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Abstract 14 

In 2013, Andra (French National Radioactive Waste Management Agency) drilled boreholes 15 

to the south-east of the Paris Basin, to characterise Aptian and Albian clayey formations, 16 

including the ‘Argiles à Plicatules’ Formation dated as early Aptian. One of these boreholes 17 

intersected this formation with an excellent recovery allowing detailed biostratigraphy 18 

(ammonites), sedimentology, clay mineralogy, isotope geochemistry (δ13Corg) and Rock-Eval 19 

analyses to be performed. The base of the formation corresponds to transgressive dark-grey 20 

silty clays with iron oolites and plant debris indicating a coastal environment evolving up-21 

section to upper offshore environments. Higher in the succession, clays with less than 4% 22 

CaCO3 and less than 0.8% of organic matter were deposited in lower offshore environments. 23 

The occurrence of ammonites can be used to draw a biostratigraphic scheme, and in 24 

particular, to recognise the deshayesi and furcata ammonite Zones. 25 
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The clay mineral assemblages are composed of illite and kaolinite associated with minor 26 

amounts of chlorite, vermiculite and smectite. The δ13Corg values range between -24 and -27 

25‰ except in a particular interval characterised by a prominent negative excursion of about -28 

3‰, that is recognised worldwide and precedes Oceanic Anoxic Event 1a (OAE1a). This 29 

interval is also characterised by an abundance of kaolinite and the absence of smectite 30 

suggesting an acceleration of the hydrological cycle and enhanced runoff and hydrolysing 31 

conditions over the emerged landmasses just before and during the onset of OAE1a. This 32 

climate change is consistent with isotope and palynological data indicating warm and humid 33 

climate conditions before and during the onset of OAE1a. Surprisingly, the interval 34 

corresponding to OAE1a is not significantly enriched in organic matter and its lithology is not 35 

different from the rest of the core suggesting that Tethyan anoxic water masses did not reach 36 

the relatively shallow epicontinental environments of the Paris Basin. 37 

 38 

Keywords: Lower Cretaceous, Aptian, Oceanic Anoxic Event, Paris Basin, Clay minerals, 39 

Organic carbon isotopes 40 

 41 

 42 

Introduction 43 

 Identified for the first time by Schlanger and Jenkyns (1976), Oceanic Anoxic Event 44 

(OAE) 1a (early Aptian) is characterised by the worldwide preservation of organic matter in 45 

black shales as a consequence of intensification in marine primary productivity under oceanic 46 

oxygen-depleted conditions (Coccioni et al., 1987; 1992; Erba, 1994, Erba, 2004; Erbacher et 47 

al., 1996; Leckie et al., 2002; Jenkyns, 2010; Föllmi, 2012; Erba et al., 2015). A global 48 

perturbation in the carbon cycle is associated with this event, recorded by a prominent 49 

negative excursion followed by a shift towards more positive values (Menegatti et al., 1998). 50 
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The negative excursion is generally explained by an intense volcanic episode at the origin of 51 

the formation of the Ontong-Java oceanic plateau (Tarduno et al., 1991; Larson and Erba, 52 

1999; Méhay et al., 2009; Tejada et al., 2009; Bottini et al., 2012; Erba et al., 2015; 53 

Charbonnier and Föllmi, 2017) while the following positive excursion is seen as a 54 

consequence of organic matter burial in oceanic sediments. The duration of the negative 55 

excursion, first underestimated between 27 and 44 kyr (Li et al., 2008), is likely longer with a 56 

duration estimated between 280 and 350 kyr (Lorenzen et al., 2013). The duration of OAE1a 57 

itself is estimated between 1 and 1.3 myr (Li et al., 2008). These environmental changes were 58 

associated with rising sea surface temperatures (Mutterlose et al., 2014; Bottini et al., 2015) 59 

and a calcification crisis in calcareous nannoplankton known as the ‘nannoconid crisis’ (Erba, 60 

1994). Despite its widespread extension and its recognition in numerous sedimentary basins 61 

(Bréhéret, 1997; Bellanca et al., 2002; Ando et al., 2008; Vincent et al., 2010; Giraud et al., 62 

2018 among others) and shallow water carbonate platforms (Baudin et al., 1996; Luciani et 63 

al., 2006; Najarro et al., 2011; Graziano, 2013; Godet et al., 2014; Pictet et al., 2015; Amodio 64 

and Weissert, 2017; Hueter et al., 2019), OAE1a has not yet been described in the Paris Basin 65 

mainly because lower Aptian clayey deposits are poorly outcropping. In 2013, several 66 

boreholes were drilled by Andra (the French National Radioactive Waste Management 67 

Agency) to the south-east of the Paris Basin in order to characterise Aptian and Albian clayey 68 

formations including Argiles à Plicatules, a so-called formation because of the occasional 69 

occurrence of Plicatula placunea Lamarck, 1819, a common warm water bivalve (Squires and 70 

Saul, 1997). One of these boreholes (AUB 121) intersected the Argiles à Plicatules Formation 71 

with excellent recovery allowing detailed sedimentological, mineralogical and geochemical 72 

studies to be performed; it also provided an opportunity to search for a record of OAE1a in 73 

the Paris Basin. As a result, facies descriptions as well as mineralogical, Rock-Eval and 74 

δ13Corg analyses were performed to characterise the Aptian sediments deposited in the Paris 75 
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Basin. The main objectives were to precisely describe the whole succession of the Argiles à 76 

