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Estimation and Quantization of Expected Persistence Diagrams

Vincent Divol * 1 2 Théo Lacombe * 1

Abstract
Persistence diagrams (PDs) are the most com-
mon descriptors used to encode the topology
of structured data appearing in challenging
learning tasks; think e.g. of graphs, time series
or point clouds sampled close to a manifold.
Given random objects and the corresponding
distribution of PDs, one may want to build
a statistical summary—such as a mean—of
these random PDs, which is however not a
trivial task as the natural geometry of the
space of PDs is not linear. In this article,
we study two such summaries, the Expected
Persistence Diagram (EPD), and its quantiza-
tion. The EPD is a measure supported on R2,
which may be approximated by its empirical
counterpart. We prove that this estimator is
optimal from a minimax standpoint on a large
class of models with a parametric rate of con-
vergence. The empirical EPD is simple and
efficient to compute, but possibly has a very
large support, hindering its use in practice. To
overcome this issue, we propose an algorithm
to compute a quantization of the empirical
EPD, a measure with small support which
is shown to approximate with near-optimal
rates a quantization of the theoretical EPD.

1. Introduction
Topological data analysis (TDA) is a modern field in
data science which has found a variety of succesful do-
mains of application such as material science (Saadatfar
et al., 2017; Buchet et al., 2018), cellular data (Cámara,
2017), social graph classification (Zhao & Wang, 2019;
Carriere et al., 2019), shape analysis (Li et al., 2014;
Carrière et al., 2015) to name a few. It provides a ma-
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chinery to encode the topological properties (such as
the presence of connected components, loops, cavities,
etc.) of a structured object in a multi-scale fashion.
Relying on persistent homology theory (Edelsbrunner
et al., 2000; Zomorodian & Carlsson, 2005; Edelsbrun-
ner & Harer, 2010), its main output is a descriptor
called a persistence diagram (PD): it is a discrete mea-
sure

∑
i∈I δxi (roughly, a set of points) supported on

the open half-plane Ω = {(t1, t2) ∈ R2, t2 > t1}, where
each point xi of the PD accounts in a quantitative way
for the presence of a topological feature in a given ob-
ject. The space of PDs, D, is equipped with an optimal
partial transport metric OTp, where 1 ≤ p ≤ ∞, which
shares similarities with the so-called Wasserstein metric
Wp used in the optimal transport literature (Villani,
2008; Santambrogio, 2015).
Statistics with PDs. In applications, one is generally
led to consider a sample of several PDs, say µ1, . . . , µn,
encoding the topology of some underlying phenomenon
generating the different observations. Assuming that
these PDs are sampled i.i.d. according to some under-
lying distribution P , it is natural to search for some
characteristic quantities to describe P . As the space of
PDs (D,OTp) is not a vector space, but only a metric
space, even building elementary statistics is a diffi-
cult task. For instance, approximating Fréchet means
(a.k.a. barycenters) of a sample of PDs with respect
to OTp metrics requires to develop specific techniques
(Turner et al., 2014; Lacombe et al., 2018; Vidal et al.,
2019), while their exact computation is intractable. An
alternative is to embed the PDs in a Hilbert or Banach
space, using explicit vectorizations (Bubenik, 2015;
Adams et al., 2017) or implicit through kernel methods
(Reininghaus et al., 2015; Carrière et al., 2017), then
using standard statistical and learning tools. However,
such embeddings do not preserve the metric structure
of the space of PDs (Bubenik & Wagner, 2019; Wagner,
2019) nor the interpretability of PDs. In comparison,
the expected persistence diagram (EPD) E(P ) of a dis-
tribution P of PDs lies in a natural metric extension
of the space of PDs while its empirical counterpart can
be computed faithfully. Originally introduced in (Divol
& Chazal, 2019), the EPD is a measure on Ω which
associates to each set A ⊂ Ω the expected number of
points which belongs to A in the random diagrams
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µ ∼ P . The properties of this object were studied in
(Divol & Chazal, 2019; Divol & Lacombe, 2020).

Contributions. We consider the situation where one
has access to a n-sample of PDs µ1, . . . , µn following
some (unknown) law P . A natural way to estimate
the EPD of P is to consider its empirical counterpart,
which simply reads µn := 1

n (µ1 + · · ·+ µn). By lever-
aging techniques from optimal transport theory, we
show in Section 3 that µn approximates E(P ) at the
parametric rate n−1/2 with respect to the loss OTpp
under non-restrictive assumptions, and that it is op-
timal from a minimax perspective. In practice, the
support of the measure µn is obtained as the union of
the support of each diagram and tends to be very large
if n� 1, hindering the use of this empirical descriptor
in applications. To overcome this issue, we propose in
Section 4 an online algorithm to compute a quantiza-
tion of the empirical EPD and show that—provided
a good initialization—the output of our algorithm ap-
proximates a quantization of the EPD at an appropriate
rate. For the sake of conciseness, proofs have been de-
ferred to the supplementary material along with code
to reproduce our experiments.

Related Work. Divol & Chazal (2019) show that
under mild assumptions the EPD is a measure with
density supported on the half-plane Ω, and propose
an estimation procedure of the EPD based on kernel
density estimation. However, they defined convergence
in terms of L2 metrics between densities instead of
the more natural diagram metric OTp considered in
this work and did not exhibit rates of convergence. In
optimal transport literature, the study of convergence
rates between a measure and its empirical counterpart
for the Wasserstein distance Wp dates back to (Dudley,
1969), while more recent papers (Singh & Póczos, 2018;
Fournier & Guillin, 2015; Kloeckner, 2020; Lei et al.,
2020) provide tight controls of the convergence rate of
the quantity W p

p . There are however two main differ-
ences between this line of results and our framework.
First, despite both being optimal transport metrics,
there exist key differences between the metric OTp and
the Wasserstein metric Wp (see Section 2). Further-
more, we are not in the common situation where one
observes i.i.d. realizations X1, . . . , Xn in Ω and consid-
ers the empirical measure 1

n (δX1 + · · · + δXn) but in
the more general setting where one observes measures
µ1, . . . , µn on Ω following some law P and considers
the distance between the expected measure E(P ) and
its empirical counterpart 1

n (µ1 + · · ·+ µn).

The problem of quantization of measures, namely ap-
proximating a given measure with another measure
with support of fixed size, has been studied in depth

when those measures are supported on Rd equipped
with its natural Euclidean geometry, see for instance
(Graf & Luschgy, 2007; Fischer, 2010; Levrard et al.,
2015; Bourne et al., 2018). In the context of PDs,
where the quantization problem is generally referred to
as computing codebooks or bag-of-words (Zieliński et al.,
2018; 2020), existing methods propose to quantize PDs
running a k-mean algorithm on the diagram points.
The intuition that points in a diagram that are close
to the boundary ∂Ω of the half-plane Ω represent less
important topological features is taken into account
through the introduction of weight functions, requir-
ing to introduce an important hyper-parameter whose
choice is unclear in general. Our approach differs from
the latter on two aspects: first, we do not quantize
a single diagram (should it be a superposition of di-
agrams as in (Zieliński et al., 2020)) but work in an
online fashion with a sequence of observed diagrams.
Second, we work with the standard diagram metric
OTp. In doing so, we directly take the boundary ∂Ω
into account in the formulation of our problem without
needing to introduce a weight function. Our quanti-
zation algorithm significantly builds on (Chazal et al.,
2020, Alg. 2). The main difference is that Chazal et al.
intend to quantize a measure with respect to the 2-
Wasserstein distance on Rd, while we work with the
metric OTp on Ω ⊂ R2. This change of perspective
introduces some specificities in our problem and al-
lows us to derive results more suited to the context
of persistence diagrams. Furthermore, while standard
algorithms work with p = 2, we propose a simple vari-
ation to encompass the case p = +∞, central in TDA
as one retrieves the so-called bottleneck distance.

2. Background
Persistence diagrams (PDs). Let X be a topo-
logical space and let f : X → R be a real-valued
continuous function. The sublevel sets of (X, f) are
defined as Ft := {w ∈ X, f(w) < t}. As the scale
parameter t increases from −∞ to +∞, one observes
a nested sequence of sets called the filtration of X by
f . Given a fixed dimension D, persistent homology
(see (Edelsbrunner & Harer, 2010) for an introduction)
provides tools to record the scales at which a topo-
logical feature (a connected component for D = 0, a
loop for D = 1, a cavity for D = 2, etc.) appears
or disappears in the sublevel sets. For instance, a
loop (one-dimensional topological component) might
appear at some scale t1 (its birth time) in the sub-
level set Ft1 , and disappear (“get filled”) at some scale
t2 > t1. One says that the loop persists over the interval
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Figure 1. Čech filtration on a 2D point cloud in dimension D = 1 (recording loops) and the corresponding PD.

[t1, t2]. This results in a collection of intervals1—each
of them accounting for the presence of a topological
feature recorded in the filtration process—that can be
encoded as a multiset supported on the open half-plane
Ω = {x = (t1, t2), t2 > t1} ⊂ R2, or, equivalently,
as a locally finite discrete measure Dgm(f) :=

∑
i δxi ,

where δxi denotes the Dirac mass located at xi ∈ Ω.
Of particular interest is the case where X = Rd, and
f : w ∈ Rd 7→ dist(w,A) is the distance function to A
a compact subset of Rd (for instance a point cloud), see
Figure 1. The corresponding diagram, called the Čech
persistence diagram of A, will be denoted by Dgm(A).

