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ABSTRACT

In this paper, a new method to track brain effective connectivity networks in the context
of epilepsy is proposed. It relies on the combination of partial directed coherence with a
constrained low-rank canonical polyadic tensor decomposition. With such combination
being established, the most dominating directed graph structures underlying each time
window of intracerebral electroencephalographic signals are optimally inferred. Obtained
time and frequency signatures of inferred brain networks allow respectively to track the
time evolution of these networks and to define frequency bands on which they are operating.
Besides, the proposed method allows also to track brain connectivity networks through
several epileptic seizures of the same patient. Understanding the most dominating directed
graph structures over epileptic seizures and investigating their behavior over time and
frequency plans are henceforth possible. Since only few but the the most important directed
connections in the graph structure are of interest and also for a meaningful interpretation of
obtained signatures to be guaranteed, the low-rank canonical polyadic tensor decomposition
is prompted respectively by the sparsity and the non-negativity constraints on the tensor
loading matrices. The main objective of this contribution is to propose a new way of tracking
brain networks in the context of epileptic iEEG data by identifying the most dominant
effective connectivity patterns underlying the observed iEEG signals at each time window.
The performance of the proposed method is firstly evaluated on simulated data imitating
brain activities and secondly on real intracerebral electroencephalographic signals obtained
from an epileptic patient. The partial directed coherence based tensor has been decomposed
into space, time and frequency signatures in accordance with the expected ground truth for
each consecutive sequence of the simulated data. The method is also in accordance with the
clinical expertise for iEEG epileptic signals, where the signatures were investigated through
a simultaneous multi-seizure analysis.
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1 Introduction

Epilepsy is a neurologic network disease affecting between 0.5 and 1 percent of the world population.
Epileptic seizures arise from abnormal hypersynchronous electrical activity within a neuronal network.
Around 25% of the epileptic patients suffer from drug-resistant epilepsy and cannot be rendered free of
seizures using anti-epileptic drugs. Consequently, different options have to be considered, such as epilepsy
surgery guided, when needed, by invasive intracerebral investigations [7], vagus nerve stimulation [8, 18],
cortical [54] and brain stimulation [57] or epilepsy surgical procedures [9]. The choice of these procedures is
decided by a medical team with the help of a pre-surgical evaluation that can benefit from the combination of
different modalities. If the surgery solution is chosen by the medical expert, two different procedures may
sometimes be adopted, either completely removing the epileptogenic focus (resective surgery) or cutting the
nervebundles connected to the epileptogenic focus in order to prevent the seizure spreading without damaging
underlying functionalities (disconnective surgery). Choosing surgery act requires sometimes intracerebral
investigation of interactions between brain regions in order to identify the source(s) of the seizure onset
and potentially its propagation. To this end, intracerebral electroencephalographic (iEEG) signals are used
to measure the cerebral activity before and during the seizure. This invasive technique is widely used for
epilepsy understanding [6] as it ensures a relatively high signal to noise ratio (SNR) compared to surface
electroencephalographic recordings and is able to highlight 3D network brain activity that cannot be detected
with other techniques. Intracerebral EEG signals allow to identify the epileptogenic network without facing
the ill-posed inverse source localization problem that is common with scalp EEG.

The understanding of the electrical neural information obtained with iEEG recordings relies on the inference
of a connectivity graph as a mean to establish the connections between different brain regions. Brain
connectivity describes how brain regions or neuronal populations are connected and how the information
between these regions is interchanged. In order to identify the information flow between brain regions
during the seizure, it is essential to measure and analyze this brain connectivity which can be distinguished
in three types. Structural connectivity refers to anatomical connections in the neuronal network and can
be measured using only invasive tracing techniques such as Diffusion Tensor Imaging [3]. Functional
connectivity describes statistical dependency between electrical activities of different brain regions whatever
the anatomical connections. This statistical dependency can be inferred for instance by measuring correlation,
covariance, phase locking or coherence [25] and consequently can be described through a symmetric
connectivity matrix. This matrix reflects in its turn an underlying undirected connectivity graph. Finally,
effective connectivity describes the causal influence that one neuronal region exerts on another one [25] and
can be seen as complementary to both functional and structural connectivities. The effective relationships
respect the physical causality principle, i.e. the causes must precede the effects. Then, it seems natural to
use time series to infer this phenomenon as suggested by Granger [27]. In the context of epileptic network
identification, the interest is to estimate an asymmetric connectivity matrix describing the causal connections
between the different regions of neuronal populations resulting in a directed graph. This paper addresses the
inference of a directed graph G (Nv, E) composed of Nv nodes (neurons or neuronal populations) and a set
of E edges or links (corresponding to synapses or pathways).