Plicatules Formation, to highlight the record of OAE1a in the terrigenous shelf environment 77 

of the Paris Basin and to specify climatic conditions, notably the fluctuations in the 78 

hydrological cycle that prevailed during the Aptian through a high resolution study of the clay 79 

minerals.  80 

 81 

I - Geological context and biostratigraphy 82 

 The Paris Basin is a Meso-Cenozoic intracontinental basin that, today, is bordered by 83 

Palaeozoic massifs including the Armorican Massif to the west, the Massif Central to the 84 

south, the Vosges to the east and the Ardennes Massif to the north. During the Aptian, the 85 

Paris Basin was occupied by a narrow epicontinental sea (strait) between the London-Brabant 86 

Massif (LBM) and the Rhenish Massif (RM) to the north and a landmass comprising the 87 

Armorican Massif (AM) and the Massif Central (MC) to the south (Fig. 1). This narrow 88 

epicontinental sea, situated at a latitude comprised between 30 and 35°N, connected the 89 

Tethys Ocean located to the south-east to the boreal realm toward the north-west (Masse et 90 

al., 2000).  91 

 After a long period of continental evolution of the Paris Basin starting at the 92 

Jurassic/Cretaceous transition (Purbeckian facies), transgressive marine sediments were 93 

deposited above Early Cretaceous variegated continental and deltaic sediments, the so-called 94 

Wealden facies (Allen, 1998; Guillocheau et al., 2000; Radley and Allen, 2012). To the south-95 

east of the Paris Basin, the Early Cretaceous continental sedimentation (Berriasian to 96 

Barremian) was occasionally interrupted by the deposition of shallow marine sediments 97 

including the early Hauterivian “Calcaires à Spatangues” Formation and the early Barremian 98 

“Argiles Ostréennes” Formation, as a consequence of transgressions originating from the 99 

south-east (Tethyan domain), whereas the late Barremian continental deposits consist of 100 
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variegated clays showing common root traces. From the Aptian, a continuous marine 101 

sedimentation took place until the end of the Cretaceous.  102 

 103 

 I-1. Lithology of the AUB 121 borehole 104 

 The AUB 121 borehole is situated to the south-east of the Paris Basin, at Juzanvigny, 105 

near Brienne le Château (Fig. 2). The lithological succession has been described in detail by 106 

Amédro et al. (2017). The 31 m-thick Argiles à Plicatules Formation is underlain by upper 107 

Barremian continental deposits (Wealden facies) corresponding to weathering profiles 108 

(laterite) and overlain by upper Aptian glauconitic sands corresponding to the “Sables Verts 109 

de l’Aube” Formation (Fig. 3). Three distinct intervals (1 to 3) were defined  within the 110 

Argiles à Plicatules Formation: 111 

- Unit 1, from 116.76 m to 111.90 m, includes black to grey clays with traces of 112 

palaeosoils at the base. Woody debris and coalified compressions of pteridophytes 113 

are common in this part of the formation (Fig. 4A). Some iron oolites-rich layers 114 

(Fig. 4B) occasionally filling burrows occur at the base of this unit, while the top is 115 

marked by the presence of prominent shelly beds (between 112.40 m and 111.90 116 

m) (Fig. 4C). 117 

- Unit 2, from 111.90 m to 106.30 m, consists of a grey-brown bioturbated 118 

(Chondrites) clay, which appears to be homogeneous (no cycles can be 119 

distinguished). Some Plicatula occur occasionally and ammonites are common in 120 

the upper part of this unit. 121 

- Unit 3, from 106.30 m to 86.10 m, corresponds to bioturbated khaki clays 122 

(Chondrites) in which the cycles are clearly individualised and limited at the base 123 

by bioturbated surfaces likely corresponding to firmgrounds. This poorly 124 

fossiliferous unit shows scattered Plicatula, some oysters and ammonites which 125 
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allow a biostratigraphic division to be esdetablished. Coarser quartz grains and 126 

glauconite occur at the topmost part of the formation announcing the overlying 127 

sandy glauconitic sedimentation (Sables Verts de l’Aube Formation). 128 

 129 

I-2. Biostratigraphy 130 

 Ammonites have been systematically collected along the core (Fig. 3). Although they 131 

are not abundant, their study provides valuable information. A total of 19 ammonites were 132 

found in the 30.66 m of the Argiles à Plicatules Formation recovered in borehole AUB 121, of 133 

which 15 could be determined, at least at the generic level. They occur mostly as imprints in 134 

clays, and in a few cases as internal moulds preserved either in the form of pyritic nuclei or 135 

calcium phosphate nodules (Amédro et al., 2017). All recognised taxa are cosmopolitan, with 136 

a geographic distribution that includes the boreal, Tethyan and sometimes even southern 137 

realms. This wide geographic distribution is explained by the fact that the summit of the early 138 

Aptian corresponds to a high sea level (transgression of a second order eustatic cycle, see 139 

