnometry. Agarose helices are stabilized by hydrogen 

bonds with water molecules occupying the inner part of the helix (Foord and Atkins 1989). As the mass fraction 
  of agarose in hydrated agarose fibers is about 60 % (Laurent 1967; Waki et al. 1982), the density of hydrated 

fibers is 3g/cm 39.1)1(   osh  ( 3g/cm 1o  is the density of water), in close agreement with the 

value 3g/cm 4.1h  reported by Arnott et al. (1974). Considering a value 3g/cm 1s  coincidently close to 

unity, the relationship )100/()/100/(   os  is therefore used to convert a mass fraction  of 

agarose in ml 100 water into a volume fraction   of hydrated fibers. As a consequence, the fiber volume fraction 

  is close both to the agarose mass concentration )100/(  c  in wt% and to the helix volume fraction since 

optical rotation experiments suggest a very low non-helical content in agarose hydrogels at room temperature 
(Hayashi et al. 1977; Schafer and Stevens 1995; Djabourov et al. 2013) 

 
 
 

(g/100ml) c (wt%)   (g/100ml) c (wt%) 
  0.3 0.299 0.299    5 4.76 4.76 
  0.5 0.497 0.497    7 6.54 6.54 
0.7 0.695 0.695  9 8.26 8.26 
1 0.99 0.99    12 10.7 10.7 

1.5 1.48 1.48  15 13 13 
2 1.96 1.96  20 16.7 16.7 
3 2.91 2.91  25 20 20 
4 3.85 3.85  30 23.1 23.1 

 
Table 1 Respective values of the mass  of agarose powder in g per 100 ml water, the polymer concentration c 
in wt% and the fiber volume fraction   in % for all the agarose samples L and H considered in the present 
work. 
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2.2 Cryo-Scanning Electron Microscopy 

The microstructure of agarose hydrogels was observed by cryogenic low vacuum scanning electron 
microscopy (JEOL 6700F). The chamber is cooled down to CT  90  and the sample cut in situ with a scalpel. 

The temperature is increased at a rate of minC/5  up to C 50T   and kept constant for 5 min to sublime the 
water frozen inside the gel. The temperature is decreased back to CT  85  before coating the sample with a 

nanolayer of gold-palladium. The sample is finally cooled down to C 160 T  and observed in the low 
vacuum chamber of the microscope using a secondary electron detector (SEI mode) at an acceleration voltage of 
5 kV. The micrographs in Fig. 2 show fibrillar type networks with a broad pore size distribution and a typical 
mean pore diameter of µm 1  at wt%3.0c  and µm .30  at wt%3c  for Setexam samples (Fig. 16 in appendix 

5.1).  
 

 
 
Fig. 2  Cryo-SEM micrographs of L0.3 (c  0.3 wt%) (a), L1 (c  0.99 wt%) (b) and L3 (c  2.91 wt%) (c) 
Setexam agarose hydrogels. Samples are imaged using a secondary electron detector (SEI mode) at an 
acceleration voltage of 5 kV. 
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2.3 Unconfined compression 
Compression experiments of agarose hydrogels were performed at room temperature using either a CT3 

4500G Brookfield texture analyzer ( N 45  loading cell, force precision mN 5 , speed accuracy 0.1 %) or a DHR2 
TA Instruments rheometer ( N 05  force transducer, force precision mN 1 , space resolution 0.1 µm).  The pre-
molded hydrogel placed in the central part of a rectangular tank is compressed either in air or immersed in water 
after 30 min equilibration (Fig. 3).  
 

  
Fig. 3 Unconfined uniaxial compression of cylindrical agarose hydrogels immersed in water using either the 
Brookfield texture analyzer (a) or the DHR2 rheometer (b).  
 

A rigid plate with a circular central hole covers the tank to prevent water evaporation from the hydrogel 
during equilibration and subsequent compression. An upper circular glass plate with an area larger than the 
hydrogel contact area was lowered at a constant speed µm/s 100 for the Brookfield texture analyzer 

( points/s 100 , space accuracy µm/s .10 ) or over five decades of loading speed from µm/s 0.1  up to µm/s 103  

for the DHR2 rheometer ( point/s 1  up to points/s 100 , space accuracy µm/s .10 ) to cover a wide range of 

deformation timescales. The exact parallelism of the glass plates was previously adjusted by finely orienting the 
base plate. Top and bottom surfaces of the hydrogel in contact with the smooth glass plates were frictionless, so 
that the gel can uniformly expand during the compression test without any barrelling deformation (Fig. 3). A 
barrel-like deformation of a constrained hydrogel physically or chemically clamped to the plates would require a 
less precise averaging of the varying diameter over the height of the sample to determine the Poisson’s ratio 
(Kaneda and Iwaski 2015; Kaneda 2018). 

The moving plate was approached close to the upper surface of the equilibrium gel and the normal force was 
set to zero before starting the compressive strain ramp. A uniform downward motion of the upper plate was 
imposed and the compressive force )(tF  opposed by the gel cylinder of height )(th  was monitored as a 

function of time. The initial height oh  of the stress-free hydrogel was determined from the vertical position of 

the upper plate at which the applied load )(tF  suddenly rises 1. The buoyancy force   oob thhCtF   )()( 2   

exerted on the upper cylindrical glass plate of radius C  ( mm 5.12C or mm 20C for the compressive cell of 
either the texture analyzer or the DHR2 rheometer, respectively) was further subtracted from the applied load 

)(tF  when considering the unconfined compression of the hydrogel fully submerged in water. Here, the 

buoyancy force often overlooked in previous works somewhat influences the effective compressive force 
)()( tFtF b  of soft hydrogels with an elastic modulus less than kPa 300 . 

The compressive strain  is obtained by dividing the upper plate displacement hhdh o   by the height oh  

of the unconstrained material and the stress   by dividing the effective load bFF   by the contact area 

)0( oA  of the equilibrium gel. The so-called engineering stress ob AFF /)(   is close to the true stress 

AFF b /)(   in the linear regime as the cross-sectional area A of the compressed cylinder increases by less than 

5% under a compressive strain %5 .  

                                                 
1 The equilibrium height oh  of the pre-molded gel is slightly less than the height H of the duralumin mold as the 

sol-gel transition induces a small water release and a volume retraction of the sample as reported by Mao et al. 
(2016). Here, the hydrogel under tension in the mold at room temperature undergoes a uniform spontaneous 
shrinkage when demolding the cylinder with an equilibrium contraction ratio HhH o /)(   which increases 

linearly with the polymer concentration and reaches a plateau value %)2.01.3(   at agarose mass 

concentration  wt%5.1c . 
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A 15 % strain ramp was applied with a constant strain rate dtd /  from 14 s% 10  1.7   up to 1s% 1.7   

(compression speed in the range from 0.1µm/s up to 103 µm/s) . No macroscopic fracture was observed below a 
critical strain rupture of about 30%. The Young modulus was determined from the slope of the linear elastic 
region of the stress-strain curve. The intersection point of two asymptotic lines is usually considered to 
characterize the criçtical compressive strain c at the onset of the non linear regime but such a method 
significantly overestimates the strain threshold c  and pronounced non linear features further make the choice 

the high strain asymptote difficult. For this reason, a %5   stress deviation of ),(  data from the linear fit was 

considered to determine the critical compressive strain c  at the transition to the non linear regime with a 

relative accuracy %10 .  
 

2.4 Shear rheology 
Shear stress relaxation and Small Amplitude Oscillatory Shear (SAOS) measurements were conducted at 

20°C using the rotational DHR2 rheometer to investigate the impact of the compressive strain  upon the shear 
viscoelasticity of the agarose gel cylinder fully immersed in water. The shear experiments were performed after 
holding a static compressive strain for 15 min so that the hydrogel reaches a new quasi-equilibrium state and 
water exudation weakly influences the shearing of the constrained material. Prior to the shear tests, SAOS 
deformations superimposed to a low applied compressive strain %4  were probed at a frequency from 0.1Hz 
up to 10Hz to check the linearity of the response. The oscillatory stress resulting from a small amplitude 

harmonic shear strain %10 5 2  is representative of linear viscoelastic behavior with a weak dependence 

upon the frequency and no significant slippage of the gel cylinder at the contact interface with the glass plates.  
Shear stress relaxation experiments were performed on a weakly compressed quasi-equilibrium hydrogel 

( %4 ) by superimposing a constant shear strain in the range from % 10 5 2  down to % 10 5 3  depending on 

the elastic modulus and the agarose mass concentration wt%23   wt%5.0  c  (a shear strain %10 5 3  

corresponds to a radial displacement µm 7.0)(  HRrr   of the outer upper surface of the gel cylinder and 

an angular deformation mrad 1.0/  Rr of the upper contact area of the gel cylinder to compare with the 

much less angular displacement resolution of the DHR2 rheometer of about 10-5 mrad). Strain hardening effects 
only become significant above a shear strain deformation of a few percent for agarose hydrogels (Bertula et al. 
2019) and can be considered as negligible in the present experiments. A second order generalized Maxwell 
model consisting of a linear spring of elastic modulus 1G  connected in parallel with two Maxwell units (a spring 

of elastic modulus iG  connected in series with a dashpot of coefficient i  with i = 2,3) was considered to 

describe the linear viscoelastic response and the time relaxation of the dimensionless shear stress modulus 
 /)()( ttG   of the assembly:  

 

)1e(e )( i/
i

3i
2i

i/
i

3i
2i1  




  tt
o

tt GGGGtG                   (1) 

 

where the instantaneous shear modulus i
3i
1i GGo  

  of the hydrogel and the retarded shear moduli ( 32 ,GG ) 

is determined using a non linear fit. 
SAOS measurements were further carried out on an equilibrium hydrogel under a compressive strain   

gradually increasing from 0.5 % up to 40 % by successive step % 5.0d   for % 5% 5.0    and % 5.1d   
for % 5 . After an elemental compressive strain d  of the hydrogel at a speed µm/s 100/ dtdh  

( -1s% 71.0/ dtd ), the vertical strain   was hold for 1 hour and a cyclic shear strain of low amplitude 

% 210 2  was subsequently superimposed for 20 cycles at a frequency of 1 Hz to determine the storage 

modulus )'*(G  and the loss modulus )"*(G  of the equilibrium gel in the linear shear regime (the superscript 

asterix refers to an equilibrium state). Successive compressive strain ramps and hold periods were repeated to 
investigate the shear viscoelastic properties of equilibrium agarose hydrogels under compression. 