Metrics for PDs. Let ‖ · ‖ be the Euclidean norm
and let spt(µ) denote the support of a measure µ. Let
∂Ω := {(t, t), t ∈ R} be the diagonal (which is also the
boundary of Ω), and Ω := Ω t ∂Ω. Given 1 ≤ p <∞,
and two measures µ, ν supported on Ω, one can define
the distance between µ and ν using an optimal partial
transport metric:

OTp(µ, ν) := inf
π∈Adm(µ,ν)

(∫∫
Ω×Ω
‖x− y‖pdπ

) 1
p

, (2.1)

where Adm(µ, ν) is the set of measures supported on
Ω × Ω whose first (resp. second) marginal coincides
with µ (resp. ν) on Ω (note in particular that π is not
constrained on ∂Ω×∂Ω). The definition is extended to

p =∞ by replacing
(∫∫

Ω×Ω ‖x− y‖
pdπ

) 1
p by sup{‖x−

y‖, (x, y) ∈ spt(π)}, and the distance OT∞ is called
the bottleneck distance, central in TDA due to its strong
stability properties (Cohen-Steiner et al., 2007; Chazal
et al., 2016). Let ‖x− ∂Ω‖ = (t2 − t1)/

√
2 be the per-

sistence of a point x = (t1, t2) ∈ Ω, that is its distance
to the diagonal ∂Ω. The space (Mp,OTp) of persis-
tence measures is defined as the space of (non-negative)
Radon measures µ supported on Ω that have finite total
persistence, i.e. Persp(µ) :=

∫
‖x − ∂Ω‖pdµ(x) < ∞

(this condition ensures that OTp is always finite). Note
that the distance OTp is not only defined for PDs (el-
ements of D), but for measures on Ω with arbitrary
support, therefore making it possible to define a simi-

1In the greatest generality, there may be some intervals
of the form [t1,+∞). In the following, such intervals are
simply discarded if ever present.

larity notion between a PD and a more general measure
such as an EPD, a crucial aspect of this work.
The metrics OTp are similar to the Wasserstein dis-
tances used in optimal transport (Santambrogio, 2015,
Ch. 5): for σ, τ two measures having the same total
mass on a metric space (S, ρ), the distanceWp,ρ(σ, τ) is
defined as the infimum of

(∫
S2 ρ(x, y)pdπ(x, y)

)1/p over
all transport plans π between σ and τ , i.e. measures
on S × S which have for first (resp. second) marginal
σ (resp. τ). When ρ is the Euclidean distance we write
Wp instead of Wp,ρ. Despite those similarities, there
is however a crucial difference between the Wasser-
stein distance and the OTp distance: the constraints
in (2.1) only involves the marginals on Ω, allowing us
to transport mass to and from the boundary of the
space ∂Ω. It makes, in particular, the distance OTp
between measures of different total masses well-defined.
The metrics OTp were introduced by Figalli & Gigli
(2010) as a way to study the heat equation with Dirich-
let boundary conditions, but Divol & Lacombe (2020)
observed that these metrics actually coincide with the
standard metrics used to compare persistence diagrams
(Edelsbrunner & Harer, 2010, Ch. 8).
Expected persistence diagrams. Let P be a proba-
bility distribution supported on (Mp,OTp). Let E(P )
be the measure defined by, for A ⊂ Ω compact,

E(P )(A) := EP [µ(A)], (2.2)

where µ ∼ P , and µ(A) is the (random) number of
points of µ that belongs to A. This deterministic
measure, called the expected persistence diagram (EPD)
of P , was introduced in (Divol & Chazal, 2019) were
authors proved that, under mild assumptions, it admits
a density with respect to the Lebesgue measure on Ω.
Importantly, the EPD is a persistence measure but not
a PD in general.

3. Minimax estimation of the EPD
Let P be a distribution of PDs, and E(P ) be its EPD.
Given a n-sample µ1, . . . , µn of law P , the empirical
EPD is defined as µn := 1

n

∑
i µi. In this section,

we control the distance OTpp(µn,E(P )) under moment
assumptions on the underlying law P . Note that, ac-
cording to (Divol & Lacombe, 2020, Thm. 3.7) and
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the law of large numbers, µn
OTp−−−→ E(P ) almost surely

under the minimal assumption that EP [Persp(µ)] <∞
(see Lemma 3 in the supplementary material). Our goal
here is to understand the rate at which this convergence
holds.

Let AL be the `1-ball in R2 centered at (−L/
√

8, L/
√

8)
of radius L/

√
2. For 0 ≤ q ≤ ∞ and L,M > 0, we

let Mq
L,M be the set of measures µ ∈ Mq which are

supported on AL, with Persq(µ) ≤M . Let PqL,M be the
set of probability distributions which are supported on
Mq

L,M . It is known that persistence diagrams belong
to the set Mq

L,M under non-restrictive assumptions.
Namely, we have the following result.
Lemma 1 (Cohen-Steiner et al. (2010)). Let X be a
d-dimensional compact Riemannian manifold, and let
f : X → R be a Lipschitz continuous function. Then,
for every q > d, Dgm(f) belongs toMq

L,M for some L,
M depending on X, q and the Lipschitz constant of f .

In particular, for q > 0, no constraints on the total
number of points of the persistence diagram are im-
posed. This is particularly interesting in applications,
where the number of points in PDs is likely to be large,
while their total persistence Persq may be moderate,
see e.g. (Divol & Polonik, 2019) for asymptotics in the
case of the Čech persistence diagrams of large samples
on the cube.
Theorem 1. Let 1 ≤ p < ∞ and 0 ≤ q < p. Let
P ∈ PqL,M and let µ1, . . . , µn be a n-sample from law
P . If µn is the associated empirical EPD, then,

E[OTpp(µn,E(P ))] ≤ cMLp−q
(

1
n1/2 + ap(n)

np−q

)
, (3.1)

where c depends on p and q, and ap(n) = 1 if p > 1,
log(n) if p = 1.

In particular, if p ≥ q + 1/2, we obtain a parametric
rate of convergence of n−1/2. This is always the case if
q = 0, i.e. if we assume that all the diagrams sampled
according to P have less than M points. According to
Lemma 1, it is also the case if µi = Dgm(fi) for some
random 1-Lipschitz functions fi : X → R, where X is
a d-dimensional compact Riemannian manifold with
p > d+ 1/2.

From a statistical perspective, it is natural to wonder
if better estimates of E(P ) exist. A possible way to
answer this question is given by the minimax framework.
Let P be a set of probability distributions onMp. The
minimax rate for the estimation of E(P ) on P is

Rn(P) := inf
µ̂n

sup
P∈P

E[OTpp(µ̂n,E(P ))], (3.2)

where the infimum is taken over all possible estimators
of E(P ). An estimator attaining the rate Rn(P) (up

to a constant) is called minimax, i.e. an estimator is
minimax on the class P if it has the best possible risk
uniformly on this class. We show that the empirical
EPD µn is a minimax estimator on PqL,M as long as
p ≥ q + 1/2. The case p =∞ is discussed in Remark 1
(supplementary material).
Theorem 2. Let 1 ≤ p < ∞ and q ≥ 0, L,M > 0.
One has, for some c depending on p and q,

Rn(PqL,M ) ≥ cMLp−qn−1/2. (3.3)

As the EPD E(P ) is known to have a smooth density
in a wide variety of settings (Divol & Chazal, 2019),
it could be expected (likewise it is the case in density
estimation (Tsybakov, 2008)), that one could make
use of this regularity to obtain substantially faster
minimax rates on appropriate models. Surprisingly
enough, using results from statistical optimal transport
theory, we show that whatever regularity is assumed
on the EPD, no estimators can perform better than the
empirical EPD µn for the OTp loss (from a minimax
perspective). Let Bsp′,q′ be the set of functions Ω→ R
in the Besov space of parameters s ≥ 0 and 1 ≤ p′, q′ ≤
∞, see (Härdle et al., 2012) for an introduction to
Besov spaces; note that this formalism encompasses all
Ck classes. Consider the model Pq,sL,M,T of probability
distributions P ∈ PqL,M whose EPD E(P ) belongs to
Bsp′,q′ with associated norm smaller than T/M .
Theorem 3. Let 1 ≤ p < ∞, q, s ≥ 0, L,M, T > 0
and 1 ≤ p′, q′ ≤ ∞. One has

Rn(Pq,sL,M,T ) ≥ cMLp−qn−1/2, (3.4)

where c depends on s, p′, q′, p, q and T .

The proof of Theorem 3 is based on a similar result
appearing in (Weed & Berthet, 2019), where minimax
rates of estimation with respect to the Wasserstein
distance Wp are given for smooth densities on the cube.
Remark 1. In the usual problem of estimating a mea-
sure thanks to a n-sample with respect to the Wasser-
stein distance, it has been noted several times (Trillos
& Slepčev, 2015; Weed & Berthet, 2019; Divol, 2021)
that this problem becomes significantly easier if the mea-
sure has a lower bounded density on its domain. In
particular, it is known that the risk for the W p

p loss
of the empirical measure attains the faster rate n−p/2
(instead of n−1/2) under this hypothesis. If such a re-
sult is likely to hold for the OTpp loss under similar
hypothesis, requiring that the EPD has a lower bounded
density on some bounded domain U in Ω appears to be
unreasonable. Indeed, this would imply that the density
exhibits a sharp change of behavior at the boundary of
U , whereas the density of the EPD is known to be typi-
cally smooth on Ω (Divol & Chazal, 2019). Whether
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there exists a more realistic assumption on the EPD
for which the rate of convergence of the empirical EPD
is n−p/2 remains an open question.

4. Quantization of the EPD
This section consists of two steps. In Section 4.1, we
introduce and study the problem of quantizing persis-
tence measures with respect to the metric OTp, prov-
ing in particular the existence of optimal quantizers
in general. Section 4.2 provides an online algorithm
specifically designed to quantize EPD based on a se-
quence of observed diagrams µ1, . . . , µn and provide
theoretical guarantees of convergence.