Jacquin et al., 1998). The vertical distribution of the ammonites permits to establish a 140 

biostratigraphic scheme.  141 

The lower three meters of the Argiles à Plicatules Formation did not provide determinable 142 

ammonites in the Juzanvigny boreholes and therefore the stratigraphic attribution of the 143 

lowermost part of this formation remains uncertain. The occurrence of several Roloboceras 144 

transiens Casey, 1961 in the neighbouring department of Yonne and Megatyloceras at the 145 

base of the Argiles à Plicatules Formation (unpublished data) suggests that the interval could 146 

be attributed to the Deshayesites forbesi Zone, as these ammonites are characteristic of this 147 

biozone. The Deshayesites deshayesi Zone is undoubtedly recognised from 113.70 m to 148 

105.15 m by the presence of an association including Aconoceras (Aconoceras) nisoides 149 

Sarasin, 1893, Pseudosaynella bicurvata Michelin, 1838, Deshayesites deshayesi d'Orbigny, 150 
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1841 and Lithancylus grandis J. de C. Sowerby, 1828. The Dufrenoya furcata Zone sensu 151 

Reboulet compiler (2018) [= the Tropaeum bowerbanki Zone described by Casey (1961)] is 152 

clearly identified from 102.50 m to 90.60 m by the occurrence of Dufrenoyia cf. formosa 153 

Casey, 1964 and Dufrenoyia cf. furcata J. de C. Sowerby, 1836.  154 

 155 

II – Analytical methods 156 

 II–1. Carbon stable isotopes, Total Organic Carbon and calcimetry 157 

Organic carbon isotope compositions (δ13Corg) and Total Organic Carbon (TOC) were 158 

measured on carbonate-free residues of 80 samples at the Biogéosciences Laboratory, 159 

Université Bourgogne/Franche-Comté in Dijon. Sample powders were reacted with HCl (2N) 160 

at room temperature for 24 h to remove the carbonate phases. Residues were rinsed with 161 

deionised distilled water until neutral, centrifuged (4500 rpm for 15 min), and then dried at 162 

50°C overnight. Aliquots of dried decarbonated samples (~7–50 mg) were then weighed in tin 163 

capsules. TOC content and δ13Corg measurements were performed at the Biogéosciences 164 

Laboratory of the University of Bourgogne/Franche-Comté (Dijon, France) on a Vario 165 

MICRO cube elemental analyzer (Elementar, Hanau, Germany) coupled in continuous flow 166 

mode to an IsoPrime stable isotope ratio mass spectrometer (Isoprime, Manchester, UK). 167 

USGS40 L-Glutamic acid (C = 40.8 wt%; δ13CVPDB = -26.39 ± 0.04‰) and IAEA-600 168 

Caffeine (δ13CVPDB = -27.77 ± 0.04‰) certified reference materials were used for calibration. 169 

The carbon isotopic composition is expressed in delta notation and reported in per mil (‰) 170 

relative to the Vienna Pee Dee Belemnite (V-PDB) standard; the external reproducibility 171 

based on duplicate analyses of the samples is better than ± 0.2‰ (1σ).  172 

The proportion of CaCO3 is deduced by the difference in weight before and after 173 

decarbonation. 174 

  175 
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II–2. Organic matter characterisation 176 

A Rock–Eval 6 Turbo apparatus (Vinci Technologies) was used for the quantitative 177 

and qualitative study of organic matter from 34 selected samples distributed over the entire 178 

section. The method, described in detail by Lafargue et al. (1998) and Behar et al. (2001), 179 

consists of a two-step analysis with programmed temperature: pyrolysis, under inert 180 

atmosphere (N2), followed by oxidation. Samples were analysed at the Institut des Sciences de 181 

la Terre de Paris (UMR7193/Sorbonne Université). Crushed samples are first subjected to a 3 182 

min isotherm at 300°C at which free hydrocarbons are volatilised (peak S1). Then, a heating 183 

step with a ramp rate of 25°C/min leads to the vaporisation of products via the thermal 184 

cracking of organic matter up to 650°C (peak S2). Pyrolysis effluents are continuously 185 

detected by a flame ionisation detector (FID) and expressed in mg per g of sample. Organic 186 

CO and CO2 are measured online as well by an infrared cell (peak S3). At the end of the 187 

pyrolysis step, samples are automatically transferred into an oxidation oven where they are 188 

subjected to a 1 min isotherm at 300°C then a ramp rate of 20°C/min up to 850°C. The total 189 

signals of both organic and mineral CO and CO2 are expressed in mg per g of samples. All 190 

these parameters can be used to calculate the TOC content. The hydrogen index (HI), 191 

corresponding to the quantity of hydrocarbon compounds released during pyrolysis relative to 192 

the TOC (S2/TOC) in mg of HC per g of TOC as well as the oxygen index (OI) 193 

corresponding to the organic CO2 released during pyrolysis relative to the TOC (S3/TOC) in 194 

mg of CO2 per g of TOC are also calculated. HI and OI are correlated to the H/C and O/C 195 

atomic ratios respectively, which can be used to determine the origin of the organic matter. 196 

Tmax is defined as the pyrolysis temperature at which the maximum amount of hydrocarbon is 197 

yielded by kerogen (Espitalié et al., 1977). Tmax increases linearly with the maturation degree 198 

of the organic matter, thus giving a rapid estimate of the thermal maturity of sedimentary 199 

basins (Espitalié, 1986). 200 
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 201 

 II-3. Clay mineralogy 202 

A total of 80 samples were analysed using X-Ray Diffraction (XRD). After moderate 203 

grinding in a mortar, powdered samples were decarbonated with a 0.2N HCl solution. The 204 