Finally, the dynamics of water sweeping out from the hydrogel was investigated in the low compression 
regime. The time relaxation of the normal force )(t  was monitored after a fast compression of the hydrogel at 

µm/s 100/ dtdh  when holding a constant compressive strain % 2  for min30 to neglect at best any non 

linear effects. The dimensionless normal load relaxation ottF  /)()(   was analyzed using an empirical 

stretched exponential function (Kaneda et al. 2015): 
 

sttFFtF *)/(-e *)1(*)(    with  otF  /*)(*                                                           (2) 
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where )0( to  is the normal stress immediately after the fast strain ramp, *  the equilibrium normal stress at 

long timescale and s the stretching exponent. A non linear fit of  tt o ,/)(   data gives the reduced equilibrium 

stress o /* , the characteristic poroviscoelastic time *t  and a stretching exponent 6.0s . 

 
2.5 Poisson’s coefficient 

The side view of the agarose hydrogel was monitored using a webcam (Logitech HD Pro c920). Image stacks 
were recorded at a frequency adjustable from 50 frames per second down to 1 image per minute depending on 
the duration of the compression test. The image acquisition started as soon as the upper plate moves down and 
image stacks were processed using a homemade plugin developed in java with the image processing software 
Image J (Schneider et al. 2012; Mao et al. 2017a) to determine the Poisson’s ratio   of the hydrogel within the 
limit of low compressive strains % 50   . 

Fig. 4 shows the images of L3 agarose gels in air or in water when applying a 15 % strain ramp at a constant 

speed dtdh / =100 µm/s ( dtd /   0.71 %s-1) or µm/s 1.0/ dtdh  ( 14 s% 10  1.7/ dtd ). The constrained 

hydrogels undergo a lateral expansion (along the horizontal x axis) regardless of the altitude z with no sign of 
frictional barrelling for % 50    (Fig. 4). The Poisson’s ratio  /x  describes the relationship between 

the horizontal strain x  perpendicular to the loading and the vertical strain  (Greaves et al. 2011).  
 

 
 
 

Fig. 4 Vertical compression of 3L  hydrogels in air or in water when lowering the upper glass plate along the 

vertical direction z  with a loading speed µm/s 100/ dtdh  (two left columns) or µm/s 1.0/ dtdh  (two right 

columns). The images from top to bottom show the gel at different times during a 15 % strain ramp for a 
compressive strain 0 , 2.5 %, 5 % and 10 %, respectively. Horizontal white arrows highlight changes in grey 
levels with respect to the initial image before compression as a consequence of the appearance of water droplets 
at the outer surface of the gel in air while vertical pink arrows show the progressive formation of a water bead at 
the bottom of the gel slowly compressed in air. Setexam agarose hydrogels with a polymer mass concentration 

 wt%9.2c .  
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A spatiotemporal projection of grey levels in a thin vertical or horizontal region of interest (ROI) was 
performed to extract the two diagrams ),( zST  and ),( xST   that highlight respectively the vertical contraction 

and the lateral expansion of the hydrogel under compression (Fig. 5). The lateral strain x  is approximated by 

the change in the cylinder diameter divided by the unconstrained hydrogel diameter. Therefore, the Poisson’s 
ratio  can be expressed as: 
 

oo

oox

nnn

mmm

/)(

/)(








                         (3) 

 
where )(n  and )(m  respectively denote the height in pixels and the diameter in pixels of the constrained 

hydrogel with )0(  nno  and )0(  mmo . The space resolution of 60 pixels/mm ensures a relative 

accuracy %7/1/1/  dmdnd   for the determination of the Poisson’s ratio with pixels 40 onndn  and 

pixels 20 ommdm in the case of an incompressible material ( 5.0 ) and a compressive strain %5 . 
 

 

 
 
 

Fig. 5 Spatio temporal analysis of the stack images acquired when applying a 15 % strain ramp with a loading 
speed µm/s 100/ dtdh  (two left columns) or µm/s 1.0/ dtdh  (two right columns) for 3L  hydrogels in air 

or in water. Spatio temporal diagrams ),( zST   (second line) and ),( xST   (third line) obtained from the 

vertical or the horizontal time projection of grey levels in the vertical green ROI or the horizontal yellow ROI 
drawn on top images. Dashed white lines in ),( zST   diagrams highlight the formation of droplets at the air / gel 

interface above a critical strain e  (the vertical white arrows in Fig.4 and Fig.5 highlight the changes in grey 

levels during water exudation) and the pink region delimited by a pink dotted line shows the growth of a water 
bead at the bottom of the gel cylinder slowly compressed in air (see pink vertical arrows in Fig.4). Dotted lines 
show either the vertical contraction in ),( zST   diagrams or the radial expansion of the gel in ),( xST   

diagrams. The analysis of the spatio temporal diagrams from left to right gives Poisson’s coefficients 478.0  
( µm/s 100/ dtdh  in air), 474.0  ( µm/s 100/ dtdh  in water), 27.0  ( µm/s 1.0/ dtdh  in air) and 

21.0  ( µm/s 1.0dt/dh   in water). Setexam agarose hydrogels with a polymer mass concentration 

 wt%9.2c .  
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The spatiotemporal analysis was further used to determine the drained Poisson’s ratio  of the equilibrium 
constrained gel when holding a static compressive strain for one hour. Temporal changes in the cylinder 
diameter are first caused by the pressure build-up and the radial expansion of the hydrogel during a fast  
compression ramp and then by the water release in a characteristic time of a few minutes when holding a static 
compressive strain as evidenced by the spatiotemporal diagram ),( xST   of the L3 sample in Fig. 6. The drained 

Poisson’s ratio *  representative of the change in the water volume fraction is determined from the relation 
)/()*(*  oo mmm   where *m  is the diameter in pixels of the equilibrium drained hydrogel at long 

timescale. 
 

 
 

Fig. 6 Spatiotemporal diagram ),( xtST  of an 3L  hydrogel in response to a 15 % strain ramp at a loading speed  

µm/s 100/ dtdh  ( s210  t ) followed by the relaxation of the sample at a constant compressive strain 

%15  for 1 hour. The drained Poisson’s ratio 035.015.0)/()*(*   oo mmm  is determined from the 

mreasurement of the diameter om  in pixels of the unconstrained gel and the diameter *m  in pixels of the 

equilibrium drained hydrogel. Setexam agarose hydrogel with a polymer mass concentration  wt%9.2c .  
 
3 Results and discussion 
3.1 Compression and poroelasticity of agarose hydrogels 

The present paragraph concerns both the fast and the slow compression bevaviour of 3L  hydrogels 

(  wt%9.2c ) in air or in water (Fig. 7). The stress - strain curves )(  display a first linear elastic region 

followed by a non linear response above a critical compressive strain c  with either an upward or a downward 

concavity respectively when applying a 15 % strain ramp at a loading speed µm/s 100/ dtdh  

( 1s% 71.0/ dtd ) or µm/s 1.0/ dtdh  ( 14 s% 10  1.7/ dtd ) (Fig. 7). 

When deforming the L3 hydrogel at a fast loading speed µm/s 100/ dtdh  (Fig. 7a), the material behaves as 

a nearly incompressible material in the linear regime with a Poisson’s ratio 48.047.0   as determined from the 
spatiotemporal analysis of the cylinder deformation (first and second columns in Fig. 5). The spatiotemporal 
diagram ),( zST   of the L3 sample rapidly compressed in air shows the formation of droplets at the air / gel 

interface at a strain % 3e   (Fig. 5) close to the critical strain % 3.3c   at the transition to the non linear 

regime (Fig. 7a).  
In the opposite case of a slow loading speed µm/s 1.0/ dtdh  (Fig. 7b), the gel appears as softer with a 

lower Young modulus as the solvent is immediately squeezed out from the porous material ( 0e ,  white 

arrows in the ),( zST   diagram from the third column in Fig. 5). The compressible hydrogel thus displays a 

lower Poisson’s ratio of  0.21 in water and 0.27 in air ( ),( xST   diagrams from third and fourth columns in Fig. 