4.1. Quantization for persistence measures.

Let µ ∈ Mp be a persistence measure and k be a
fixed integer. The goal of the quantization problem
is to build a measure ν =

∑k
j=1mjδcj supported

on a set of k points c = (c1, . . . , ck) called a code-
book (while the (cj)js are called centroids) that ap-
proximates µ in an optimal way. Existing works (in-
cluding previous works in the TDA literature) treat
this problem over the space of probability measures
equipped with the Wasserstein metric Wp over Rd.
Here, we use the metric OTp instead, more suited to
PDs, leading to benefits discussed in Remark 2 be-
low. Our problem consists in minimizing the quantity
((m1, c1), . . . , (mk, ck)) 7→ OTp

(∑
jmjδcj , µ

)
where

mj ∈ R+ and cj ∈ Ω. However, we show in Lemma 2
below that—as in the standard problem using the met-
ricWp—this problem can be reduced to an optimization
problem on the codebook c ∈ Ωk only. To that aim,
we introduce a notion of Voronoï tesselation relative
to a codebook c, with the subtlety that points closer
to the diagonal ∂Ω define a specific cell, see Figure 2
for an illustration.
Definition 1. Let c = (c1 . . . ck) ∈ Ωk and denote
by convention ck+1 := ∂Ω, so that in particular ‖x −
ck+1‖ := ‖x− ∂Ω‖. Define for 1 ≤ j ≤ k + 1,

Vj(c) :={x ∈ Ω, ∀j′ < j, ‖x− cj‖ ≤ ‖x− cj′‖
and ∀j′ > j, ‖x− cj‖ < ‖x− cj′‖},

N(c) :={x ∈ Ω, ∃j < j′ such that x ∈ Vj(c)
and ‖x− cj‖ = ‖x− cj′‖}.

(4.1)

Observe that V1(c), . . . , Vk+1(c) form a partition of Ω.
Remark 2. The difference between our approach and
previous ones (in particular (Chazal et al., 2020)) lies
in the presence of the “diagonal cell” Vk+1(c). This cell
introduces parabolic-shaped boundaries which slightly
change the geometry of our problem. However, it has
two major benefits. First, it enables a natural geomet-
ric identification of points close to the diagonal (which

cj

Vj(c)

V k
+
1
(c

)

∂Ω

N
(c

)

Figure 2. Example of partition V1(c), . . . , Vk+1(c) for a
given codebook c.

play a specific role in TDA) through the cell Vk+1 and
we do not “waste” centroids (cj)kj=1 to encode them.
Second, our approach does not require the introduction
of a weight function (that artificially lowers the mass of
points close to the diagonal), as typically done; remov-
ing the dependency on an important hyper-parameter.

The following lemma states that given a persistence
measure µ and a codebook c = (c1, . . . , ck), it is always
optimal to set mj = µ(Vj(c)).
Lemma 2. Let c = (c1, . . . , ck). Let µ̂(c) :=∑k
j=1 µ(Vj(c))δcj . Let ν =

∑k
j=1mjδcj for some

m1, . . . ,mk ≥ 0. Then OTp(µ̂(c), µ) ≤ OTp(ν, µ).

Therefore, quantizing µ boils down to the choice of the
codebook c. Formally, given a persistence measure µ
to be quantized, a parameter 1 ≤ p <∞ and an integer
k, the quantization problem in the space of persistence
measures consists in minimizing Rk,p : Ωk → R defined
for c ∈ Ωk by

Rk,p(c) := OTp(µ̂(c), µ)

=

k+1∑
j=1

∫
Vj(c)

‖x− cj‖pdµ(x)

 1
p

,
(4.2)

To alleviate notations, we writeRk instead ofRk,p when
the parameter p does not play a significant role. The
value Rk(c) is called the distortion achieved by c. Let
R∗k := infc∈Ωk Rk(c) and let Ck := arg minc∈Ωk Rk(c)
be the set of optimal codebooks. Note that R∗k = 0 if
(and only if) |spt(µ)| ≤ k. From now on, we assume
that µ has at least k points in its support.

We can now state the main result of this subsection: the
existence of an optimal codebook c∗ for any persistence
measure inMp. This result shares key ideas with (Graf
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Algorithm 1 Online quantization of EPDs
Input: A sequence µ1, . . . , µn, integer k, parameter
p.
Preprocess: Divide indices {1, . . . , n} into batches
(B1, . . . , BT ) of size (n1, . . . , nT ). Furthermore, di-
vide (Bt)t into two halves B(1)

t and B(2)
t .

Set µ(α)
t := 2

nt

∑
i∈B(α)

t
µi for 1 ≤ t ≤ T, α ∈ {1, 2}.

Init: Sample c(0)
1 . . . c

(0)
k from the diagrams.

for t = 0, . . . , T − 1 do
c(t+1) = Up(t, c(t), µ

(1)
t+1, µ

(2)
t+1) using (4.4)

end for
Output: The final codebook c(T ).

& Luschgy, 2007, Thm 4.12), although we replace the
assumption of finite p-th moment of the measure to be
quantized by the assumption of finite total persistence
Persp(µ) <∞, more natural in TDA (µ may even have
infinite total mass in our setting).
Proposition 4 (Existence of minimizers). The set
of optimal codebooks Ck is a non-empty compact set.
Furthermore, if c∗ ∈ Ck, then, for all 1 ≤ j 6= j′ ≤ k,
µ(Vj(c∗)) > 0 and c∗j 6= c∗j′ .
Corollary 1. The following quantities are positive:

Dmin := inf
c∗∈Ck,1≤j 6=j′≤k+1

‖c∗j − c∗j′‖,

mmin := inf
c∗∈Ck,1≤j≤k

µ(Vj(c∗)).
(4.3)

Computational aspects. One could consider to nu-
merically solve the quantization problem (4.2) deriving
optimization algorithms based on their counterpart
in the optimal transport literature (Cuturi & Doucet,
2014), see (Lacombe, 2020, §7.2) for instance. How-
ever, using such techniques to quantize empirical EPDs
would not be satisfactory for two reasons. First, the
empirical EPD has in general a large number of points,
hindering computational efficiency. Second, we want
to leverage the fact that we observe a sequence of di-
agrams µ1, . . . , µn, and not only their sum, to design
an online algorithm that remains tractable with large
sequences of large diagrams.

4.2. Quantization of an empirical EPD

In Algorithm 1, we propose an online algorithm—
adapted from (Chazal et al., 2020, Alg. 2) to the context
of PDs and with arbitrary p > 1 instead of p = 2—
that takes a sequence of observed PDs µ1, . . . , µn (a
n-sample of law P ) and outputs a codebook (c1, . . . , ck)
aiming at approximating E(P ). The algorithm relies
on an update function Up for p > 1 defined as

Up(t, c, µ, µ′) := c−

(
µ(Vj(c))
µ′(Vj(c)) (cj − vp(c, µ)j)

)
j

t+ 1 , (4.4)

where vp(c, µ)j is the p-center of mass of µ over the
cell Vj(c):

vp(c, µ)j := arg min
y

(∫
Vj(c)

‖y − x‖pdµ(x)
) 1
p

. (4.5)

When p = 2, one simply has v2(c, µ)j =
∫
Vj(c) x

dµ(x)
µ(Vj(c))

and if in addition µ = µ′, the update (4.4) simplifies
to

cj 7→
t

t+ 1cj + 1
t+ 1

∫
Vj(c)

x
dµ(x)
µ(Vj(c)) ,

so that roughly speaking, we are pushing cj toward the
usual center of mass of µ over the cell Vj(c), similar to
what is done when using the Lloyd algorithm to solve
the k-means problem (Lloyd, 1982). More generally,
(4.4) can be understood as pushing cj toward the point
that would decrease the distortion Rk,p over the cell
Vj(c) the most, using a step-size (or learning rate)

1
t+1 . There is no closed-form for vp for p 6= 2, though
standard convex solvers may be used (Gonin, 1989).
When p = +∞, a central situation in TDA as it means
working with the bottleneck distance OT∞, computing
v∞ boils down to get the center of the smallest enclosing
circle of Vj(c) ∩ spt(µ). When µ is a discrete measure
(e.g. an empirical EPD), this problem can be solved in
linear time with respect to the number of points of µ
that belong to Vj(c) (Megiddo, 1983).

Note that in Algorithm 1, the split of batches Bt =
(B(1)

t , B
(2)
t ) is only required for technical considerations

(see the supplementary material and (Chazal et al.,
2020)). In practice, this algorithm can be used without
further assumptions and empirically, using Bt = B

(1)
t =

B
(2)
t yields substantially similar results. We provide a

theoretical analysis of Algorithm 1 in the case p = 2,
in particular through Theorem 5 which states that
this algorithm is nearly optimal as a way to quantize
E(P ), provided the initialization is good enough. As
in Section 3, we consider a probability distribution
P ∈ PpL,M . For t > 0 and A ⊂ Ω, we let At := {x ∈
Ω, ∃a ∈ A, ‖x− a‖ ≤ t} be the t-neighborhood of A.
Definition 2 (Margin condition). Let c∗ be an optimal
quantizer of E(P ). We say that P satisfies a margin
condition of parameter λ > 0 and radius r0 at c∗ if,
for all t ∈ [0, r0], one has E(P )(N(c∗)t) ≤ λt.