< 2 µm fraction (clay-sized particles) was extracted with a syringe after deflocculation and 205 

decantation of the suspension for 95 minutes following Stokes’ law; this fraction was then 206 

centrifuged. Clay residue was then smeared on oriented glass slides and run in a Bruker D8 207 

diffractometer with CuKα radiations, a LynxEye detector and a Ni filter with a voltage of 40 208 

kV and an intensity of 25 mA (Biogéosciences laboratory, Université Bourgogne/Franche-209 

Comté in Dijon, France). Goniometer scanning ranged from 2.5° to 28° for each analysis. 210 

Three runs were performed for each sample to discriminate the clay phases: 1) air-drying; 2) 211 

ethylene-glycol solvation at room temperature during 24 hours; and 3) heating at 490°C 212 

during 2 hours, as recommended by Moore and Reynolds (1997). Clay minerals were 213 

identified using their main diffraction (d00l) peaks and by comparing the three diffractograms 214 

obtained. The relative proportions of the clay minerals are estimated using peak intensity 215 

ratios. The error margin of the method is approximately ± 5 %.  216 

 217 

III – Results 218 

III-1. CaCO3, Organic matter characterisation and δ13Corg 219 

In the Argiles à Plicatules Formation, the proportion of CaCO3 is very low (around 220 

3%) in all of the samples studied (Fig. 5). The total organic carbon (TOC) content measured 221 

on the 34 selected samples using Rock-Eval pyrolysis is also very low, comprised between 222 

0.1 and 0.52% (Table 1). As the quantity of organic matter (OM) is low, the Rock-Eval 223 

parameters are only partly reliable. However, some reliable Tmax values lower than 420°C 224 

indicate that OM is immature (below the oil window). Organic matter is more abundant in 225 
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lithological unit 1 at the base of the section; this was expected since macroscopic woody 226 

debris and fern pinnules preserved as coalified compressions were observed (Fig. 4B). 227 

The %Corg obtained after isotopic analyses is between 0.15 and 0.82 (Fig. 4), 228 

systematically showing slightly higher values than those obtained using Rock-Eval pyrolysis, 229 

but with the same trends. Higher values are recorded at the base of the core in lithological unit 230 

1 which is enriched in continental organic matter. By comparison with unit 3, a slight increase 231 

is recorded in the interval corresponding approximately to lithological unit 2 (Fig. 5); 232 

however, significant enrichment in marine organic matter, which would have indicated it was 233 

preserved in a significantly oxygen-depleted environment, is not recorded. 234 

The δ13Corg values fluctuate between -24.19‰ and -27.91‰ (Fig. 4). A prominent 235 

negative excursion is recorded between 112 and 110 m at the base of lithological unit 2, 236 

followed by a shift to higher (close to -25‰) and relatively constant values up-section.  237 

 238 

III-2. Clay mineralogy 239 

The following main clay minerals were identified: a R0 type illite-smectite mixed-240 

layer (17 Å based on a glycolated run condition) referred to as smectite for the following 241 

sections; chlorite (14.2 Å, 7.1 Å, 4.7 Å and 3.54 Å peaks); illite (10 Å, 5 Å, 3.33 Å peaks); 242 

kaolinite (7.18 Å and 3.58 Å peaks) and vermiculite (14 Å in air-drying conditions, 14.5-15 Å 243 

after ethylene-glycol solvation and 10 Å peaks after heating). In addition, traces of 244 

pyrophyllite are occasionally suspected by the occurrence of a small peak at 9.3 Å. The clay 245 

mineral assemblages are predominantly composed of illite generally between 40 and 50% and 246 

kaolinite with proportions comprised between 20 and 45%. Minor amounts of chlorite (less 247 

than 10%), vermiculite (around 10%) and smectite (generally less than 10%, except at the top 248 

of the formation where the proportions of this mineral may reach 50%) are associated with 249 

these two clay species (Fig. 6). Traces of pyrophyllite are only identified at the base of the 250 
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core. Four stratigraphic intervals can be distinguished according to the clay mineralogy. 251 

Interval 1 corresponds to the lowermost part of the formation below the bioclastic 252 

accumulation and coincides with lithological unit 1. In this interval, the proportion of 253 

vermiculite is relatively high and decreases up-section while the proportion of illite increases. 254 

The second interval, from 112 to 104.5 m is characterised by the relative abundance of 255 

kaolinite (30 to 45%) notably at the base of this interval where the proportions of this mineral 256 

show a maximum (45%), and by the absence of smectite. The third interval from 104.5 m to 257 

87.5 m shows a monotonous clay assemblage without any significant change and is composed 258 

of approximately 5% of chlorite, 45% of illite, 10% of vermiculite, 10% of smectite and 30% 259 

of kaolinite. The uppermost part of the formation (interval 4) shows a sharp increase in the 260 

proportions of smectite balanced by significant decreasing proportions of illite and kaolinite. 261 