5) 2 and the non linear regime occurs above a critical strain % 6.0% 5.0c  (Fig. 7b).  

                                                 
2 Note that the slow compression of the L3 hydrogel in air causes an early exudation of water from the outer free 
surface (third column in Fig. 5) and an apparent slight increase in the rate of swelling of the cylinder with a 
consequent overestimation of the Poisson's ratio as determined by the spatiotemporal method. 
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Fig. 7 Normal stress   versus the compressive strain   when applying a 15 % strain ramp with a loading speed 
µm/s 100/ dtdh  (a) or µm/s 1.0/ dtdh  (b) for an 3L  hydrogel in air (full black and grey curves) or in water 

(full dark blue and light blue curves). Dotted lines are best linear fits of )(  data at low compressive strain 

c   with the critical strain c  shown in the inserts. The dashed green line in (b) shows the plateau stress *  

at high compressive strains. Setexam agarose hydrogels with a polymer mass concentration  wt%9.2c .  
 

Interestingly, the typical two stage stress response of the hydrogel submitted to a slow compression ramp 
(Fig 7b) is reminiscent of the mechanical behaviour of an open-cell elastomeric foam compressed under quasi-
static conditions with an elastic response at low compressive strain and a plateau stress *  in the non linear 
regime (Ashby et al. 2005; Ouellet et al. 2006). Here, the plateau stress *  is not representative of a plastic 
damage since the deformation of agarose hydrogels is nearly reversible (Fig. 17 in appendix 5.2) 3.  Furthermore, 
whether the gel is compressed in air or in water has no significant influence upon the stress – strain curves (Fig. 
7) which is expected for an initially equilibrium hydrogel and further highlights the weakness of the interfacial 
tension forces in the water release process. 

Such a behavior is consistent with the theory of linear poroelasticity (Yamaue and Doi 2005; Doi 2009; Cai 
et al. 2010). In response to a compressive strain ramp, the pressurization of the interstitial fluid induces a radial 
tensile stress that causes a lateral expansion of the hydrogel. A fast compression delays the release of water from 
the hydrogel that behaves as an incompressible material ( 5.0 ) at short timescale and supports a compressive 
stress  oE  in the linear regime where Eo is the Young modulus of the undrained material. If the duration of 

the strain ramp in the linear regime exceeds the characteristic time t* of fluid permeation through the network, 
water exudation may occur very early and the compressible material ( 5.0 ) appears as softer with a lower 
Young modulus )1(2  oGE  where the shear elastic modulus 3/oo EG   of the hydrogel is mainly 

representative of the network microstructure (Yamaue and Doi 2005).  

                                                                                                                                      
 
3 The deformation of the agarose hydrogel appears as reversible after a fast or a slow 15 % compressive strain 
ramp and the material nearly recovers the initial shape within half an hour when removing the load. The 
hydrogel can further be compressed up to a 90% strain without breaking under an extremely low loading speed 

µm/s 1.0/ dtdh  ( 14 s% 10  1.7/ dtd ) at agarose concentrations from  wt%5.0  up to  wt%21  as 

previously reported for gellan gels for polymer concentrations wt%5.2wt%81.0  c  (Nakamura et al. 2001) . 
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Both poroelastic and viscoelastic effects associated with the transport of the liquid and the reorganization of 
the network can influence the normal stress relaxation and the deformation process of the hydrogel. The shear 
stress relaxation of L3 hydrogels weakly compressed in water ( %4 ) shows an instantaneous shear elastic 
modulus kPa100oG and a retarded viscoelasticity at short and long timescales in the range from a few tens of 

seconds up to half an hour (Fig. 8). The loading speed and the time duration of the compressive strain ramp 
weakly influences the viscoelastic response of the hydrogel (Fig. 8) as non linear effects remain negligible at a 
low compressive strain %4 . As predicted by the linear poroelasticity theory, the elastic modulus 

)]1(2/[ E  calculated from the measured values of both the Young modulus E and the Poisson’s ratio  of L3 

samples submerged in water is close to the shear modulus oG of the hydrogel independently of the loading speed 

(Table 2). 

  
Fig. 8 Shear stress relaxation )(t  of quasi-equilibrium 3L  hydrogels weakly compressed in water when 

superimposing a static shear strain %10 5 -3 . Before shearing the hydrogel, a 4 % compressive strain ramp is 

imposed either rapidly ( µm/s 100/ dtdh , full dark blue curve) or slowly ( µm/s 1.0/ dtdh , full light blue 

curve) and the static strain % 4  is hold for 15 min. Dotted red lines correspond to a second order generalized 
Maxwell model (Eq. 1) fitted to data with the parameter values:  kPa 105oG , kPa 9.42 G , kPa 7.113 G ,  

s 352 t , min 303 t  for µm/s 100/ dtdh  and kPa 99oG , kPa 9.32 G , kPa 93 G ,  s 302 t , 

min 303 t  for µm/s 1.0/ dtdh . Setexam agarose hydrogels with a polymer mass concentration  wt%9.2c .  

 
 

dh/dt  
µm/s 

c  
(%) 

 E 
(kPa) 

Go 

(kPa) )1(2 oG

E  

100 3.5 0.474 317.5 105 1.025 
0.1 0.6 0.21 247.1 99 1.033 

 
Table 2 Critical compressive strain c , Poisson’s ratio  , Young modulus E , elastic shear modulus oG  and 

dimensionless ratio )]1(2/[ oGE  of 3L  samples in water when applying either a fast or a slow 15 % strain 

ramp at a loading speed µm/s 100/ dtdh or µm/s 1.0/ dtdh . Setexam agarose mass concentration 

 wt%9.2c .  
 

3.2 Influence of compression speed and agarose concentration on Poisson’s ratio 
Compression experiments of 3L  hydrogels immersed in water were performed over 5 decades of loading 

speeds from µm/s 10/ 3dtdh  ( 1s% 1.7/ dtd ) down to µm/s 1.0/ dtdh  ( 14 s% 10  1.7/ dtd ) (Fig. 

9a). The Young modulus E, the Poisson’s ratio   and the critical compressive strain c  display lower values at 

a loading speed less than µm/s 100  ( 1s% 71.0/ dtd ) as water has time to sweep out from the hydrogel (Fig. 

9b). As reported in the previous paragraph, the elastic modulus )]1(2/[ E  derived from compression 

experiments performed in triplicate take a value kPa )4106()]1(2/[ E  close to that of the shear elastic 

modulus kPa )499( oG  regardless of the imposed strain rate (Fig. 9b). The slightly lower value of the shear 

elastic modulus oG arises from weak nonlinear effects as a 4% compressive strain is hold for 15 min before 

running the stress relaxation test, as will be discussed later in section 3.4.  
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Fig. 9 (a) Normal stress   versus the compressive strain   for 3L  hydrogels in water and different loading 

speed dtdh /  from µm/s 1.0  up to µm/s 01 3  in the DHR2 rheometer. The insert is a zoom in the low strain 

region where dotted lines are best linear fits of )( data in the limit of low strains c   and dashed vertical 

lines show the critical compressive strain c. (b) Semi logarithmic plot of the Young modulus E  (full black 
circles) and the Poisson's ratio   (open green squares) of 3L  hydrogels compressed in water versus the loading 

speed dh/dt. Full blue circles and full red circles respectively stand for the elastic modulus )]1(2/[ E  

calculated from ),( E  data and the shear modulus oG  determined from shear stress relaxation experiments after 

a 4 % compressive strain ramp at a loading speed dtdh / and a hold period of min 15 . Compression and shear 
stress relaxation tests were performed in triplicate. Setexam agarose hydrogels with a polymer mass 
concentration  wt%9.2c .  
 

Considering now a constant loading speed µm/s 100/ dtdh , the hydrogel becomes stiffer when increasing 

the agarose concentration with a corresponding significant decrease in the critical strain c  ( % 5.4c   for L1 

sample and % 55.1c   for L30 sample, Fig. 10) which could be the consequence of a more intense 

pressurization of the internal liquid phase and an earlier water release from dense networks under fast 
compression. Surprisingly, the Poisson’s ratio measured at the same compression speed µm/s 100/ dtdh  over 

a compressive strain range % 50    keeps fairly constant values 52.047.0   representative of a nearly 
incompressible material without significant dependence on the agarose concentration (Fig. 11). Such an 
observation goes against an interpretation based on a water release to explain the decrease in the critical 
compressive strain c  at  high agarose concentration. Predicting the variations of the critical strain c  is indeed 

far from trivial since the transition to the non linear regime may involve not only the competition between the 
pressure build-up and the permeation dynamics of water through the porous hydrogel but also a possible 
reorganization of the network under compression as will be discussed later in section 3.4. 
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Fig. 10 Normal stress  versus the compressive strain   for L  hydrogels with a mass fraction g9g1   

(a) and g30g15    (b) of Setexam agarose powder per ml 100  water when applying a 15 % strain ramp at a 

loading speed µm/s 100/ dtdh  in the DHR2 rheometer. Dotted lines are best linear fits of )( data in the 

limit of low strains c   and dashed vertical lines show the critical compressive strain c . The insert in (a) is 

a zoom of the low strain region while the insert in (b) shows a picture of the agarose hydrogel 0L  with a 

polymer mass concentration  wt%23c . 
 