Margin-like conditions on optimal codebook are stan-
dard in quantization literature (Tang & Monteleoni,
2016; Levrard, 2018). Informally, it indicates that the
EPD concentrates around k poles, aside from the mass
that is distributed close to the diagonal ∂Ω; the smaller
the λ, the more concentrated the measure. Note that
this condition holds as long as the E(P ) has a bounded
density (although with possibly large λ), a property
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Figure 3. From left to right. (a) Empirical EPD µn with n = 103. (b) Histogram of the empirical EPD on a 50× 50 grid.
(c) EPD E(P ) of P , displayed on the same grid. (d) Distance OTp

p(µn,E(P )) for p = 2 for different values of n in log-log
scale (mean and standard deviation over 100 runs). A linear regression shows a convergence rate of order n−0.58, close to
the theoretical rate of n−1/2 indicated by Theorem 1.

which is satisfied in a large number of situations, see
(Divol & Chazal, 2019).
The following theorem states that given a n-sample
of law P , Algorithm 1 outputs in T = n

log(n) steps a
codebook c(T ) that approximates (in expectation) an
optimal codebook c∗ for E(P ) at rate log(n)

n , to be
compared with the optimal rate of 1

n (Levrard, 2018,
Prop. 7). It echoes (Chazal et al., 2020, Thm. 5) with
the difference that, thanks to the diagonal cell Vk+1,
we require a uniform bound on the total persistence
of the measures rather than a uniform bound on their
total mass, a more natural assumption in TDA.
Theorem 5. Let p = 2. Let P ∈ P2

L,M and let
c∗ be an optimal codebook for E(P ). Assume that
P satisfies a margin condition at c∗ with parameters
r0 large enough and λ small enough (with respect to
Dmin,mmin, L and M). Let µ1, . . . , µn be a n-sample
of law P and B1, . . . , BT be equally sized batches of
length C1 log(n). Finally, let c(T ) denote the output
of Algorithm 1. There exists R0 > 0 such that if
‖c(0) − c∗‖ ≤ R0, then

E‖c(T ) − c∗‖2 ≤ C2(logn)/n,

where C1, C2 and R0 are constants depending on
p, L,M, k,Dmin and mmin.

5. Numerical illustrations
We now provide some numerical illustrations that show-
case our different theoretical results and their use in
practice. Throughout, PDs are computed using the
Gudhi library (Maria et al., 2014) and OTp distances
are computed building on tools available from the POT
library (Flamary et al., 2021). See the supplemen-
tary material for further implementation details and
complementary experiments.

Convergence rates for the empirical EPD. We
first showcase the rate of convergence of Theorem 1.
There are only few cases where explicit expressions

for the EPD of a process are known. For instance,
for Čech PDs based on a random sample of points,
the corresponding EPD is known in closed-form only
if the sample is supported on R (Divol & Polonik,
2019, Rem. 4.5). We therefore first consider a simple
setting where an explicit expression can be derived.
Let X be a set of N triangles T1, . . . , TN , where N
is uniform on {1, . . . , 20}. We let f : X → R be a
random piecewise constant function, which is equal
to Ui,j on the jth edge of the triangle Ti, where the
variables (Ui,j) are i.i.d. uniform variables on [0, 1].
Furthermore, the function f is equal to maxj=1,2,3 Ui,j+
Vi on the inside of the triangle Ti, where the Vis are
independent, independent from the Ui,js, and follow a
Beta distribution β(1, 3). Let P be the distribution of
the associated random PD. Let rec be the rectangle
[r1, r2]× [s1, s2] for r1 ≤ r2 ≤ s1 ≤ s2. Then,

E(P )(rec) = 30
∫ r2

r1

t2P(s1−t ≤ V ≤ s2−t)dt, (5.1)

where V ∼ β(1, 3). In practice, we compute E(P ) on
a discretization of [0, 1]× [0, 2] through a grid of size
50× 50. Meanwhile, we sample empirical EPDs µn for
10 ≤ n ≤ 103. In order to estimate OTpp(µn,E(P )),
we also turn these EPDs into histograms on the same
grid, and then compute the OTp distance between two
histograms. See Figure 3 for an illustration which
showcases in particular the expected rate n−1/2.

We also exhibit the convergence of the empirical EPD in
a more usual setting for the TDA practitioner. Namely,
we build a random point cloud X with 103 points
sampled on the surface of a torus with outer radius
r1 = 5 and inner radius r2 = 2, and then consider
the corresponding random Čech diagram for the 1-
dimensional homology (loops, see Section 2). Given
n realizations of X, we compute the empirical EPD
µn, where n ranges from 10 to nmax = 1000. As no
closed-form for the corresponding EPD is known, we
use as a proxy the empirical EPD based on a sample
of size 2nmax, and then showcase in Figure 4 (left) the
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Figure 4. From left to right: (a) The convergence rate for a point cloud sampled on the surface of a torus, exhibiting a rate
of n−1/2. (b) The quantization output for the different approaches considered with k = 2. As our approach accounts for
the diagonal through the cell Vk+1, our codebooks retrieve the two clusters present in the EPD, while other approaches
have one centroid used to account for the mass close to the diagonal. (c,d) The average distortion Rk,p over 10 runs for
the different methods, with p = 2 and p = +∞.

convergence of OTpp(µn, µ2nmax) at rate n−1/2.

Quantization of the EPD. We now illustrate the be-
havior of Algorithm 1 using p = 2 and p =∞ (referred
to as “OT2” and “OT∞”, respectively) and compare it
to two natural alternatives. (Chazal et al., 2020, Alg. 2)
is essentially the same algorithm without the “diagonal
cell” Vk+1(c); as such, centroids are dramatically influ-
enced by points close to the diagonal which are likely
to be abundant in standard applications of TDA. It is
referred to as “W2” in our illustrations, as it relies on
quantization with respect to the Wasserstein distance
with p = 2. The second alternative, referred to as
“weighted codebook”, is the one proposed in (Zieliński
et al., 2020), which can be summarized in the following
way: consider the empirical EPD µn built on top of
observations µ1, . . . , µn (that is, concatenate the dia-
grams), and then subsample N points in the support of
the empirical EPD, with the subtlety that the probabil-
ity of choosing a point x ∈ spt(µn) depends on a weight
function w : Ω→ R+. Typical choices for w are of the
form w(x) = min

(
max

(
0, (‖x−∂Ω‖q−λ)

θ−λ

)
, 1
)
for some

parameters (λ, q, θ); the goal being to favor sampling
points far from the diagonal. Zieliński et al. propose,
in practice, to sample N = 104 points and to set q = 1,
while λ and θ are the 0.05 and 0.95 quantiles of the
distribution of {‖x− ∂Ω‖q, x ∈ spt(µn)}, respectively.
We use these parameters in our experiments. One then
runs the Lloyd algorithm (k-means) on the set of N
points that have been sampled to obtain a quantization
of the empirical EPD.
We compare the different approaches in the following ex-
periment. We randomly sample a point cloud X of size
m on the surface of a torus with radii (r1, r2), where
m, r1, r2 are random variables that respectively follow a
Poisson distribution of parameterm ∈ N, a uniform dis-
tribution over [r1−ε, r1 +ε] and a uniform distribution
over [r2 − ε, r2 + ε]. We use m = 2, 000, ε = 0.1, r1 = 5
and r2 = 2 in our experiments. Given such a random
point cloud X, we build the Čech persistence diagram

of its 1-dimensional features, denoted by µ, leading to
a distribution P of PDs. We then build a n-sample
µ1, . . . , µn with n = 100 and, for k ∈ {1, . . . , 5}, com-
pute the different codebooks returned by the aforemen-
tioned methods, using batches of size 10 for OT2,OT∞
and W2. All algorithms are initialized in the same way:
we select the k points of highest persistence in the first
diagram µ1. To compare the quality of these codebooks,
we evaluate their distortion (4.2) with p = 2 and p =∞.
As we do not have access to the true EPD E(P ), we ap-
proximate this quantity through its empirical counter-
part R̂k,p(c) :=

(∫
Ω min1≤j≤ck+1 ‖x− cj‖pdµn(x)

) 1
p ,

with R̂k,∞(c) = maxx∈spt(µn) minj ‖x − cj‖. Results
are given in Figure 4. Interestingly, when p = 2 our
approach is on a par with the weighted codebook ap-
proach, but becomes substantially better when evalu-
ated with p =∞, that is using the bottleneck distance
which is the most natural metric to handle PDs.

6. Conclusion
This work is dedicated to the estimation of expected
persistence diagrams, for which we prove that they
are approximated, for the natural diagram metrics
OTp, by their empirical counterpart in an optimal
way from a minimax perspective. We then introduce
and study the quantization problem in the space of
persistence diagrams, proving results of independent
interest. Finally, we introduce an online algorithm to
estimate a quantization of the EPD with theoretical
guarantees. Interestingly, our algorithm can handle the
case p = ∞, central in TDA, and has the advantage
of not requiring hyper-parameters to account for the
peculiar role played by the diagonal. We illustrate our
results in numerical experiments and our code will be
made publicly available. We believe that this work
offers new perspectives to handle sample of PDs in
practice and that it strengthens our understanding of
statistical properties of PDs in random settings.



Estimation and quantization of EPDs

References
Adams, H., Emerson, T., Kirby, M., Neville, R., Peter-

son, C., Shipman, P., Chepushtanova, S., Hanson, E.,
Motta, F., and Ziegelmeier, L. Persistence images: a
stable vector representation of persistent homology.
Journal of Machine Learning Research, 18(8):1–35,
2017.

Boucheron, S., Lugosi, G., and Massart, P. Concen-
tration inequalities: A nonasymptotic theory of inde-
pendence. Oxford University Press, 2013.

Bourne, D. P., Schmitzer, B., and Wirth, B. Semi-
discrete unbalanced optimal transport and quantiza-
tion. arXiv preprint arXiv:1808.01962, 2018.

Bubenik, P. Statistical topological data analysis using
persistence landscapes. The Journal of Machine
Learning Research, 16(1):77–102, 2015.