 262 

IV - Discussion 263 

IV-1. Depositional environments of the Argiles à Plicatules Formation 264 

The lowermost part of the formation overlying the continental Wealden facies and 265 

consisting of dark grey clays with abundant iron oolites (Fig. 4A) and common terrestrial 266 

plant remains (woods and foliar remains, Fig. 4B) likely corresponds to transgressive 267 

sediments deposited in coastal environments. Similar facies were described in boreholes 268 

drilled close to Soulaines to the east of Juzanvigny (Fig. 2) where transgressive facies are 269 

clearly separated by emersion features suggesting, several transgressive events at the 270 

beginning of the Aptian transgression (Ferry, 2000). Foliar meso- and macro-remains 271 

exclusively consist of fragments of pinnae and isolated fern pinnules preserved as coalified 272 

compressions (Fig. 4B). The largest pinna fragment is 22 mm long. The pinnae bear up to 8 273 

mm long and 3 mm wide alternate to subopposite, oblong, thick and leathery pinnules. They 274 

are attached by a broad base to the rachis and display a rounded apex and an entire margin. 275 
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Sometimes the pinnules are slightly inclined forward. The midrib is straight and ends before 276 

the apex of the pinnule. These features as well as the reticulate veins allow to ascribe these 277 

specimens to Weichselia reticulata (Stokes and Webb) Fontaine which is a common fern in 278 

the Early Cretaceous flora from Europe (Blanco-Moreno et al., 2018). In France, W. reticulata 279 

was previously reported from the Wealden facies of the Nord department (Carpentier, 1927) 280 

and the Oise department (Carpentier, 1929). The abundance of plant remains in oolithic facies 281 

shows that the depositional environment was influenced by strong terrestrial inputs. Although 282 

Weichselia mostly occurred in a continental environment in Europe (Blanco-Moreno et al., 283 

2018), this report shows that W. reticulata was one of the components of littoral flora during 284 

the earliest Aptian. 285 

As they occur immediately above the upper Barremian lateritic palaeo-alteration, iron 286 

oolites may be reworked from the lateritic soils (Bhattacharyya, 1983). However, iron oolites 287 

may also have formed as a replacement of a pre-existing ooid structure or via the precipitation 288 

of an iron aluminosilicate (chamosite/berthierine) grain in shallow marine environments 289 

(Velde, 1989). Iron may be provided in the sedimentary environment by the weathering of the 290 

proximal continental areas. In most cases iron oolites are associated with transgressive 291 

deposits, which is the case in the lowermost part of the Argiles à Plicatules Formation, and are 292 

indicators of condensed sections (Collin et al., 2005; Clement et al., 2020).  293 

Up-section, the deposits increasingly less silty show common bivalves. The first 294 

ammonite occurs at 113.70 m indicating open-marine environments. The prominent shell 295 

horizon intercalated in the clayey succession at the top of lithological unit 1 between 112.40 296 

m and 111.90 m (Fig. 4C) can be divided into two parts. The first corresponds to a bed 297 

comprising pluri-centimetric bivalve shells forming the base of a 30 cm-thick fining up 298 

sequence. The top of this bed, which is 112.05 m (Fig. 4C), is bioturbated. Above, a second 299 

accumulation of bivalves is associated with centimetric clasts. The succession may 300 
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correspond to two successive storm deposits separated by a bioturbated surface. This suggests 301 

a deposition above storm wave base in upper offshore environments and a deepening trend of 302 

the basin as a consequence of the Aptian transgression. This trend continues up-section from 303 

111.90 m to 106.30 m, as the homogenous faintly bioturbated clays without any sedimentary 304 

structure suggest a deposition in a quiet environment, below the storm wave base (lower 305 

offshore). Rare calcareous nannofossils observed in smear slides occur in most of the samples 306 

and are likely responsible for the carbonate content (close to 3%) of the sediment. From 307 

106.30 m to the top of the formation, the clays contain more silt. Bioturbated surfaces indicate 308 

sedimentation breaks that are consistent with the common occurrence of phosphate 309 

(carbonate-apatite) nodules.  310 

The Argiles à Plicatules Formation encompasses a transgressive interval from the base 311 

to a maximum flooding surface located in the interval between 111.90 m and 106.30 m. The 312 

uppermost 20 m of the formation corresponds to a highstand system tract terminated by a 313 

prominent bioturbated surface between the Argiles à Plicatules and the Sables Verts de l’Aube 314 

formations deposited at a shallower water depth in shoreface environments.  315 

 316 

IV-2. Evolution of the δ13Corg and organic matter contents 317 

Several of the isotopic segments initially distinguished by Menegatti et al. (1998) 318 

across the “Livello Selli”, which includes OAE1a, or its equivalent in the Tethys Ocean, and 319 

which were subsequently recognised worldwide and used as a reliable tool for 320 

chemostratigraphic correlations, are clearly identified in the studied borehole: C2 at the base 321 

of the section, C3 corresponding to the negative excursion showing the lowest values of 322 

δ13Corg between 111.80 and 110 m, C4, C5 and C6 characterised by a shift to higher values 323 

and finally C7 (Fig. 5). 324 
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The 3‰ negative excursion that occurs immediately before OAE1a and corresponding 325 

to the C3 segment is clearly identified. It occurs probably in the deshayesi Zone just above the 326 

bioclastic accumulations interpreted as storm deposits, with an amplitude comparable to that 327 

observed in many sedimentary basins (Menegatti et al., 1998; Ando et al., 2008). The C3 328 

segment is relatively thick (1.80 m) indicating a relatively high sedimentation rate and shows 329 

two distinct negative excursions separated by a positive excursion with a small amplitude, 330 

which can also be observed in the δ13Ccarb curves from sections from south-east France (Kuhnt 331 

et al., 1998; 2011). This may suggest the existence of, at least, two successive volcanic CO2 332 

pulses at the origin of the emplacement of the Ontong Java-Manihiki-Hikurangi Plateau 333 