 
 

Fig. 11 Semi logarithmic plot of the Poisson's ratio   of L  hydrogels versus the mass fraction   of Setexam 

agarose powder per ml 100 water for several loading speed dtdh /  varying from µm/s 1.0  (full light blue 

circles) up to µm/s 01 3  (full dark blue circles). The upper dotted dark blue rectangle highlights the dispersion of 

the Poisson's ratio values 033.0499.0   (16 data points) in the linear regime at high loading speed 

µm/s 10/ 3dtdh  and the full color lines are the best logarithmic fits of ),(   data for each of the loading 

speed. Open red square symbols stand for the drained Poisson’s ratio *  of Setexam agarose equilibrium 
hydrogels determined from the spatiotemporal diagram ),( xST   when holding a 4 % static compressive strain 

for 1 hour.  
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On the other hand, the hydrogel behaves as a compressible material with a Poisson’s ratio 5.01.0   when 
applying a slow strain ramp ( µm/s 100/ dtdh ) since water is swept out very early from the network on longer 

timescales (Fig. 11). The drained Poisson’s ratio *  of the equilibrium constrained hydrogel determined from 
the spatiotemporal diagram ),( xST   when holding a 4 % static compressive strain for 1 hour increases with the 

agarose concentration from 0.1 up  0.2 (open red square symbols in Fig. 11). As expected, the agarose hydrogel 
under a very slow strain ramp at a loading speed µm/s 1.0/ dtdh  remains in a near equilibrium state as the 

Poisson’s ratio  in the linear regime is barely greater than the drained Poisson’s ratio *  (Fig. 11). Note also 
that the positive drained Poisson’s ratio *  of equilibrium hydrogels in the linear regime excludes any 
significant collapse or folding of semi-entrant cells as in the honeycomb or foam effect (Greaves et al 2011).  

Agarose hydrogels yet behave very differently depending on the loading speed and whether the strain rate  

dtd /  is lower or higher than -1s% 71.0  ( µm/s 100/ dtdh  for centimeter-sized samples). Indeed, a strain rate 

dtd /  in the range from -1s% 5.0  up to -1s% 01  is usually considered in the literature to assume an 

incompressible behaviour of agarose hydrogels and determine the Young modulus oE  in the linear regime 

(Ramzi et al. 1998; Normand et al. 2000; Aymard et al. 2001; Kaneda et al. 2015; Delaine-Smith et al. 2016). A 

minimum strain rate of -1s% 5.0  corresponds to a deformation period of a few seconds before water flows out 

from a centimeter-sized hydrogel and then induces a compressible behavior in the linear regime. The permeation 
dynamics of water over longer timescales is controlled by the imposed strain rate and the permeability of the 
network through the poroviscoelastic time *t of the hydrogel (see section 3.5).  
 
3.3 Elastic behaviour in the linear regime 

The present section concerns the linear elasticity of hydrogels in relation with the agarose concentration and 
the deformation mode of the microstructure. All the measurements of the elastic modulus )]1(2/[3 E  and the 

shear modulus oG  carried out at different loading speed and agarose concentration were plotted in logarithmic 

scale as a function of the fiber volume fraction (Fig.12). For this purpose, the deviation )( g   from the 

transition threshold is introduced to establish the scaling laws governing the elastic behaviour of the hydrogel 
(Djabourov 1991) where g  is the fiber volume fraction at the gelation point. The gelation threshold of agarose 

hydrogels at 20°C has been reported above a typical critical mass concentration  wt%13.0 wt%07.0 gc  

(Hayashi et al. 1977; Tokita and Hikichi 1987; Normand et al. 2000) much smaller than that of agarose coils in 
hot solutions because of the semiflexible structure of helical filaments and strands. Recently, a very nice 

investigation of the surface tension of water-agarose systems with a molecular weight g/mol 10 310 2 55   at 

concentrations from  wt%10 3  up to  wt%.20  indicates a second order phase transition and the formation of a 
macroscopic gel phase above the critical concentration  wt%1.0gc  (Ichinose and Ura 2020). Therefore, a 

critical fiber volume fraction % 1.0g   at the gelation threshold is considered to analyze the elastic behaviour 

of agarose hydrogels. Note that the introduction of the variable )( g   with %1.0g  mainly influences the 

value of the scaling exponent in the percolation regime at low fiber volume fraction % 1 10 g   . 

The concentration dependence of both the linear elastic modulus )]1(2/[ E  and the shear modulus oG of 

Setexam agarose hydrogels gives evidence of two distinct power law regimes with an elastic exponent 
05.01.2   for % 8.2% 4.0    and 05.035.1   for % 23% 75.3    (Fig. 12). The use of either 

Setexam or Sigma agarose powder of different average molecular weight has an impact on the elastic moduli 

scaling as 8.0
wM  but little influence upon the elastic exponents   in both regimes as shown in Fig. 18 (appendix 

5.3). Previous studies on the elasticity of agarose hydrogels with g/mol10 2g/mol10 55  wM  concerned a less 

extended range of concentrations  wt%5 wt%.30  c  but reported similar scaling exponents 2.27.1   

below  wt%2  and 1.05.1   above  wt%2  (Rochas et al. 1994; Ramzi et al.  1998; Normand et al. 2000). 

The linear storage modulus of various gelatin hydrogels formed by the aggregation of semiflexible helical 
structures above a gelation threshold %24.0g  also obeys a two regime master curve with an elastic exponent 

2  for % 2  and 5.1  at higher helix volume fraction (Joly-Duhamel et al. 2002; Djabourov et al. 

2013). Ramzi et al. (1998) and Joly-Duhamel et al. (2002) first introduced two types of linear elasticity to 
interpret the values of the scaling exponents: an enthalpic elasticity dominated by the bending of the semiflexible 
structural units in weak networks and an entropic elastic regime dominated by the stretching of flexible junctions 
between rods in stronger networks.       
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Fig. 12 Logarithmic plot of the elastic modulus )]1(2/[3 E  (full blue circles and blue squares) and the shear 

elastic modulus oG  (full red circles) versus the fiber volume fraction g   in Setexam agarose hydrogels with 

%1.0g . Full blue circles stand for compression experiments in the DHR2 rheometer performed in water at 

different loading speed from µm/s 1.0  (full light blue circles) up to µm/s 01 3  (full dark blue circles). Full blue 

squares are for experiments conducted in the Brookfield texture analyzer either in air (open blue squares) or in 
water (full squares squares) at a loading speed µm/s 100dt/dh  . Full red circles stand for the elastic shear 

modulus oG  obtained from shear stress relaxation tests in the DHR2 rheometer after a 4% fast compressive 

strain ramp. Full blue line and full red line are the best power law fits of ]),22/(3[ gE    and ),( goG    

data in the enthalpic ( %8.2% 4.0 g   ) and the entropic elastic regime ( % 23% .753 g   ), 

respectively. Dotted blue and red lines highlight the respective slopes of power law fits with an indication of the 
value of the elastic exponent . The insert is a zoom in linear coordinates of the high agarose concentration 
regime delimited by vertical dotted lines in the main figure. The dashed blue line and the dashed red line in the 
insert are the best linear fits of ]),22/(3[ gE    and ),( goG    data for % 23% 01 g   . 

 
The aggregation of 10 – 20 agarose helices into semiflexible strands (Waki et al. 1982; Dormoy et Candau 

1991) noticeably increases the persistence length lp (the typical length under which the chain is rod-like) of the 
structural units in the network. According to Molginer and Rubinstein (2005), a weakly cross-linked strand of 

2010   helical filaments deviates from a linear rod over a critical length of nm 300nm 200  . The persistence 
length of multiple-helical polysaccharides as xanthan or -carrageenan aggregates typically lies in the range                  
200 nm – 300 nm (Coviello et al. 1986; Meunier et al. 2000). Recent Scanning Electron Microscopy (SEM) and 
Atomic Force Microscopy (AFM) observations of agarose hydrogels at low polymer concentrations  wt%1c  
indeed revealed long-shaped strands of diameter nm 20nm 6   with a persistence length of a few hundred 
nanometers and a coordination number (average number of strands connecting in a junction) 3z  below the 3d 
critical isostatic point 6cz  (Bertula et al. 2019). The linear storage modulus of fibrillar collagen hydrogels 

with a low coordination number 5.33z  scales quadratically with the fiber volume fraction consistent with 
an enthalpic elasticity arising from non affine bending deformations of the network (Jansen et al. 2018). 
Furthermore, the phase separation (spinodal demixtion) that occurs during the cooling of agarose hydrogels at 
low agarose concentrations  wt%2c  (San Biagio et al. 1996; Morita et al. 2013) promotes the formation of a 
sparsely connected and inhomogeneous network with an enthalpic elastic behaviour. A low coordination number 
and a persistence length smaller than the distance between junctions points results in a dominant bending 
deformation mode of the floppy network whereas affine stretching deformations arise above the critical isostatic 
threshold cz  (Broedersz et al. 2011; Huisman et Lubensky 2011).  
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In the bending dominated regime, the theory first proposed by Jones and Marques (1990) to describe the 
mechanical behaviour of cellular materials with an open cell network predicts an elastic exponent  