Bubenik, P. and Wagner, A. Embeddings of persis-
tence diagrams into Hilbert spaces. arXiv preprint
arXiv:1905.05604, 2019.

Buchet, M., Hiraoka, Y., and Obayashi, I. Persistent
homology and materials informatics. In Nanoinfor-
matics, pp. 75–95. Springer, Singapore, 2018.

Cámara, P. G. Topological methods for genomics:
present and future directions. Current opinion in
systems biology, 1:95–101, 2017.

Carrière, M., Oudot, S. Y., and Ovsjanikov, M. Stable
topological signatures for points on 3d shapes. In
Computer Graphics Forum, volume 34, pp. 1–12.
Wiley Online Library, 2015.

Carrière, M., Cuturi, M., and Oudot, S. Sliced Wasser-
stein kernel for persistence diagrams. In 34th Inter-
national Conference on Machine Learning, 2017.

Carriere, M., Chazal, F., Ike, Y., Lacombe, T., Royer,
M., and Umeda, Y. Perslay: A neural network layer
for persistence diagrams and new graph topological
signatures. stat, 1050:17, 2019.

Chazal, F., De Silva, V., Glisse, M., and Oudot, S.
The structure and stability of persistence modules.
Springer, 2016.

Chazal, F., Levrard, C., and Royer, M. Optimal quan-
tization of the mean measure and application to clus-
tering of measures. arXiv preprint arXiv:2002.01216,
2020.

Cohen-Steiner, D., Edelsbrunner, H., and Harer, J.
Stability of persistence diagrams. Discrete & Com-
putational Geometry, 37(1):103–120, 2007.

Cohen-Steiner, D., Edelsbrunner, H., Harer, J., and
Mileyko, Y. Lipschitz functions have Lp-stable per-
sistence. Foundations of computational mathematics,
10(2):127–139, 2010.

Cuturi, M. and Doucet, A. Fast computation of Wasser-
stein barycenters. In International Conference on
Machine Learning, pp. 685–693, 2014.

Divol, V. A short proof on the rate of convergence of
the empirical measure for the wasserstein distance.
arXiv preprint arXiv:2101.08126, 2021.

Divol, V. and Chazal, F. The density of expected
persistence diagrams and its kernel based estimation.
Journal of Computational Geometry, 10(2):127–153,
2019.

Divol, V. and Lacombe, T. Understanding the topology
and the geometry of the space of persistence diagrams
via optimal partial transport. Journal of Applied and
Computational Topology, pp. 1–53, 2020.

Divol, V. and Polonik, W. On the choice of weight
functions for linear representations of persistence
diagrams. Journal of Applied and Computational
Topology, 3(3):249–283, 2019.

Dudley, R. M. The speed of mean Glivenko-Cantelli
convergence. The Annals of Mathematical Statistics,
40(1):40–50, 1969.

Edelsbrunner, H. and Harer, J. Computational topology:
an introduction. American Mathematical Soc., 2010.

Edelsbrunner, H., Letscher, D., and Zomorodian, A.
Topological persistence and simplification. In Pro-
ceedings 41st annual symposium on foundations of
computer science, pp. 454–463. IEEE, 2000.

Figalli, A. and Gigli, N. A new transportation distance
between non-negative measures, with applications to
gradients flows with dirichlet boundary conditions.
Journal de mathématiques pures et appliquées, 94(2):
107–130, 2010.

Fischer, A. Quantization and clustering with Bregman
divergences. Journal of Multivariate Analysis, 101
(9):2207–2221, 2010.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z.,
Boisbunon, A., Chambon, S., Chapel, L., Corenflos,
A., Fatras, K., Fournier, N., et al. Pot: Python
optimal transport. Journal of Machine Learning
Research, 22(78):1–8, 2021.

Fournier, N. and Guillin, A. On the rate of convergence
in Wasserstein distance of the empirical measure.



Estimation and quantization of EPDs

Probability Theory and Related Fields, 162(3-4):707–
738, 2015.

Gonin, R. Nonlinear Lp-norm estimation, volume 100.
CRC Press, 1989.

Graf, S. and Luschgy, H. Foundations of quantization
for probability distributions. Springer, 2007.

Hardle, W., Park, B., and Tsybakov, A. Estimation of
non-sharp support boundaries. Journal of Multivari-
ate Analysis, 55(2):205–218, 1995.

Härdle, W., Kerkyacharian, G., Picard, D., and Tsy-
bakov, A. Wavelets, approximation, and statistical
applications, volume 129. Springer Science & Busi-
ness Media, 2012.

Kloeckner, B. R. Empirical measures: regularity is a
counter-curse to dimensionality. ESAIM: Probability
and Statistics, 24:408–434, 2020.

Lacombe, T. Statistics for topological descriptors us-
ing optimal transport. Theses, Institut Polytech-
nique de Paris, September 2020. URL https://hal.
archives-ouvertes.fr/tel-02979251.

Lacombe, T., Cuturi, M., and Oudot, S. Large scale
computation of means and clusters for persistence
diagrams using optimal transport. In Advances in
Neural Information Processing Systems, 2018.

Lei, J. et al. Convergence and concentration of em-
pirical measures under Wasserstein distance in un-
bounded functional spaces. Bernoulli, 26(1):767–798,
2020.

Levrard, C. Quantization/clustering: when and why
does k-means work? Journal de la Société Française
de Statistique, 159(1):1–26, 2018.

Levrard, C. et al. Nonasymptotic bounds for vector
quantization in Hilbert spaces. The Annals of Statis-
tics, 43(2):592–619, 2015.

Li, C., Ovsjanikov, M., and Chazal, F. Persistence-
based structural recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1995–2002, 2014.

Lloyd, S. Least squares quantization in PCM. IEEE
transactions on information theory, 28(2):129–137,
1982.

Maria, C., Boissonnat, J.-D., Glisse, M., and Yvinec,
M. The gudhi library: simplicial complexes and
persistent homology. In International Congress on
Mathematical Software, pp. 167–174. Springer, 2014.

Megiddo, N. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM journal on
computing, 12(4):759–776, 1983.

Reininghaus, J., Huber, S., Bauer, U., and Kwitt, R.
A stable multi-scale kernel for topological machine
learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4741–
4748, 2015.

Saadatfar, M., Takeuchi, H., Robins, V., Francois, N.,
and Hiraoka, Y. Pore configuration landscape of
granular crystallization. Nature communications, 8
(1):1–11, 2017.

Santambrogio, F. Optimal transport for applied math-
ematicians. Birkäuser, NY, 2015.

Singh, S. and Póczos, B. Minimax distribution es-
timation in Wasserstein distance. arXiv preprint
arXiv:1802.08855, 2018.

Tang, C. and Monteleoni, C. On Lloyd’s algorithm:
new theoretical insights for clustering in practice. In
Artificial Intelligence and Statistics, pp. 1280–1289.
PMLR, 2016.

Trillos, N. G. and Slepčev, D. On the rate of con-
vergence of empirical measures in ∞-transportation
distance. Canadian Journal of Mathematics, 67(6):
1358–1383, 2015.

Tsybakov, A. B. Introduction to Nonparametric Esti-
mation. Springer Publishing Company, Incorporated,
1st edition, 2008. ISBN 0387790519.

Turner, K., Mileyko, Y., Mukherjee, S., and Harer,
J. Fréchet means for distributions of persistence
diagrams. Discrete & Computational Geometry, 52
(1):44–70, 2014.

Vidal, J., Budin, J., and Tierny, J. Progressive Wasser-
stein barycenters of persistence diagrams. IEEE
transactions on visualization and computer graphics,
26(1):151–161, 2019.

Villani, C. Optimal transport: old and new, volume
338. Springer Science & Business Media, 2008.

Wagner, A. Nonembeddability of persistence diagrams
with p > 2 Wasserstein metric. arXiv preprint
arXiv:1910.13935, 2019.

Weed, J. and Berthet, Q. Estimation of smooth den-
sities in Wasserstein distance. In Conference on
Learning Theory, pp. 3118–3119. PMLR, 2019.

https://hal.archives-ouvertes.fr/tel-02979251
https://hal.archives-ouvertes.fr/tel-02979251


Estimation and quantization of EPDs

Zhao, Q. andWang, Y. Learning metrics for persistence-
based summaries and applications for graph classifi-
cation. Advances in neural information processing
systems (NeurIPS), 2019.

Zieliński, B., Lipiński, M., Juda, M., Zeppelzauer, M.,
and Dłotko, P. Persistence bag-of-words for topolog-
ical data analysis. arXiv preprint arXiv:1812.09245,
2018.

Zieliński, B., Lipiński, M., Juda, M., Zeppelzauer, M.,
and Dłotko, P. Persistence codebooks for topological
data analysis. Artificial Intelligence Review, pp. 1–41,
2020.

Zomorodian, A. and Carlsson, G. Computing persistent
homology. Discrete & Computational Geometry, 33
(2):249–274, 2005.



Estimation and quantization of EPDs

Supplementary Material for: Estimation
and Quantization of Expected
Persistence Diagrams

A. Proofs of Section 3
We let µ(f) denote the integral of some function f :
Ω→ R against the measure µ.
Lemma 3. Let P be a probability measure onMp such
that EP [Persp(µ)] <∞. Let (µn)n≥1 be a sequence of
i.i.d. variables of law P and let µn = 1

n (µ1 + · · ·+ µn).
Then,

OTp(µn,E(P )) −−−−→
n→∞

0 almost surely. (A.1)

Proof of Lemma 3. By the strong law of large num-
bers applied to the function ‖ · −∂Ω‖p, we have
Persp(µn) → Persp(E(P )) almost surely. Also, for
any continuous function f : Ω→ R with compact sup-
port, we have µn(f) → E(P )(f) almost surely. This
convergence also holds almost surely for any countable
family (fi)i of functions. Applying this result to a
countable convergence-determining class for the vague
convergence, we obtain that (µn)n converges vaguely
towards E(P ) almost surely. We conclude thanks to
(Divol & Lacombe, 2020, Thm 3.7).