(Lorenzen et al., 2013; Naafs et al., 2016).  334 

Surprisingly, the interval corresponding to the δ13Corg positive excursion is not 335 

significantly enriched in organic matter and the facies of the Argiles à Plicatules Formation 336 

are extremely homogeneous, unchanged in colour and without any laminations. The absence 337 

of significant organic matter enrichment is surprising since the deep, quiet lower offshore 338 

depositional environment was favourable to the preservation of marine organic matter. Some 339 

authors report an absence of significant marine organic matter enrichment in several 340 

sedimentary basins of northern Spain including the Basco-Cantabric Basin (Garcia-Mondejar 341 

et al., 2015) and the Organyà Basin (Sanchez-Hernandez and Maurasse, 2016) although they 342 

correspond to oxygen-depleted environments but without prolonged anoxia. 343 

In the Paris Basin, the absence of OM enrichment can be explained in several ways.  344 

1) The primary productivity was probably low as suggested by the very low carbonate 345 

content of the succession. The carbonate fraction of the Argiles à Plicatules Formation, which 346 

does not exceed 4%, is composed of rare nannofossils including the genus Watznaueria, 347 

Zeugrhabdotus, Rhagodiscus, Biscutum, Discorhabdus and Cyclagelosphaera (F. Giraud, in 348 
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Ferry, 2000). The scarcity of fauna and flora suggests that the environment must have been 349 

oligotrophic.  350 

2) The absence of anoxia in the Aptian sea-way between the LBM/RM and the 351 

AM/MC (Fig. 1) may be also explained by the presence of marine currents flowing through 352 

the strait thus favouring relatively well-oxygenated environments. However, except the 353 

occasional occurrence of phosphate nodules that may indicate low sedimentation rate due to 354 

the winnowing of fine particles, there is no evidence of hydrodynamic influences expressed in 355 

the sedimentary facies.  356 

3) The oxygen-minimum zone that was clearly expressed in the Tethys Ocean was 357 

deeper and did not reach the relatively shallow environments of the Paris Basin. This is 358 

plausible, given that Coccioni et al. (1987) and Westermann et al. (2013) show that anoxic to 359 

euxinic conditions developed in the deeper part of the Tethys Ocean during OAE 1a, while 360 

conditions were not as reducing in shallower environments.  361 

By comparison with several sections from the Tethys ocean, the δ13Corg positive 362 

excursion is less pronounced than expected, what could be the result of several gaps coeval 363 

with the positive excursion like those observed in carbonate platform environments (Wissler 364 

et al., 2005). However, except the occurrence of bioturbated surfaces and some scattered 365 

phosphate nodules, there is no clear evidence of significant sedimentation breaks.  366 

 367 

IV-3. Significance of clay mineral assemblages 368 

 IV-3-1. Diagenetic influences 369 

Before examining the significance of clay mineral assemblages in terms of the 370 

palaeoclimate and palaeoenvironment, it is essential to ensure that they are predominantly 371 

detrital in origin without any significant influence of burial diagenesis, thermal influences or 372 

authigenic growth during early or late diagenesis. The post-Aptian sedimentary successions 373 



16 

 

probably never exceeded 1100 m (Robaszynski et al., 2005), which is consistent with a weak 374 

thermal impact (Torelli et al., 2020) compatible with the occurrence of smectite and immature 375 

organic matter. Consequently, it is unlikely that clay minerals may have been transformed 376 

during burial diagenesis. This conclusion is consistent with many studies performed to the 377 

east of the Paris Basin on upper Jurassic deposits showing that the thermal influences remain 378 

very weak even when these deposits are more deeply buried (Pellenard et al., 1999; Pellenard 379 

and Deconinck, 2006; Blaise et al., 2014; Mangenot et al., 2018). 380 

Small quantities of glauconite commonly occur in the uppermost part of the Argiles à 381 

Plicatules Formation at the transition with the overlying Sables verts de l’Aube Formation. 382 

Glauconite is an iron-rich illite and the granules are coarser than the clay fraction and 383 

normally not included in the clay fraction. However, as the samples are ground in preparation 384 

for XRD analyses, it is possible that glauconite was partly introduced in the clay fraction and 385 

slightly increases the total proportion of illite at the top of the formation. 386 

 387 

Therefore, we assume that most clay minerals are detrital in origin and may be useful 388 

to precise environmental conditions that prevailed during the early Aptian around the Paris 389 

Basin. 390 

 391 

 IV-3-2. Environmental control of the clay sedimentation 392 

Primary minerals, including illite, chlorite and pyrophyllite constitute more than half 393 

of the clay fraction. The abundance of these minerals suggests a relatively intense erosion on 394 

the continental areas bordering the Paris Basin. Although clay minerals may be transported 395 

over long distances, they likely originated from the Palaeozoic massifs surrounding the Paris 396 