)3/()3( ff dd   where df is the fractal dimension of the structural units. The scaling exponent 

05.01.2   derived from the concentration dependence of the linear elastic moduli at low agarose fiber 

volume fraction % 3% 5.0    (Fig.12) yields a reasonable fractal dimension 03.007.1 fd  representative 

of straight semiflexible strands 4.  
In the second regime, the average distance between the junction points becomes less than the persistence 

length of strands and the dense and homogeneous network exhibits an entropic elasticity. In the now commonly 
accepted context of junction zones composed of short flexible polysaccharide coils binding rigid rods at high 
helical concentrations (Dajabourov at al. 2013), the model proposed by Jones and Marques (1990) for the linear 
elasticity of the so called freely hinged network predicts an elastic exponent )3/(3 fd . A fractal dimension 

1fd  of the rigid strands yields a scaling exponent 5.1  not so far from the experimental value 

05.035.1   at high fiber volume fraction % 23% 3    (Fig. 12). Within the framework of an entropic 

elasticity, one may assume a linear elastic modulus proportional to the volume number of junctions, namely to 

the reciprocal 3/1   of the cube of the mean distance   between crosslinks. In the limit of rigid strands with a 

radius r much larger than the mesh size of the network, the typical spacing   between crosslinks scales as 
2/1)(  g  (Ogston 1958, Lang et al. 2013, and Fig.16 in appendix 5.1) 5 and the elastic modulus 

2/3
g

3 )(/1  E  exhibits a scaling exponent 5.1  identical to that derived from the model of Jones 

and Marques (1990). In the next paragraph, the concentration dependence of the critical compressive strain 
)(c  at high fiber volume fraction will provide an alternative explanation for the lower value 35.1  of the 

scaling exponent in the entropic elastic regime.  
A critical look at Fig. 12 finally shows the existence of a third regime in the limit of very high agarose 

concentrations  wt%10c . The insert in Fig.12 (zoom in linear coordinates) indeed gives evidence of elastic 
moduli )1/( E  and oG  nearly proportional to the fiber volume fraction over the concentration range 

% 23      % 01 g   . In highly concentrated agarose hydrogels, all the strands contribute to the elastic 

properties of the network and the linear elastic exponent then takes a unit value 1 . Such a rubber-like 

behaviour was not mentioned earlier because of the difficulty of preparing homogeneous highly concentrated 
agarose hydrogels. 

 
3.4 Microstructural changes in the non linear regime 

The non linear regime occurs during the strain ramp at a relatively small compressive critical strain c  from 

a a few percent down to a few tenths of a percent depending both on the loading speed dtdh /  and the agarose 
fiber volume fraction (Fig. 13).  

 

                                                 
4 For highly diluted agarose and biopolymer hydrogels close to the percolation threshold 
( %5.0%1.0g   ), experimental values of the elastic exponent   are quite dispersed in the range from 

1.8 up to 4 (Tokita and Hikichi 1987; Clark and Ross-Murphy 1987; Kawabata et al. 1996; Mohammed et al. 
1998; Fujii et al. 2000; Gunasekaran and Yoon 2014). Considering agarose fibers as stiff linear rods, the scalar 
percolation theory from de Gennes (1980) gives a critical exponent 9.1  (Djabourov 1991). On the other 

hand, a vectorial percolation model taking into account the bending of fibers predicts a higher value 96.3  of 

the elastic exponent (Sahimi 1986). However, the dispersion in the experimental values of the scaling exponent 
in the close vicinity of the gel point also arises both from loose chains (free chains) that gradually vanish upon 
increasing the agarose concentration and from a greater sensitivity of the hydrogel elasticity to the molecular 
weight distribution of the polymer.      
 
5 One strand of length  and cross section 2r  in a volume of size   corresponds to a fiber volume fraction 

2232 //  rrg   and a mesh size  )( gr   with a scaling exponent 2/1 . The scaling 

relation 2/1)(  g  describes the concentration dependence of the pore diameter in agarose hydrogels both 

for the larger and the smaller free spaces at fiber volume fraction %wt 3  (Fig. 16 in appendix 5.1).  
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Fig. 13 Logarithmic plot of the critical strain c  versus the fiber volume fraction g   in Setexam agarose 

hydrogels with % 1.0g  . Full blue circles and full blue squares of different colors refer to the same 

compression experiments and loading speeds as in Fig. 12. Full black lines are the best power law fits of 
),( gc    data for a fast compression of the hydrogel at a loading speed µm/s100/ dtdh  either for 

%9.1%4.0 g    (24 data points) or %23%.91 g    (42 data points).  Dotted black lines highlight 

the respective slope of power law fits with an indication of the value of the scaling exponent   in the fast 

compression regime. Full blue lines of different colors are the best power law fits of ),( gc    data at a 

loading speed µm/s10/ dtdh , µm/s1  or µm/s1.0  for %2%4.0 g    and %23%2 g   , 

respectively. 
 
Considering a nearly incompressible hydrogel at a fast compression speed µm/s100/ dtdh (Fig. 11), the 

critical strain c  keeps a somewhat constant value % )54.07.4( c  in the linear enthalpic elastic regime 

( %2g  ) and decreases as  45.0)(  g  at higher fiber volume fraction %2g   (Fig.13). The 

problem now is to specify the origin of the non linear transition, in relation with either the dynamics of water 
permeation or the reorganization of the network under compression. 

 
In such a context, the compressive strain dependence of the storage modulus in the linear shear regime can 

lead to additional information. For this purpose, the equilibrium storage modulus )'*(G  and loss modulus 

)"*(G  was determined in the linear shear regime (shear strain amplitude %10 2 2 ) when superimposing a 

compressive strain increasing by successive steps d  from 0.5 % up to 40 % and after holding each compressive 
strain step for 1 hour (section 2.4). Surprisingly, the dimensionless storage modulus )0'*(G/)'*(G o   

remains constant up to a few percent compressive strain and then decreases to reach a plateau value 
5.0'*/'* oGG  above a compressive strain of 30 % (Fig. 14). The low amplitude %02.0  of the cyclic shear 

strain and the almost constancy of the dimensionless loss modulus 1)0"*(G/)"*(G o   over the whole 

compressive strain range %40%5.0    (Fig. 14) excludes any slip phenomenon that could suggest an 

artifact. Since the equilibrium storage modulus in the linear shear regime is representative of the elastic 
properties of the microstructure, the compression-softening behavior of the hydrogel likely results from an early 
reorganization of the network. Interestingly, time-resolved measurements of the elasticity of agar hydrogels left 
to dry very slowly at a constant temperature in a rheometer under zero controlled normal force (ZNF protocol) 
revealed a very similar 50 % drop in the linear storage modulus for a 30 % water loss from the hydrogel (Mao et 
al. 2017c). At that time, the drying-induced softening behaviour of agar gels was attributed to strong 
microstructural changes without further details.  
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Fig. 14 Non dimensionless equilibrium storage modulus )0'*(G/'*G o   (left axis) and equilibrium loss 

modulus )0"*(G/"*G o   (right axis) of 1L  (full red circles), 3L  (full blue circles) and 9L  (full green 

circles) hydrogels versus the compressive strain  . SAOS experiments were performed in the linear shear 

regime with a cyclic shear strain of low oscillatory amplitude %10 2 2 . Vertical arrows and dotted lines 

indicate the critical compressive strain c  determined from fast compression experiments at the onset of the non 

linear regime. kPa 8.9'* oG  and kPa 18.0"*oG  for 1L  hydrogel (  wt%99.0c ), kPa 112'*oG  and 

kPa 93.1"*oG  for 3L  hydrogel (  wt%9.2c ), kPa 552'* oG  and kPa 9.9"*oG  for 9L  hydrogel 

(  wt%3.8c ). 
 
As mentioned above, the normal stress – strain response of agarose hydrogels under slow compression (Fig. 

7b) displays similarities to that of cellular solids such as cork (Gibson et al. 1981) or open-cell foams (Ashby 
2005) with a linear regime and a plateau stress *  associated with a progressive local cell collapse by buckling 
deformation (Gibson 2005). Rochas et al. (1996) mentioned a first order phase transition upon the deswelling of 
agarose hydrogels from an isotropic state to a strongly birefringent anisotropic state which could result from the 
buckling of the semiflexible network. More recent works reported a reversible compression-softening of 
biopolymer gels as a result of the elastic buckling of individual filaments that no longer contribute to the 
elasticity of the network (Chaudhuri et al. 2007; Kim et al. 2014, van Oosten et al. 2016, Bouzid et Del Gado 
2018). Very surprisingly, fibrin networks under compression experience a 50% stress softening at compressive 
strain %60%30    (Kim et al. 2014) almost identical to that observed for agarose hydrogels (Fig. 14). A 

rheometer-coupled fluorescent confocal microscope further highlights the bending and buckling of fibrin fibers 
resulting in a compression-softening of the network at a compressive strain of only a few percent (Kim et al. 
2014).  