Before proving Theorem 1, we give a general up-
per bound on the distance OTp between two mea-
sures in Mp. The bound is based on a classical
multiscale approach to control a transportation dis-
tance between two measures, appearing for instance
in (Singh & Póczos, 2018). Let J ∈ N. For k ≥ 0,
let Bk = {x ∈ AL, ‖x − ∂Ω‖ ∈ (L2−(k+1), L2−k]}.
The sets {Bk}k≥0 form a partition of AL. We then
consider a sequence of nested partitions {Sk,j}Jj=1 of
Bk, where Sk,j is made of Nk,j squares of side length
εk,j = L2−(k+1)2−j . See also Figure 5. Let µ|Bk be
the measure µ restricted to Bk and µk = µ|Bk

µ(Bk) be
the conditional probability on Bk. If µ(Bk) = 0, we
let µk be any fixed measure, for instance the uniform
distribution on Bk.
Lemma 4. Let µ, ν be two measures inMp, supported
on AL. Then, for any J ≥ 0, with cp = 2−p/2(1 +
1/(2p − 1)),

OTpp(µ, ν) ≤ 2p/2Lp
∑
k≥0

2−kp
(

2−Jp(µ(Bk) ∧ ν(Bk))

+ cp|µ(Bk)− ν(Bk)|+
∑

1≤j≤J
S∈Sk,j−1

2−jp|µ(S)− ν(S)|
)
.

Proof. Denote by mk the quantity µ(Bk)∧ ν(Bk). Let
πk ∈ Π(µk, νk) be an optimal plan (in the sense of

AL

B0

B1

S1,1

∂Ω

Figure 5. Partition of AL used in the proof of Theorem 1

Wp) between the probability measures µk and νk. If
µ(Bk) ≤ ν(Bk), then µ(Bk)πk transports mass be-
tween µ|Bk and µ(Bk)

ν(Bk)ν|Bk . We then build an admissi-
ble plan between µ(Bk)

ν(Bk)ν|Bk and ν|Bk by transporting(
1− µ(Bk)

ν(Bk)

)
ν|Bk to the diagonal, with cost bounded

by
(

1− µ(Bk)
ν(Bk)

)
ν(Bk)(L2−k)p. Acting in a similar way

if ν(Bk) ≤ µ(Bk), we can upper bound OTpp(µ, ν) by∑
k≥0

(
mkW

p
p (µk, νk) + Lp2−kp|µ(Bk)− ν(Bk)|

)
.

(A.2)
Lemma 6 in (Singh & Póczos, 2018) shows that

W p
p (µk, νk) ≤ 2p/2Lp2−(k+1)p

(
2−Jp

+
∑

1≤j≤J
S∈Sk,j−1

2−jp|µk(S)− νk(S)|
)
. (A.3)

Furthermore, one can check that for any S ⊂ Bk

mk|µk(S)− νk(S)| ≤

|µ(S)− ν(S)|+ ν(S) ∧ µ(S)
µ(Bk) ∨ ν(Bk) |µ(Bk)− ν(Bk)|.

By summing over S ∈ Sk,j−1, we obtain that

mk

∑
S∈Sk,j−1

|µk(S)− νk(S)|

≤ |µ(Bk)− ν(Bk)|+
∑

S∈Sk,j−1

|µ(S)− ν(S)|.
(A.4)

Using
∑J
j=1 2−pj ≤ 2−p/(1 − 2−p), and putting to-

gether inequalities (A.2), (A.3) and (A.4), one obtains
the inequality of Lemma 4.

Before proving Theorem 1, we state a useful inequality.
Let µ ∈ Mq

M,L and let B ⊂ Ω be at distance ` from
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the diagonal ∂Ω. Then,

µ(B) =
∫
B

‖x− ∂Ω‖q

‖x− ∂Ω‖q dµ(x) ≤M`−q. (A.5)

Proof of Theorem 1. Consider a distribution P ∈
PqM,L. Remark first that for any measure µ ∈ Mq

M,L,
we have µ(Bk) ≤ ML−q2kq one by (A.5). Let µ be
a random persistence measure of law P and µn be
the empirical EPD associated to a n-sample of law P .
By the Cauchy-Schwartz inequality, given a Borel set
A ⊂ Ω, we have

E|µn(A)−E(P )(A)| ≤
√

E[µ(A)2]
n

. (A.6)

The Cauchy-Schwartz inequality also yields, as
|Sk,j−1| = 2k+14j−1,∑
S∈Sk,j−1

E|µ̂n(S)−E(P )(S)| ≤
∑

S∈Sk,j−1

√
E[µ(S)2]

n

≤

√√√√E
[∑

S∈Sk,j−1
µ(S)2

]
n

|Sk,j−1|

≤
√

E [µ(Bk)2]
n

|Sk,j−1| ≤
ML−q2kq√

n
2
k+1

2 2j−1.

Note also that
∑
S∈Sk,j−1

E|µ̂n(S) − E(P )(S)| ≤
2E(P )(Bk) ≤ 2ML−q2kq and that µn(Bk) ∧
E(P )(Bk) ≤ ML−q2kq. By using those three previ-
ous inequalities, Lemma 4 and inequality (A.6), we
obtain that E[OTpp(µn,E(P ))] is smaller than

2p/2MLp−q
∑
k≥0

2−kp
(

2−Jp2kq + cp√
n

2kq

+
J∑
j=1

2−jp2kq
(

2 ∧ 2 k+1
2 2j−1
√
n

))
≤ cp,qMLp−q

(
2−Jp + 1√

n
+ U

)
,

where U =
∑
k≥0

∑J
j=1 2k(q−p)2−jp

(
1 ∧ 2

k
2 2j√
n

)
. To

bound U , we remark that if k ≥ log2(n), then the
minimum in the definition of U is equal to 1. Therefore,
letting bJ = 1 if p > 1 and bJ = J if p = 1, we find
that U is smaller than
log2(n)∑
k=0

J∑
j=1

2k(q−p+1/2)2(1−p)j
√
n

+
∑

k≥log2(n)

J∑
j=1

2−kp2−jp

≤ cpbJ
∑

k<log2(n)

2k(q+1/2−p)
√
n

+ cpn
−p

≤ cp,qbJ(n−1/2 ∨ nq−p).

AL

L
2

UL

L
2

∂Ω

Figure 6. In the box UL, the distance ρ is equal to the
Euclidean distance.

Eventually, if p > 1, we may set J = +∞ and obtain
a bound of order MLp−q(n−1/2 + nq−p). If p = 1, we
choose J = (q−p)(logn)/(2p) to obtain a rate of order
n−1/2 + nq−p logn.

Proof of Theorem 2. As Pq,sL,M,T ⊂ P
q
L,M , we have

Rn(PqL,M ) ≥ Rn(Pq,sL,M,T ). Therefore, Theorem 3,
whose proof is found below, directly implies Theorem
2.

Proof of Theorem 3. We first consider the case q = 0.
If µ, ν are two measures on Ω of mass smaller than M ,
then OTp(µ, ν) = Wp,ρ(Φ(µ),Φ(ν)) (Divol & Lacombe,
2020, Prop. 3.15), where ρ is the distance on Ω̃ :=
Ω ∪ {∂Ω} defined by ∀x, y ∈ Ω̃,

ρ(x, y) = min(‖x− y‖, d(x, ∂Ω) + d(y, ∂Ω))

and Φ(µ) = µ+ (2M − |µ|)δ∂Ω. Remark that ρ(x, y) =
‖x− y‖ if x, y ∈ UL, where UL ⊂ AL is any `1-ball of
radius L/

√
8 at distance L/2 from the diagonal, see

Figure 6. As Φ is a bijection, the minimax rates for
the estimation of E(P ) is therefore equal to

inf
Φ(µ̂n)

sup
P∈P0,s

L,M,T

E[W p
p,ρ(Φ(µ̂n),Φ(E(P )))].

Let Q be the set of probability measures on UL whose
densities belong to Bsp′,q′ with associated norm smaller
than T/M . Then, P0,s

M,L,T contains in particular the set
of all distributions P for which µ ∼ P satisfies Φ(µ) =
Mδx and x is sampled according to some law τ ∈ Q.
For such a distribution P , one has Φ(E(P )) = Mτ , so
that the minimax rate is larger than

inf
ân

sup
τ∈Q

E[W p
p (ân,Mτ)],
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where the infimum is taken on all measurable func-
tions based on K observations of the form Mδxi with
x1, . . . , xn a n-sample of law τ ∈ Q. Hence, we have
shown that the minimax rate for the estimation of E(P )
with respect to OTp is larger up to a factor M than
the minimax rate for the estimation of τ ∈ Q given n
i.i.d. observations of law τ . As the minimax rate for
this problem is known to be larger than Lp/

√
n (Weed

& Berthet, 2019, Thm. 5), we obtain the conclusion in
the case q = 0.

For the general case q > 0, we remark that if M ′ =
ML−q then P0,s

M ′,L is included in Pq,sM,L,T . In particular,
the minimax rate on Pq,sM,L,T is larger than the minimax
rate on P0,s

M ′,L,T , which is larger than cM
′Lp√
n

= cMLp−q√
n

for some constant c > 0.