Different approaches for effective connectivity estimation have been considered in the literature [5] and can
be divided into two classes: model-based and model-free (i.e. data-driven) ones. Regarding the model-based
approaches which include physiological knowledge, they rely on the choice of the best generative model
underlying the observed data among predefined model candidates. The most well-known techniques
belonging to this model-based class are the structural Equation Modeling (SEM) [59] and the Dynamic
Causal Modeling (DCM) [23, 24] (see [48] for details). As far as the data-driven approaches are considered,
they are often based on Wiener-Granger causality [27] (see [25, 26] for a complete review). Based on a
MultiVariate AutoRegressive (MVAR) modeling of the observed signals, the goal of the Granger method is
to determine whether one time series is useful in forecasting another one. A common linear approach to
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estimate effective connectivity is the Directed Transfer Function (DTF) [2] but the limitation of this technique
comes from its inability to distinguish between direct and indirect connections. Another often used method is
the Directed COHerence (DCOH) introduced in [49]. This method not only infers the temporal pattern of
EEG signals but also their spatial relationship by modeling the generations of different signals with common
sets of white noise. The Partial Directed Coherence (PDC) initially proposed in [50] is commonly used as
an efficient frequency-based technique to describe causal relationships among time series together with a
good robustness to indirect causal relations [4, 15]. Unlike DCOH, PDC is useful to understand the propa-
gation of the seizure when taking into account more than two channels and has been implemented in this study.

Tensor Canonical Polyadic Decompsoition (CPD) initially proposed by Hitchcock in 1927 [31] and known
later as PARallel FACtor analysis (PARAFAC) [11, 29, 14, 35] has attracted significant interest in widespread
applications such as telecommunications [52, 53], image-completion [60] and biomedical signal processing
[44]. Since its introduction, properties of CPD such as uniqueness, stability have been extensively studied.
Furthermore, a variety of methods to fit the CPD model have also been developed and various constraints have
been explored to obtain meaningful solutions and to avoid degeneracy. CPD has already proven its interest in
the analysis of electroencephalographic signals [17, 32, 40, 58, 41]. Following an MVAR modeling, a general
framework for tensor analysis of model inversion and multimodal data fusion was presented [32] . Moreover,
tensor decomposition has already been used to linearly separate multivariate time-frequency data into mode
channels, time and frequency [40, 58, 41]. Interesting performance in tracking brain connectivity is based
on coupling the CPD model with a sample-wise time-variant PDC computed on surface EEG signals [45].
However, in addition to its high numerical complexity, this approach is subject to the volume conduction
[43] effect and relies on four classical rank estimation methods [1, 51, 12] to insure reliable rank estimation
of the constructed PDC-based tensor. In the present study, the PDC measure computed from iEEG signals
is combined with a low rank tensor decomposition to provide an efficient way to track the evolution of
brain connectivity along the epileptic seizure. More precisely, the PDC measure is combined with a CPD
model but with a rank that, contrary to the strategy adopted in [45], is optimally computed as recently
suggested in [28, 55]. The PDC is computed on sliding time windows leading to an easy implementation and
reasonable numerical complexity. In addition to this single seizure analysis, the proposed approach allows for
a simultaneous space, time and frequency analysis of brain connectivity through several recorded epileptic
seizures.

This paper is organized as follows: Section 2 is devoted to the presentation of the mathematical background
and the useful tools used in the proposed method described in Section 3. Experiments and results are reported
in Section 4. Our findings are discussed in Section 5 before giving some concluding remarks in Section 6.