Basin. Illite, chlorite and pyrophyllite originated from the erosion of igneous and 397 

metamorphic rocks from the AM/MC and from the low grade metamorphic rocks from the 398 
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LBM. Vermiculite is also common, notably at the base of the formation. This mineral also 399 

occurs in lower to middle Albian clayey strata of the Paris Basin and likely originated from 400 

the north, i.e. from the LBM (Gale et al., 1996; Corentin et al., 2020). Vermiculitic clays 401 

corresponding to illite/vermiculite mixed-layers were also identified together with illite and 402 

kaolinite in the Aptian deposits of the Lower Saxony Basin of Germany (Benesch et al., 1998) 403 

and likely originate from the moderate weathering of chlorite. 404 

Kaolinite is also abundant with maximum values in interval 2 characterised by the 405 

homogeneous clay deposited in the deepest environments. Therefore, in the present case, the 406 

abundance of kaolinite cannot be a consequence of its preferential deposition in nearshore 407 

environments as suggested by Godet et al., (2008). The stratigraphic interval coinciding with 408 

the δ13Corg negative excursion is strongly depleted in smectite suggesting that a particularly 409 

hydrolysing (warm and humid) climate was established at that time (Chamley, 1989; Ruffell 410 

et al., 2002). By contrast, in the topmost part of the Argiles à Plicatules Formation, the 411 

decreasing proportions of kaolinite balanced by increasing proportions of smectites suggest 412 

increasingly arid climate conditions confirming a certain variability in the Aptian climate 413 

(Dumitrescu et al., 2006; Bottini et al., 2015; Naafs and Pancost, 2016). These arid climatic 414 

conditions also seem to have prevailed during the Aptian-Albian in the Algarve Basin 415 

(Southern Portugal) where sedimentary rocks are depleted in kaolinite and show a high 416 

amount of the xerophytic pollen Classopollis (Heimhofer et al., 2008). Aridity may be a 417 

consequence of colder climate (cold snaps) recorded at the Aptian/Albian transition 418 

(Mutterlose et al., 2009; Maurer et al., 2012; Millán et al., 2014). 419 

 420 

IV.4. Climate evolution during the deposition of the Argiles à Plicatules Formation 421 

A comparison of δ13Corg and the mineralogical data shows that the C3 segment 422 

corresponding to the negative excursion recorded prior to the OAE1a is characterised by an 423 
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increase in the proportions of kaolinite (Fig. 7) at the same time as a decrease in the 424 

proportions of smectites. This suggests the installation of a more humid climate as a 425 

consequence of an acceleration of the hydrological cycle induced by the warming triggered by 426 

the increase in pCO2 (Keller et al., 2011; Bodin et al., 2015; Naafs and Pancost, 2016). There 427 

are several lines of evidence for such a climatic change. Wortmann et al. (2004) suggested 428 

that the widespread occurrence of sandstones in the Tethys-Atlantic seaway was a 429 

consequence of increasing erosion rates due to the acceleration of the hydrological cycle in 430 

the wake of the early Aptian carbon cycle perturbation. Increasing global weathering intensity 431 

coeval with OAE1a is also suggested by calcium isotopes (Blättler et al., 2011) measured in 432 

carbonate deposits from several areas including southern England, Italy and Resolution Guyot 433 

from the mid-pacific mountains. Hochuli et al. (1999) also describe global warming resulting 434 

in increasing riverine fluxes. The warming is evidenced by a drop in δ18O, TEX86 data and by 435 

pollen records. The δ18O data from many sedimentary basins including the South Pacific 436 

shows, that the ocean waters warmed strongly during the negative excursion and that 437 

temperatures then decreased probably due to the storage of organic matter in the sediments 438 

(Ando et al., 2008; Stein et al., 2011; Zakharov et al., 2013). These observations are in 439 

agreement with the maximum proportions of kaolinite and the decrease in the proportion of 440 

Classopollis, (xerophytic pollen) in the Maestrat Basin (eastern Spain) during OAE1a (Cors et 441 

al. 2015). Tex86 data obtained in the Selli level (or other equivalents of the OAE1a) also 442 

indicate particularly warm sea-surface temperatures (Schouten et al., 2003; Dumitrescu and 443 

Brassel, 2006; Mutterlose et al., 2010, 2014).  444 

The global warming that occurred prior to OAE1a is therefore likely responsible for an 445 

acceleration of the hydrological cycle and for the increase of kaolinite because of increasing 446 

runoff and hydrolyses on the continental areas bordering the Paris Basin. The high 447 

proportions of kaolinite in Aptian deposits of the Paris Basin could be explained by the 448 
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formation of kaolinite in soils, but the duration of the climatic perturbation is relatively short, 449 

between 280 and 350 kyr (Lorenzen et al., 2013), while the formation of kaolinite in soils 450 

required a longer time estimated at least to 1 myr (Thiry, 2000). It is more likely that kaolinite 451 

was principally reworked from kaolinite-rich weathering profiles developed over the 452 

Palaeozoic massifs during the Early Cretaceous (Jurassic-Cretaceous transition to Barremian) 453 

(Meyer, 1976; Gilg, 2000; Quesnel, 2003; Yans, 2003; Thiry et al., 2005, 2006; Corentin et 454 

al., 2020). As detrital clays including kaolinite may be reworked from older rocks or from 455 

palaeo-alterations, their climatic significance may be questioned (Jeans et al., 2001), but 456 

overall, illite and kaolinite dominated clay assemblages of the Aptian in the Paris Basin point 457 

to a significant runoff and consequently to humid climate conditions. It is probable, that 458 

fluctuations in the hydrological cycle controlling fluvial inputs occurred before and during 459 

OAE1a as evidenced by changing environmental conditions in terms of anoxia/dysoxia 460 