Remark 3 (Case p = ∞). It can be shown that for
p =∞, the minimax rate is larger than can−a, ∀a > 0.
This is a consequence of an inequality between the OT∞
distance and the distance between the support of the
measures, for which minimax rates are known (Hardle
et al., 1995). This means that no reasonable estimator
exists on PL,M∞: some additional conditions should
be added, while standard assumptions in the support
estimation literature seem artificial in our context (as
in Remark 1).

B. Delayed proofs from Section 4.1
Proof of Lemma 2. Fix a codebook c = (c1 . . . ck). Let
Tc : x 7→ cj if x ∈ Vj(c) (1 ≤ j ≤ k) and proj∂Ω(x)
if x ∈ Vk+1(c), where proj∂Ω(x) denotes the orthog-
onal projection of a point x ∈ Ω on the diagonal
∂Ω. Let π be the pushforward of µ by the map
x 7→ (x, Tc(x)), extended on Ω × Ω by π(U,Ω) = 0
for U ⊂ ∂Ω (intuitively, π pushes the mass of µ on
their nearest neighbor in {c1 . . . ck+1}). One has, for
A,B ⊂ Ω, π(A,Ω) = µ((id, Tc)−1(A,Ω)) = µ(A), and
π(Ω, B) = µ(T−1

c (B)) =
∑
j µ(Vj(c))1{cj ∈ B}, that

is π is an admissible between the measures µ and∑
j µ(Vj(c))δcj . Hence,

OTpp

µ,∑
j

µ(Vj(c))δcj

≤ ∫
Ω

min
1≤j≤k+1

‖x−cj‖pdµ(x).

Let (m1 . . .mk) be a vector of non-negative weights,
let ν =

∑k
j=1mjδcj , and π be an admissible transport

plan between µ and ν. One has∫
Ω×Ω
‖x− y‖pdπ(x, y) =

k+1∑
j=1

∫
Ω
‖x− cj‖pdπ(x, cj)

≥
k+1∑
j=1

∫
Ω

min
j′
‖x− cj′‖pdπ(x, cj)

≥
∫

Ω
min
j′
‖x− cj′‖pdµ(x)

≥OTpp

µ, k∑
j=1

µ(Vj(c))δcj

 .

Taking the infimum over π gives the conclusion.

We now turn to the proof of Proposition 4. For technical
reasons, we extend the function Rk to Ωk, by noting
that if cj ∈ ∂Ω, then the Voronoï cell Vj(c) is empty
by definition, see (4.1).
Lemma 5. Let c ∈ Ωk be such that there exists 1 ≤
j ≤ k with µ(Vj(c∗)) = 0. Then, Rk(c) > R∗k.

In particular, if two centroids of a codebook c are equal
or if a centroid cj of c belongs to ∂Ω, then the condition
of the above lemma is satisfied, so that the c cannot be
optimal. This proves the second part of Proposition 4.

Proof of Lemma 5. Let c = (c1, . . . , ck) ∈ Ωk. Assume
without loss of generality that µ(V1(c)) = 0. Let c0 =
(c2, . . . , ck) ∈ Ωk−1 (that is, c where we removed the
first centroid). Assume first that µ(Vk+1(c)) > 0, that
is there is some mass transported onto the diagonal.
Consider a compact subset A ⊂ Vk+1(c) such that
µ(A) > 0 and the diameter diam(A) of A is smaller
than the distance d(A, ∂Ω) between A and ∂Ω. Let
c′ ∈ A and observe that, for x ∈ A, ‖x−c′‖ < ‖x−∂Ω‖.
Therefore,∫

A

‖x− c′‖pdµ(x) <
∫
A

‖x− ∂Ω‖pdµ(x).

Consider the measure ν = µ̂(c0) + µ(A)δc′ . Then

OTpp(ν, µ) ≤
k∑
j=1

∫
Vj(c)

‖x− cj‖pdµ(x)

+
∫
Vk+1(c)\A

‖x− ∂Ω‖pdµ(x) +
∫
A

‖x− c′‖pdµ(A)

<Rk(c),

thus c cannot be optimal. We can thus assume that
µ(Vk+1(c)) = 0, in which case we can reproduce the
proof of (Graf & Luschgy, 2007, Thm 4.1), which gives
that c cannot be optimal either in that case, yielding
the conclusion.
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Lemma 6. Rk is continuous.

Proof of Lemma 6. For a given x ∈ Ω, the map c 7→
mini ‖x − ci‖p is continuous and upper bounded by
‖x − ∂Ω‖p. Thus, Rk is continuous by dominated
convergence as we have finite Persp.

Lemma 7. Let 0 ≤ λ < R∗k−1. Then, the set {c ∈
Ωk, Rk(c) ≤ λ} is compact.

Proof of Lemma 7. Fix λ < R∗k−1. The set is closed
by continuity of Rk, so that it suffices to show that
it is bounded. Let c be such that Rk(c) ≤ λ.
Pick L such that

∫
AL
‖x − ∂Ω‖pdµ(x) ≥ λ and∫

Ac
L
‖x − ∂Ω‖pdµ(x) < R∗k−1 − λ. Such a L exists

since
∫

Ω ‖x − ∂Ω‖pdµ(x) = Persp(µ) = R∗0 ≥ R∗k−1.
Then, all the cjs must be in A2L. Indeed, assume with-
out loss of generality that c1 ∈ Ac2L. Then V1(c) ⊂ AcL,
as any point in AL is closer to the diagonal than to c1.
Therefore,

R∗k−1 ≤
k+1∑
j=2

∫
Vj(c)

‖x− cj‖pdµ(x)

+
∫
V1(c)

min
j∈{2...k+1}

‖x− cj‖pdµ(x)

≤Rk(c) +
∫
V1(c)

‖x− ∂Ω‖pdµ(x)

≤Rk(c) +
∫
Ac
L

‖x− ∂Ω‖pdµ(x)

<λ+R∗k−1 − λ = R∗k−1,

leading to a contradiction.

Proof of Proposition 4. We show by recursion on 0 ≤
m ≤ k that R∗m < R∗m−1 and that Cm is a non-empty
compact set (with the convention R∗−1 = +∞. The
initialization holds as R∗0 = Persp(µ) < +∞ with the
empty codebook being optimal. We now prove the
induction step. Let c = (c1, . . . , cm−1) ∈ Cm−1. Con-
sider c′ = (c1, c1, c2, . . . , cm−1). Then, µ(V1(c′)) = 0,
so that R∗m−1 = Rm−1(c) = Rm(c′) > R∗m by Lemma 5.
Furthermore, pick λ ∈ (R∗m, R∗m−1). Then, R∗m is equal
to the infimum of Rm on the set {c ∈ Ωk, Rm(c) ≤ λ},
which is compact according to Lemma 7. As the func-
tion Rk is continuous, the set of minimizers Cm is
a non-empty compact set, concluding the induction
step.

Proof of Corollary 1. The quantities being minimized
in the definitions ofDmin andmmin are both continuous
functions of c∗. As the set Ck is compact, the minima

are attained, and cannot be equal to 0 according to
Proposition 4.

C. Proof of Theorem 5.
In the following, we fix a distribution P supported on
Mp

L,M and we consider c∗ be an optimal codebook
of E(P ). The different constants encountered in this
section all depend on the parameters p, L,M, k,Dmin
and mmin. In particular, we introduce the quantity

mmax := sup
µ∈Mp

L,M

sup
1≤j≤k

µ(Vj(c∗)).

Note that mmax ≤ 2pM
Dpmin

as
∫
Vj(c∗) dµ(x) ≤

2p
Dpmin

∫
Vj(c∗) ‖x− ∂Ω‖pdµ(x).

The proof of Theorem 5 follows the proof of (Chazal
et al., 2020, Thm. 5). As a first step, we show that it
is enough to prove the following lemma, which relates
the loss of c(t) and the loss of c(t+1).
Lemma 8. There exists R0 > 0 such that, if ‖c(0)

j −
c∗j‖ ≤ R0 for 1 ≤ j ≤ k, then

E‖c(t+1)−c∗‖2 ≤
(

1− C0

t+ 1

)
E‖c(t)−c∗‖2+ C1

(t+ 1)2 ,

for some constants C0 > 1, C1 > 0.

Proof of Theorem 5. From Lemma 8, we show by in-
duction that ut := E‖c(t) − c∗‖2 satisfies ut ≤ α

t+1 for
α = C1/(C0 − 1). This concludes the proof as T is of
order n/ log(n). The initialization holds by assumption
as long as R0 ≤ α, whereas we have by induction

ut+1 ≤
(

1− C0

t+ 1

)
α

t+ 1 + C1

(t+ 1)2

≤ α

(t+ 1)2 (t+ 1− C0 + C1/α) = αt

(t+ 1)2 ,

which is smaller than α/(t+ 2).

The proof of Lemma 8 is a close adaptation of (Chazal
et al., 2020, Lemma 21). The proof of the latter
contains tedious computations (that we do not repro-
duce here) which can be adapted mutatis mutandis
to our setting once the two following key results are
shown. Given a codebook c, we let pj(c) = E(P )(Vj(c))
and similarly, given a n-sample µ1, . . . , µn of law P ,
we let p̂j(c) = µn(Vj(c)). Note that if ‖c − c∗‖ is
small enough, one has pj(c) ≤ 2mmax. Also, we
let wp(c, µ)j := µ(Vj(c))vp(c, µ)j for µ ∈ Mp and
1 ≤ j ≤ k. Recall that we assume that the EPD
E(P ) satisfies the margin condition (Definition 2) with
parameters λ and r0 around the optimal codebook c∗.
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Lemma 9 (Lemma 22 in (Chazal et al., 2020)). Let
R0 be small enough respect to r0D

2
min/L

2 and let c be
such that ‖c− c∗‖ ≤ R0. Then, we have

k∑
j=1
|pj(c)− pj(c∗)| ≤ 2λr0,

and

‖w2(c,E(P ))− w2(c∗,E(P ))‖ ≤ 7
√

2λ L3

D2
min
‖c− c∗‖.