The onset of the compression-softening of agarose hydrogels occurs above a compressive strain slightly less 
but close to the critical strain )(c determined from fast compression experiments (Fig. 10a and Fig. 14). The 

transition to the non linear regime thus likely results from the buckling-induced softening of the network under 
compressive strain. A stiff polymer of radius r with free or clamped ends undergoes a buckling instability above 

the Euler force threshold 24 / LrEF mb   scaling as the elastic modulus mE  of the material and the inverse 

square length L of the rigid strand (Gibson 2005; Baczynski K et al. 2007) whereas such a phenomenon is not 
observed for flexible chains as thermal motion randomizes the coil configuration. The buckling force 

),,( LlF pb   of semiflexible strands of length L  that extend over several cross-linking length scale   still 

remains difficult to establish.  By assuming that the buckling instability of a dense and homogeneous network of 

mesh size Ll p   occurs above a critical compressive strain  c  with 45.0)(  gc   in the 

entropic elastic regime ( %2g  , Fig. 13), the Young modulus then obeys a scaling law 
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35.13 )(/ gkTE    similar to that derived from fast compression experiments (Fig. 12) 6. On the other 

hand, the buckling threshold of a sparsely connected and inhomogeneous network is mainly determined by the 
mechanical behavior of individual strands of persistence length lp less than the mesh size  of the network. In 
such conditions, the critical strain c  of diluted agarose hydrogels is expected to be nearly constant without 

dependence upon the agarose fiber volume fraction as observed experimentally in the fast compression regime 
( % 54.07.4 c  for %2g  , Fig. 13). A strain-induced buckling criterion therefore appears relevant to 

describe the onset of the non linear regime during the fast compression of a semiflexible network. 
Furthermore, the critical compressive strain c  gradually decreases with the loading speed dtdh /  in the 

slow compression regime regardless of the agarose concentration (Fig. 13). The early transition to the non linear 
regime under slow compression can be due either to the progressive release of water or to the creep-induced 
aging of the strands that can buckle at a lower compressive strain on longer timescales (Cocks and Ashby 2000).  
Under very slow compression ( µm/s 1.0/ dtdh ), an inverted bell-shaped curve is further observed for the 

concentration dependence of the critical compressive strain c  (Fig. 13). Both the buckling-induced aging of the 

network and the poroelasticity of the hydrogel might explain such an unexpected behaviour as discussed in the 
last paragraph.    

 
3.5 Poroviscoelasticity of agarose hydrogels 

The time relaxation of the normal stress )(t was monitored just after a fast compression of the agarose 

hydrogel in a period of a few seconds ( µm/s100/ dtdh ) and then subsequent holding of a low compressive 

strain %2  for 30 min to minimize at best non linear effects (Fig. 15).  

 
 

..  
 

Fig. 15 Time relaxation of the dimensionless normal force ot  /)(  for 05L  (grey curve), 1L  (green curve), 

3L  (blue curve) and 9L  (brown curve) hydrogels when applying a fast 2 % strain ramp at a loading speed 

µm/s 100/ dtdh and holding a static compressive strain %2 . Dotted red lines correspond to empirical 

stretched exponential functions fitted to ),/( to  data with the parameter values shown in Table 3. Setexam 

agarose hydrogels with a polymer mass concentration  wt%5.0c  ( 5.0L ),  wt%99.0c  ( 1L ),   wt%9.2c  

( 3L ) and  wt%5.6c  ( 7L ). 

 

                                                 
6 The typical mesh size of concentrated agarose hydrogels scales as 45.0)(  gc   with a scaling 

exponent 45.0  less than the expected value 5.0  for a sparse semiflexible network since the radius r 

of strands is no longer small enough compared to the mean diameter   of pores.   
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The dimensionless load relaxation ottF  /)()(   was analyzed using an empirical stretched exponential 

function (Eq. 2 in section 2.4) to determine the reduced equilibrium stress o /*  and the characteristic 

permeation time *t  (Table 3).  
On long timescales, the fluid pressure becomes equal to the hydrostatic pressure and the network alone 

supports the equilibrium normal stress * . For a purely poroelastic hydrogel, the expression of the reduced 

equilibrium stress o /*  in the linear regime can be derived from the Young modulus )1(2  oGE : 

 
*)1()3/2(/*  o                       (4) 

 
where  oo G3  is the instantaneous compressive stress in the limit dtd /  and *  the drained 

Poisson’s ratio of the poroelastic material.  
 

 
 
 
  
 
 
 
 

 
Table 3 Maximum normal stress )0( to , dimensionless equilibrium normal stress o /* , characteristic 

permeation time *t  and drained Poisson’s ratio *  of 5.0L , 1L , 3L  or 7L  agarose hydrogels when holding 

a fast 2 % compressive strain ramp and monitoring the time variations of the normal force )(tF  for 30 min. An 

empirical stretched exponential function fitted to data ot  /)(  yields the parameter values o /* , *t  and s 

(Eq. 2). The drained Poisson’s ratio *  is either determined from Eq. 4 or from the observation of the 

equilibrium hydrogel under a static compressive strain %4   by using the spatiotemporal analysis (open red 
squares symbols in Fig. 11).  
 
 

The characteristic permeation time *t  derived from the temporal relaxation of the normal stress take values 
from min3  up to min5.6 at agarose concentrations  wt%5.6 wt%5.0  c  (Fig. 15 and Table 3) in agreement 

with previously reported values for centimeter-sized agarose hydrogels (Strange et al. 2013, Kaneda and Iwasaki 
2015). The fairly rapid water drainage from a macroscopic agarose sample is due to the stiffness of semiflexible 
biopolymer hydrogels and to the high hydraulic permeability of the network 7.  

 
The drained Poisson’s ratio *  determined from Eq.4 slightly increases from 28.0  up to 085.0 with the 

agarose concentration  wt%5.6 wt%5.0  c  (Table 3). On the other hand, the direct observation of the 
hydrogel volume changes over long time scale using the spatiotemporal analysis indicates higher values of the 
drained Poisson’s ratio *  increasing from 08.0  up to 0.2 over the same concentration range 

 wt%5.6 wt%5.0  c  when holding a static compressive strain %4  (Fig. 11 and Table 3) 8. The 

viscoelasticity of agarose hydrogels likely accounts for the low negative wrong value of the drained Poisson ratio 
1.0*   derived from Eq.4 compared to the values 2.0*13.0   determined from the imagery observation 

of the drained gel at polymer concentration %wt5.6c%wt1  . Poroelasticity and viscoelasticity coexist in 

agarose hydrogels with a retarded shear elastic response oGGG /)( 32   in the range from 15 % down to 10 % 

for agarose concentrations %wt5.6%wt1  c  (Fig. 19 in appendix 5.4 and Table 4). An additional drop  

%10)/*(%15  o  in the equilibrium reduced normal stress indeed results in an extra decrease 

                                                 
7 The forced permeation time ) /( * 2 kERt   of a solvent through a semiflexible hydrogel under compression 

scales as the square of the cylinder radius R  and as the inverse of the elastic modulus E  of the soft material 

where 2k  is the hydraulic permeability of the network and   the viscosity of the solvent (Doi 2009). 
8 A minimum compressive strain %4  is required for an accurate determination of the drained Poisson’s 

ratio using the spatiotemporal method. 

 c 
(wt %) 

o  

(kPa) 
o /* 

 

t* 
(min) 

s *  derived 
from (4) 

*  derived from 
gel observations 

L 0.5 0.48 0.18 0.48 6.5 0.7 - 0.28 0.08 ± 0.045 
L 1 0.99 0.54 0.6 4.2 0.6 - 0.1 0.13 ± 0.04 
L 3 2.9 7.2 0.605 3 0.6 - 0.09 0.145 ± 0.04 
L 7 6.5 24.6 0.61 4.8 0.6 - 0.085 0.2 ± 0.04 
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15.0)/*()2/3(*23.0 o     in *  calculated from Eq.4 which approximately accounts for the 

observed deviation (two last columns in Table 3).  
The compression-softening of the hydrogel further contributes to lower the equilibrium stress *  when the 

compressive strain exceeds the critical strain c  and then Eq.4 leads to strongly negative wrong values of the 

drained Poisson’s ratio. The higher retarded elasticity %48G/)GG( o32    of the L0.5 agarose hydrogel 

under a weak compressive strain %4  (Fig. 19 in appendix 5.4 and Table 4) is likely associated with a 

buckling-induced aging of the soft network on long timescale thus resulting in the strongly negative wrong value 
28.0*   of the drained Poisson’s ratio derived from Eq.4 (Table 3). Indeed, negative values of the Poisson’s 

ratio *  from 5.0  down to 7.0  are incorrectly reported for agarose and biopolymer hydrogels in the 

literature (Strange et al. 2013, Caccavo et al. 2017) as the too large compressive strain c%10      usually 

considered and the strain holding period of several hours cause significant non linear effects and a consequent 
additional drop in the equilibrium normal stress * .  