(Socorro and Maurasse, 2018; 2020). 461 

Although the reliability of δ18O data has recently been confirmed (O’Brien et al., 462 

2017), the acceleration of the hydrological cycle following the very hot episode preceding 463 

OAE1a can be used to address the question of the significance of the low δ18O values 464 

recorded prior to OAE1a. δ18O-values may also be a result of a slight decrease in ocean 465 

salinity. This question, already addressed for other periods, shows that it is essential to take 466 

better account of the fluctuations in the hydrological cycle in the context of climatic 467 

reconstructions. In addition, higher runoff may increase thermohaline stratification that may 468 

be involved in the development of an OAE (e.g. Erbacher et al., 2001; Van Helmond et al., 469 

2015). 470 

 471 

Conclusions 472 
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For the first time, OAE1a is clearly identified in argillaceous deposits, the so-called 473 

Argiles à Plicatules Formation, deposited in the Paris Basin. Most of the C-isotope segments 474 

defining the OAE 1a interval are identified in the stratigraphic succession. However, the 475 

section is devoid of any significant marine organic matter enrichment likely because the 476 

Tethyan oxygen-depleted deep-water masses did not reach the epicontinental areas of the 477 

Paris Basin. The global warming preceding OAE1a is likely responsible for an acceleration of 478 

the hydrological cycle, an increase in runoff and the reworking of kaolinite from 479 

palaeoweathering profiles cropping out on the Palaeozoic massifs bordering the Paris Basin. 480 

As indicators for an acceleration of the hydrological cycle are also recorded in other areas, a 481 

slight decrease in ocean salinity prior to OAE1a may be responsible in part for its 482 

development and questions the reliability of the sea surface temperature deduced from the 483 

δ18O values. The hydrolysing conditions were so intense prior to and during OAE1a that 484 

smectite totally disappeared from the clay fraction. However, smectite increases in the upper 485 

part of the succession suggesting, that more arid conditions prevailed at that time possibly in 486 

relation with a colder climate during the Aptian/Albian transition. The changing clay mineral 487 

assemblages suggest, that the Aptian stage was characterised by a climate instability marked 488 

not only by changes in temperature but also in the hydrological cycle. 489 
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Figure captions 823 

 824 

Fig. 1. Palaeogeographic map modified from R. Blakey: https://www2.nau.edu/rcb7/.  825 

AM = Armorican Massif, MC = Massif Central, LBM = London Brabant Massif, RM = 826 

Rhenish Massif, BM = Bohemian Massif, CSM = Corso-Sardinia Massif, AB = 827 

Algarve Basin, PB = Paris Basin, LSB = Lower Saxony Basin. 828 

 829 

Fig. 2. Simplified geological map of the area to the east of the Paris Basin and location of the 830 

AUB 121 borehole near Juzanvigny. 831 

 832 

Fig. 3. Lithology of the AUB 121 borehole from the lower Barremian “Argiles ostréennes” 833 

Formation to the lowermost part of the “Argiles tégulines de Courcelles” Formation 834 

(lower Albian) (modified after Amédro et al., 2017). The lower Aptian Argiles à 835 

Plicatules Formation comprises three distinct lithological units and are dated by 836 

ammonites. The deshayesi and furcata ammonite Zones are clearly identified while the 837 



35 

 

lowermost part of the formation may belong to the forbesi Zone (see text). (A.P. = 838 

Argiles à Plicatules).  839 

 840 

Fig. 4. Base of the “Argiles à Plicatules” Formation. A. Thin section showing an iron oolite in 841 

a clayey matrix with quartz grains (Q) (sample AUB 121 116.70 m). B. sample AUB 842 

121, at an altitude of 116.60 m, shows abundant plant debris and notably Weichselia 843 

reticulata. C. Picture of the core showing the top of Unit 1 (grey clays) with the 844 

prominent shelly beds, and the base of Unit 2 (grey-brown clays). 845 

 846 

Fig. 5. CaCO3 content, %Corg and δ13Corg stratigraphic trends along the “Argiles à Plicatules” 847 

Formation. The prominent δ13Corg negative excursion occurring prior to the OAE1a is 848 

compared with the δ13Corg of the Roter Sattel reference section. Most of the segments 849 

(C2 to C7) defined by Menegatti et al. (1998) are recognised in the Argiles à Plicatules 850 

Formation. 851 

W.F. = Wealden facies, D. forb = Deshayesites forbesi, Barr. = Barremian, Alb. = Albian. 852 

MFS = Maximum Flooding Surface, TST = Transgressive System tract, HST = Highstand 853 

system tract. 854 

 855 

Fig. 6. Clay mineralogy of the Argiles à Plicatules Formation (the proportions of chlorite, 856 

approximately 5% throughout the formation, are not plotted). D. forb = Deshayesites 857 

forbesi, W.F. = Wealden facies. 858 

MFS = Maximum Flooding Surface, TST = Transgressive System tract, HST = Highstand 859 

system tract. 860 

 861 
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Fig. 7. Early Aptian climate trends deduced from δ13Corg and kaolinite content through the 862 

Argiles à Plicatules Formation.  863 

MFS = Maximum Flooding Surface, TST = Transgressive System tract, HST = Highstand 864 

system tract. 865 

 866 

 867 

Table 1. Rock-Eval data of the studied samples (TOC = Total Organic Carbon, OI = Oxygen 868 

index, HI, Hydrogen index). 869 
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