As w2(c∗,E(P ))j = pj(c∗)c∗j , Lemma 9 indicates that
the application w2(·,E(P )) is Lipschitz continuous
around an optimal codebook c∗, a key property to
show the convergence of the sequence (c(t))t.
Lemma 10 (Lemma 24 in (Chazal et al., 2020)). Let
c be a codebook such that p̂j(c) ≤ 2mmax (which is
always possible if ‖c − c∗‖ is small enough). Then,
with probability larger than 1− 2ke−x, we have, for all
1 ≤ j ≤ k,

|p̂j(c)− pj(c)| ≤
√

4mmaxpj(c)x
n

+ 2mmaxx

3n . (C.1)

Moreover, with probability larger than 1− e−x, we have

‖w2(c, µn)−w2(c,E(P ))‖ ≤ 2mmaxL

√
2k
n

(
1 +

√
x

2

)
.

(C.2)

The proof of this lemma follows from standard concen-
tration inequalities.

Proof of Lemma 10. Equation (C.1) follows from Bern-
stein inequality applied to the real-valued random vari-
able 0 ≤ p̂j(c) ≤ 2mmax, with variance bounded by
E[µ(Vj(c))2]/n ≤ mmaxpj(c)/n.

For equation (C.2), we introduce the function fj : x 7→
x1{x ∈ Vj(c)}, so that w2(c, µ)j = µ(fj), the integral
of fj against µ. We have w2(c, µn)j − w2(c,E(P ))j =
n−1∑n

i=1(µi(fj) − E(P )(fj)). Note that ‖µi(fj)‖ ≤√
2L · 2mmax. We write

E

∥∥∥∥∥ 1
n

n∑
i=1

(µi(fj)−E(P )(fj))j

∥∥∥∥∥
≤

√√√√E

∥∥∥∥∥ 1
n

n∑
i=1

(µi(fj)−E(P )(fj))j

∥∥∥∥∥
2

≤
√

1
n
E ‖(µ1(fj))j‖2 ≤ 2

√
k

n

√
2Lmmax.

∂Ω

c∗
c

t

xu

Pc∗

Pc

Figure 7. Illustration of the proof of Lemma 9

Also, note that F (µ1, . . . , µn) = ‖w2(c, µn) −
w2(c,E(P ))‖ satisfies a bounded difference condition
of parameter 4

√
2Lmmax (Boucheron et al., 2013,

Sec. 6.1). A bounded difference inequality (Boucheron
et al., 2013, Thm. 6.2) yields the result.

The proof of Lemma 9 relies on the following lemma,
that essentially tells that the area of misclassified points
when using a codebook c instead of an optimal one c∗
can be controlled linearly in terms of ‖c∗ − c‖. Note
that this result is well-known when boundaries between
the cells are hyperplanes (as it is the case in standard
quantization), it remains to treat the case when the
boundary is a parabola. Let d(x,A) be the distance
from a point x ∈ Ω to A ⊂ Ω.
Lemma 11. Let c∗ be an optimal codebook, and c ∈
AkL. Let x ∈ AL and 1 ≤ j ≤ k. Assume that x ∈
Vj(c∗) ∩ Vk+1(c). Then, d(x, ∂Vj(c∗)) ≤ 7L2

2D2
min
‖c∗ −

c‖. Symmetrically, if x ∈ Vk+1(c∗) ∩ Vj(c), one has
d(x, ∂Vk+1(c∗)) ≤ 7L2

2D2
min
‖c∗ − c‖.

Proof of Lemma 11. For convenience, we write in this
proof the coordinates of points in the basis (∂Ω, ∂Ω⊥),
that x ∈ Ω will have coordinates (a, b) where a is the
projection of x on ∂Ω and b = ‖x− ∂Ω‖. Also, given
y = (a, b) ∈ Ω, we let Py be the parabola with focus y
and directrix ∂Ω. To put it another way, if y = (a, b),
then Py is the image of ∂Ω by the map

f(a, b, ·) : t 7→ (t− a)2

2b + b

2 .

One can check that for all t ∈ [−L/2, L/2], if b =
‖y − ∂Ω‖ ≥ Dmin, we have

∣∣∣∂f∂a ∣∣∣ ≤ L
Dmin

and
∣∣∣∂f∂b ∣∣∣ ≤

1
2 + (t−a)2

b
1
b ≤

1
2 + 2L2

D2
min

.

Let c∗j = (a∗, b∗) and cj = (a, b). Let x = (t, u) ∈
Vj(c∗) ∩ Vk+1(c). Then, u ≥ f(a∗, b∗, t), whereas u ≤
f(a, b, t). The distance d(x, ∂Vj(c∗)) is smaller than
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Figure 8. (Left) Two observations of the ORBIT5K dataset from two different classes (whose dynamics depend on a parameter
r, see (Adams et al., 2017) for details). (Right) The empirical EPD (orange) observed for these two classes and the
corresponding quantization obtained using our OT2 algorithm with k = 2 and the W2 algorithm (Chazal et al., 2020)
with k = 3. As we account for the diagonal in a natural geometric way in our formulation, our quantization reflects the
structure of the empirical EPD in a better way. This is especially striking in the case r = 4.1 (most right plot) where a
centroid for the W2 algorithm is deviated to a peculiar position due to the presence of few points close to the diagonal.
Such points belong to the diagonal cell Vk+1 in our setting.

u− f(a∗, b∗, t)

u− f(a∗, b∗, t) ≤ f(a, b, t)− f(a∗, b∗, t)
≤ |f(a∗, b∗, t)− f(a, b∗, t)|+ |f(a, b∗, t)− f(a, b, t)|

≤
∫ a∨a∗

a∧a∗

∣∣∣∣∂f∂a (α, b∗, t)
∣∣∣∣dα+

∫ b∨b∗

b∧b∗

∣∣∣∣∂f∂b (a, β, t)
∣∣∣∣ dβ

≤ L

Dmin
|a− a∗|+

(
1
2 + 2L2

D2
min

)
|b− b∗|

≤
(

1
2 + L

Dmin
+ 2L2

D2
min

)
‖c− c∗‖ ≤ 7

2
L2

D2
min
‖c− c∗‖,

which proves the claim.

Proof of Lemma 9. This proof is inspired from (Lev-
rard et al., 2015, Appendix A.3). Let us prove the first
point. One has, with t = 7L2

2D2
min
‖c− c∗‖ ≤ r0,

k∑
j=1
|pj(c)− pj(c∗)| =

k∑
j=1
|E(P )(Vj(c))−E(P )(Vj(c∗)|

≤ 2
∑
j

∑
j′ 6=j

E(P )(Vj(c) ∩ Vj′(c∗))

≤ 2E(P )[N(c∗)t] ≤ 2λt ≤ 2λr0.

where we applied Lemma 11 and the margin condi-
tion. To prove the second inequality, remark that

1.0 1.2 1.4 1.6 1.8 2.0 2.2

log10(n)

−6

−5

−4

−3

−2

−1

0

lo
g 1

0
O

T
p
(µ

n
,µ

2n
m

a
x
)p

p = 1, (y = −0.59x+ 1.07)

p = 2, (y = −0.58x− 0.28)

p = 4, (y = −0.57x− 2.77)

p = 6, (y = −0.57x− 5.13)

Figure 9. Convergence for p = 1, 2, 4, 6, each exhibiting a
rate ∼ n−1/2.

w2(c,E(P ))j =
∫
Vj(c) xdE(P )(x). Therefore,

‖w2(c,E(P ))− w2(c∗,E(P ))‖

≤
k∑
j=1
‖w2(c,E(P ))j − w2(c∗,E(P ))j‖

≤
k∑
j=1

∥∥∥∥∥
∫
Vj(c)

xdE(P )(x)−
∫
Vj(c∗)

xdE(P )(x)

∥∥∥∥∥
≤ 2

∑
j

∑
j′ 6=j

∫
Vj(c)∩Vj′ (c∗)
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D. Complementary experiments
Figure 9 showcases the convergence rate of the empirical
EPD using the same setting as in Figure 4 (points
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sampled on the surface of the torus) for different values
of p, each of them exhibiting a rate of n−1/2.

We perform a complementary experiment on the
ORBIT5K dataset (Adams et al., 2017, §6.4.1), a bench-
mark dataset in TDA made of 5 classes with 1000 ob-
servations each (split into 70%/30% training/test) rep-
resenting different dynamical systems, turned into PDs
through Čech filtrations. For each class i ∈ {1, . . . , 5},
we compute a 2-quantization ν(i) using our OT2 algo-
rithm and a 3-quantization ζ(i) using the standard W2
approach as in (Chazal et al., 2020), i.e. without the
diagonal cell Vk+1 (but with an additional centroid).
We then build two simple classifiers: the predicted class
assigned to a test diagram µ is arg mini{OT2(µ, ν(i))}
(resp. (µ, ζ(i))). Our OT2 classifier achieves a decent
test accuracy of 61%. Advanced (kernels, deep-learning)
methods in TDA reach between 72% and 87% of ac-
curacy (Carriere et al., 2019, Table 1); but we stress
that our classifier is extremely simple (we summarize
a whole training class by a measure with only k = 2
points!), showcasing that our quantizations summarize
the training PDs in an informative way. More impor-
tantly, the W2 classifier (with k = 3) only achieves 50%
of test accuracy even though benefiting from an addi-
tional centroid, illustrating the importance of properly
accounting for the diagonal as done in our approach.