 
 

 
 
 
 
 
 
 
 

 
Table 4 Instantaneous elastic shear modulus oG , viscoelastic shear moduli )( 3,2 GG  respectively at short and 

long timescales ),( 32 tt  and retarded elasticity oGGG /)( 32   of quasi-equilibrium 5.0L , 1L , 3L  and 7L  

agarose hydrogels weakly compressed in water when superimposing a low static shear strain   in the linear 

regime. Before shearing the hydrogel, a fast 4% compressive strain ramp is imposed at a loading speed 
µm/s 100/ dtdh  and the static compressive strain %4  is hold for 15 min. A second order generalized 

Maxwell model (Eq. 1) fitted to normal stress data )(t  gives the parameter values 3322 ,,,, tGtGGo .  
 

The imagery observation of the agarose hydrogel under weak unconfined compression thus appears as a more 
reliable method for correctly and unambiguously measuring the drained Poisson’s ratio *  of centimeter-sized 

samples as the permeation time *t  of a few minutes is of the same order as the viscoelastic characteristic time 
(Fig. 15 and Fig. 19 in appendix 5.4). Microindentation methods probing the hydrogel at smaller length scales or 
unconfined compression of enough large samples represent a way to speed up or slow down water exudation in 
order to separate poroelasticity and viscoelasticity (Strange et al. 2013). However, the geometric confinement of 
the hydrogel under a spherical indenter slows water migration and makes more complex the expression of the 
equilibrium normal stress (Chan et al. 2012; Delavoipière et al. 1016).  

Finally, the delayed and higher apparent viscoelasticity of softer hydrogels likely due to the buckling-induced 
aging of the network in the enthalpic elastic regime (sample 0.5L  in Fig. 19) results in an increase of both the 

permeation time )(* t  (sample 0.5L  in Fig. 15) and the critical strain c  under very slow compression (Fig. 

13). On the other hand, stiffer hydrogels exhibit a much lower viscoelasticity in the entropic elastic regime 
(samples 1L , 3L  and 7L  in Fig. 19) but the slower rate of water exudation from the dense network contribute 

to an increase in both the permeation time )(* t  (samples 1L , 3L  and 7L  in Fig. 15) and the critical strain 

c  under very slow compression (Fig. 13). Both the buckling-induced aging of sparsely connected  networks 

and the dominant poroelasticity of denser hydrogels can thus account for the unexpected inverted bell-shaped 
curve for the concentration dependence of the critical compressive strain c  under very slow compression 

(loading speed µm/s1.0dt/dh  ,  full light blue circles in Fig. 13). 

 
4 Summary and conclusion 

One of the original contributions of the present work is the measurement of the Poisson’s ratio   of agarose 
hydrogels in the linear regime over a wide range of loading speed and polymer concentration. For this purpose, 
carrefully centimeter-sized pre-moulded hydrogels were submitted to a compressive strain ramp between 
impermeable and frictionless glass plates. Slippery conditions avoid a barrelling type deformation of the 
hydrogel in the linear compressive regime as observed with the traditional clamping of the gel to the top and 
bottom surfaces of plates (Kaneda and Iwasaki 2015). The linear elastic behavior of agarose hydrogels was 

 c 
(wt %) 

oG  

(kPa) 
2G 

(kPa) 
2t  

(sec) 
3G 

(kPa) 
3t  

(min) 
oGGG /)( 32 

(%) 
L 0.5 0.48 1.55 0.13 110 0.61 30 48 
L 1 0.99 9.43 0.45 83 1 30 15.4 
L 3 2.9 105 4.9 35 11.7 30 15.8 
L 7 6.5 366 19 16 15 30 10 
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shown to display two types of time response. The hydrogel remains nearly incompressible for a few seconds 

when the strain rate dtd /  of the compressive ramp is greater than 1s%5.0  . On the other hand, water 

exudation from the porous material occurs very early during a slow strain ramp ( 1s% 5.0/ dtd ) and the 
hydrogel appears as a softer compressible material in the linear regime as demonstrated by the lower values of 
both the Young modulus and the Poisson’s ratio. In the case of a very slow compression ramp 

( 14 s% 10 7/ dtd ), the hydrogel is in a near equilibrium state with values of the Poisson’s ratio  in the 
linear regime close to that of the drained Poisson’s ratio *  on long timescale  (Fig. 11). In the linear regime, 
the elastic modulus )]1(2/[ E  takes values quite close to those of the shear modulus oG  whatever the 

compressive strain rate of the hydrogel as predicted by the linear poroelastic theory. Such a result confirms the 
weak viscoelasticity of fibrillar hydrogels and the significant influence of the deformation process of the 
waterlooged material upon the elastic response not just determined by the mechanical properties of the network. 

 
The fiber volume fraction dependence of both the Young modulus and the shear elastic modulus reveals a 

hydrogel deformation mode that is either dominated by the bending of semiflexible strands (non affine enthalpic 
regime) at low agarose concentrations or by the stretching of the network (affine entropic regime) at higher 
polymer concentrations as reported earlier by Jones and Marques (1990) and Ramzi et al. (1998). In the enthalpic 
elastic regime, the bending of strands of persistence length less than the mesh size of the sparsely connected  
fibrillar network is easier than the stretching of polymer chains which gives rise to floppy modes and non affine 
deformations as observed in fibrin clots (Kim et al. 2014) and fiber network models (Wen et al. 2012, Huisman 
and Lubensky 2011). The deformation of the network evolves toward a stretching dominated affine regime when 
increasing the crosslink density and displays an entropic elastic behaviour as the microstructure of highly 
concentrated agarose hydrogels is currently viewed as rigid strands connected by flexible junctions (Djabourov 
et al. 2013). In the very high concentration regime %wt10c , the present work demonstrates the occurrence of 

a third regime with a linear concentration dependence of elastic moduli as all the strands contribute to the 
elasticity of the strongly connected network.  

 
Another original contribution of the work is the highlighting of the mechanism at the origin of the transition 

to the non linear regime when applying relatively small compressive strains. The buckling-induced softening of 
the fibrillar network indeed appears relevant to describe the onset of the non linear regime during the fast 
compression of agarose hydrogels. Buckled strands no longer contribute to the elasticity of the network and the 
deformation is nearly reversible as the strands unbuckle after removal of the load. In the entropic elastic regime, 
the length of connected strands is less than the persistence length and the compression-softening of the hydrogel 
under fast compression occurs above a critical strain c  scaling as the mesh size   of the network. In the 

enthalpic elastic regime, the buckling instability of semiflexible strands in a weakly connected network requires 
a critical compressive strain of about 5 % without significant dependence on the agarose concentration at 

%wt2c .  Interestingly, the present work reports a compression-softening of agarose hydrogels with a very 

low dependence on network topology and strand connectivity while numerical simulations only predict a strain-
softening of semiflexible gels for sparsely connected networks (Bouzid and Del Gado 2018). 

 
The lower values of the critical compressive strain c  under slow compression likely indicates a buckling-

induced aging of the strands. Within such a context, both the retarded buckling of the network and the 
poroviscoelasticity of agarose hydrogels contribute to the time relaxation of the normal stress. The longer 
permeation time *t  of diluted agarose hydrogels results from the higher viscoelasticity of softer materials in 
relation with the nearly reversible buckling-induced aging of the sparsely connected network. On the other hand, 
the dominant poroelasticity of highly connected networks in the entropic elastic regime is responsible for the 
increasing permeation time of concentrated agarose hydrogels. As a consequence of the buckling of the network, 
the drained Poisson’s ratio *  determined from the poroelastic equilibrium normal stress *  can take wrong 
negative values when a too large compressive strain or a too long strain holding period cause a non linear 
compression-softening of the fibrillar hydrogel. 

 
The buckling of semiflexible networks at small compressive strains thus induces a rich and complex 

mechanical behaviour of biopolymer systems and cellular materials (Foucard et al. 2015). The buckling 
instability in swelling or shrinking hydrogels usually occurs in the poorly connected regions near the free surface 
in the form of wrinkles and propagate later within the drained network since a crosslinked microsctructure 
becomes unstable when the volume change is too large (Doi 2009). A syneresis phenomenon has been reported 
for gelatin, polysaccharides and agar hydrogels consisting in a very slow shrinkage of the network and a 
progressive exudation of solvent (Kunitz 1928; Matsuhashi 1990; Divoux, Mao and Snabre 2015). The buckling-
aging of sparse and inhomogeneous networks likely promotes such a slow spontaneous shrinking of the hydrogel 
usually associated with the thermally-induced formation of weak-bonds. Sparsely connected networks indeed 
show greater syneresis with a magnitude decreasing as the inverse square of the polymer concentration in agar 
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hydrogels (Stanley 2006). In another context, the deformation mode of a fibrillar network further determines the 
asymmetric response of biopolymer hydrogels under a compression – tension cycle since the bending and 
buckling of fibers under compression is easier than the stretching of polymer chains during extension (Section 
5.2). To our knowledge, the present contribution is finally among the first to monitor both the mechanical 
response and the volume changes in biopolymer hydrogels under compression over a wide range of loading 
speed and polymer concentration to highlight the buckling-induced transition to the non linear regime and 
determine unambiguously the Poisson’s ratio on short and long timescales    

 
 

5 Appendix 
 
5.1 Mean pore diameter of agarose hydrogels 

Cryo-SEM micrographs of agarose hydrogels show random fibrillar networks with a typical mean pore 
diameter d  decreasing with the mass concentration of the polymer from a micrometer size at %wt3.0c  down 
to a few hundreds of nanometers at %wt3c  (Fig. 2). The pore size distribution is broad with a factor of about 
10 between the mean smaller diameter dmin and the mean larger diameter dmax of pores in the network (full black 
and red circles in Fig. 16). Mechanical-scanning probe microscopy indeed gives evidence of the inhomogeneous 
microstructure of agarose hydrogels at low concentrations %wt2%wt5.0  c  with a log normal distribution 

of the local shear modulus while a simple Gaussian distribution describes the histogram of local elastic moduli 
values in thermal gels made of flexible chains such as polyacrylamide (Nitta et al. 2003). As expected for a 
fibrillar semiflexible network with a mesh size larger than the strand diameter, the mean pore diameter of 

agarose hydogels scales as )( gcc   with 5.0  at %wt3%wt3.0  c  whatever one considers either the 

larger or the smaller free spaces (Fig. 16). Note that the scaling exponent 5.0  takes slightly more negative 
values when considering the mass concentration in place of the deviation concentration gcc   from the 

percolation threshold (Maaloum et al. 1998; Righetti et al. 1981). Atomic force microscopic observations from 
Maaloum et al. (1998) or studies of the electrophoretic mobility of latex particles in agarose hydrogels from 
Righetti et al. (1981) indeed lead to a similar scaling exponent 5.0  provided that the mean pore diameter is 
plotted versus the deviation concentration gcc  from the percolation point (Fig. 16). The length scale explored 

in sparsely connected networks is further very sensitive to the choice of the investigation method due to the 
broad pore size distribution of biopolymer hydrogels.      

 

 
 

Fig. 16 Logarithmic plot of the mean pore diameter d  versus the agarose mass concentration gcc   with a 

gelation threshold  wt%1.0gc . Full black circles and red circles refer to the mean smaller diameter mind  and 

the mean larger diameter maxd  of pores extracted from Cryo-SEM micrographs of Setexam hydrogels at 

polymer mass concentration  wt%3.0c  ( 3.0L ),  wt%99.0c  ( 1L ) and  wt%9.2c  ( 3L ). Full green 

squares and full blue squares respectively stand for the experimental data of Maaloum et al. (1998) and Righetti 
et al (1981). Full color lines are the best power law fits of ),( gccd  data and the dotted black line highlights the 

common slope of the power law fits with an indication of the value of the scaling exponent   5.0 .  
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5.2 Compression – tension of agarose hydrogels 

The reversibility of the hydrogel response was studied by applying a compression - tension cycle at a speed 
µm/s 100/ dtdh  with a maximum compressive strain m  of either 2 % (black curves in Fig.17) or 10 % (red 

curves in Fig. 17). The stress – strain response appears as nearly reversible in the linear regime for a maximum 
compressive %2m   less than the critical strain c  as water exudation remains negligible during a fast 

compression - tension cycle (black curves in Fig. 17). A more detailed examination of )(  curves nevertheless 

shows a weak hysteresis and a slope ))(/( mdd    less important at the end of the compressive ramp 

compared to the beginning of the tension ramp, especially at low agarose concentration ( 1L  sample in Fig. 17a). 

The asymmetry observed in the response of agarose hydrogels to a compression - tension cycle in the linear 
regime likely results from the deformation mode of strands since it is easier to bend a fiber during compression 
than to stretch the fiber during extension.  

 
 

 
 

Fig. 17 Normal stress   versus the compressive strain   of 1L  (a), 3L  (b) and 9L  (c) hydrogelswhen 

applying a compression – tension cycle at a loading speed µm/s 100/ dtdh  with a maximum amplitude 

%2m   (black curves) or %10m  of the strain ramp (red curves). Dashed vertical full lines show the 
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critical compressive strain c  delimiting the transition to the non linear regime. Setexam agarose hydrogels with 

polymer mass concentration  wt%99.0c  ( 1L ),   wt%9.2c  ( 3L ) and  wt%3.8c  ( 9L ). 

As expected, the hysteresis becomes more significant in the non linear regime for a maximum compressive 
strain cm %10    (full red lines in Fig. 17) as the unbuckling of strands and the breaking of some weak 

bonds require longer timescales during the extension phase. The degree of hysteresis increases somewhat with 
the polymer concentration (Fig. 17) and the gel cylinder almost recovers the initial height oh  14 mm after a 

time period from a few minutes to a few hours when removing the load which confirms the dominant elastic 
behavior of agarose hydrogels. The compression – softening of the fibrillar network thus appears as nearly 
reversible even for very large compressive strain at very low loading speed as long as the hydrogel remains 
intact without any stress-induced microfractures. A second compression – tension cycle is necessary to observe a 
fully reversible deformation of the agarose hydrogel (data not shown) likely as the result of the formation of 
some extra irreversible bonds between buckled strands during the first compression ramp (paper in preparation).  
 
5.3 Agarose molecular weight and elasticity of agarose hydrogels 

Compression experiments were performed using the Brookfield texture analyzer and agarose hydrogels 
prepared at different concentrations %wt9%wt5.0  c  with two different powders supplied either by 

Setexam or Sigma (section 2.1). The stress – strain curves of Sigma and Setexam agarose hydrogels considered 
as incompressible when applying a fast 15 % strain ramp at a loading speed µm/s 100/ dtdh  exhibit similar 

features (Fig. 10a and Fig. 18a). As expected, the agarose average molecular weight weakly influences the 
scaling exponents 05.015.2   or 1.41 - 36.1  representative of either the enthalpic or the entropic 

elasticity (Fig. 18b). However, Fig. 18b gives evidence of higher values of the Young modulus oE of Sigma 

agarose hydrogels ( g/mol 10 05.3 5wM ) compared to that of Setexam agarose hydrogels 

( g/mol 10 88.1 5wM ) regardless of the agarose concentration. The power law fits of the fiber volume fraction 

dependence of the Young modulus )( goE    of Sigma and agarose hydrogels in the enthalpic and entropic 

elastic regimes respectively give 8.0
wo ME  . The Young modulus of biopolymer fibrillar networks is usually 

reported to scale as 2
wo ME   for lower average molecular weigth g/mol10 7g/mol10 3 44  wM (Eldridge 

and Ferry 1954). The dependence on wM  of the elastic modulus of agarose hydrogels is expected to be lower 

for higher average molecular weight and higher polymer concentrations as the number of dangling ends not 
involved in the elasticity of the network becomes less (Normand et al. 2000).  

 



27 

 
 

Fig. 18 (a) Normal stress   versus the compressive strain   for H  hydrogels in water when applying a 15 % 

strain ramp at a loading speed µm/s 100/ dtdh  in the Brookfield texture analyzer. The insert is a zoom in the 

low strain region where dotted lines are best linear fits of )(  data in the limit of low strain c   and dashed 

vertical lines show the critical compressive strain c . (b) Semi logarithmic plot of the Young modulus oE  of 

the hydrogel assumed as incompressible versus the fiber volume fraction g   with %1.0g   either for 

Sigma (square symbols) or Setexam (circle symbols) agarose cylinders rapidly compressed in air (open symbols) 
or in water (full blue symbols). Full black and grey lines are the best power law fits of ),( goE    data for 

Sigma and Setexam agarose hydrogels respectively in the concentration regime %8.2%4.0 g    and 

%2.8%.753 g   . Dotted black lines and dotted grey lines highlight the respective slopes of power law 

fits with an indication of the value of the elastic exponent either in the enthalpic or in the entropic elastic 
regime. 

 
5.4 Viscoelasticity of agarose hydrogels 

The shear stress relaxation response of quasi-equilibrium agarose hydrogels was monitored in the linear 
regime when applying a low compressive strain %2  (section 2.4). The characteristic viscoelastic time 2t  at 

short timescale decreases from min 2  down to seconds 61  when increasing the agarose concentration 
%wt7%wt5.0  c  as the hydrogel becomes stiffer (Fig. 19). The retarded elastic response 032 /)( GGG   of 

about 10 % to 15 % for agarose concentration %wt1c  surprisingly takes on a much larger value 

%48/)( 032  GGG  for a diluted  wt%5.0  agarose hydrogel ( 5.0L  sample in Fig. 19 and Table 4). Such a 

sharp increase in the apparent viscoelasticity of a diluted agarose hydrogel probably results from the buckling-
induced aging of the sparsely connected network on long timescale and the gradual emergence of non linear 
effects. 
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Fig. 19 Time relaxation of the dimensionless shear stress modulus oGtG /)(  of quasi-equilibrium hydrogels 

5.0L  (grey color), 1L  (green color), 3L  (blue color) and 7L (brown color) weakly compressed in water when 

superimposing a shear strain in the linear regime. Before the stress relaxation test, a fast 4 % compressive strain 
ramp is imposed at a loading speed µm/s 100/ dtdh  and the static strain %4  is hold for min15 . Dotted 

red curves correspond to a second order generalized Maxwell model (Eq. 1) fitted to data with the parameter 
values shown in Table 4. Setexam agarose hydrogels with a polymer mass concentration  wt%5.0c  ( 5.0L ), 

 wt%99.0c  ( 1L ),   wt%9.2c  ( 3L ) and  wt%5.6c  ( 7L ). 
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