2 Background

2.1 Notations and mathematical background

Throughout this paper, vectors, matrices and tensors are denoted respectively by bold lower case a, bold
upper case A and bold calligraphic A letters. Entries of vectors, matrices or tensors are denoted with the
same notation as the structure they belong to but with a normal case (ai, Ai,j , or Ai,j,k). In addition, ◦, ⊗ and
� stand respectively for the outer product, the Kronecker product and the Khatri-Rao product (column-wise
Kronecker product) [33]. The operator vec(.) stands for the matrix-to-vector transformation where, for a
matrix A(I × J), the i + (j − 1)I-th component of vec(A) corresponds to the (i, j)-th entry, Ai,j , of A.
Furthermore, IM is the identity matrix of size (M ×M), 0 is a vector of zeros and 0I×J denotes a matrix of
zeros of size (I × J). The operators > and † denote respectively for the transpose and the conjugate transpose
operators and Tr(.) denotes the matrix trace. For A(M ×N) and B(M ×N), X =max(A,B) is a matrix
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whose (i, j)-th entry is computed as Xi,j =max(Ai,j , Bi,j) where the max operator returns the value of its
highest entry. The `2,1 norm of a matrix A(I × J) is defined by:

‖A‖2,1 =
I∑

i=1

√√√√ J∑
j=1

A2
i,j = Tr(A>ΓAA) (1)

where ΓA is a diagonal matrix such that

ΓA,i,i =
1√∑J
j=1 A2

i,j

(2)

2.2 Basic definitions

Definition 1. The outer product u(1) ◦ ... ◦ u(N) of N vectors (u(n))1≤n≤N ∈ RIn is a rank-1 tensor of size
(I1 × ...× IN ) whose (i1, ..., iN )-th element in I1 × · · · × IN is given by u(1)i1

...u(N)
iN

.

Definition 2. The CPD of an N -dimensional tensor X (I1 × ...× IN ), denoted by JA(1),A(2), ...,A(N)K, is
defined as the minimal sum of N -dimensional rank-1 tensors such that:

X = JA(1),A(2), ...,A(N)K =
R∑

r=1

a(1)r ◦ ... ◦ a(N)
r (3)

where a(n)r is the r-th column of the n-th loading matrix A(n) associated with the n-th direction of X and R
is the tensor rank.
Definition 3. Let X (I1 × I2 × ... × IN ) be an N -dimensional tensor. Then, unfolding this ten-
sor according to its n-th direction results in an unfolding matrix, denoted here by X(n) of size (In ×
In+1In+2 · · · INI1I2 · · · In−1), such that [33]:

X(n),in,j = Xi1,i2,··· ,iN (4)

with j = 1 +
∑N

k=1
k 6=n

(ik − 1)
∏k−1

m=1
m6=n

Im.

Then, equation (4) can be written in a matrix form as follows:

X(n) = A(n)(A(n−1) � A(n−2) � · · · � A(1) � A(N) � · · · � A(n+2) � A(n+1))> (5)

2.3 Partial Directed Coherence

Let Xw(Nv ×M) be a spatio-temporal matrix of time series (epileptic iEEG recordings) observed on Nv

sensors (iEEG electrodes) over a window of M samples. As brain connectivity patterns are changing over
time, inferring its related connectivity graph is generally realized on sufficiently small epochs obtained from
the observed time series where the connectivity graph is supposed to be stationary. These time epochs are
defined using a sliding window of wisely chosen width, M , such that the stationarity assumption of graph
connectivity is verified. Note that the choice of an adequate width M is a real challenge since this parameter
is highly related to the data and to the application context (epilepsy, cognitive task, ...). Now, let xw(m) be
the m-th (m ∈ {1, . . . ,M}) Nv-dimensional column vector of the w-th (w ∈ {1, . . . , Nw}) spatio-temporal
matrix obtained at the w-th sliding window where M and Nw denote the width of the sliding window and the
number of overlapped windows used for the entire time series, respectively. An MVAR modeling of xw(m)
can then be written as:

xw(m) =

Lw∑
l=1

Dw
l xw(m− l) + ew(m) (6)
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where Dw
l (Nv ×Nv) is the matrix of the MVAR model coefficients associated with the time lag l, ew(m) is

an Nv-dimensional column vector of white Gaussian noise whose n-th component, ewn (m), is a standardized
Gaussian random variable and Lw stands for the model order. The latter parameter is estimated for each time
window using the Akaike Information Criterion (AIC) [1].Other techniques for the model order estimation
can be used instead (see [19] for more details). The cross power spectral density Sw(f)(Nv ×Nv) of xw(m)
defined in equation (6) at the frequency bin f is then defined by the following equation [47]:

Sw(f) = Hw(f)Hw†(f) (7)

where

Hw(f) = (Dw
(f))−1 = (IN2

v
− Dw(f))−1 (8)

with

Dw(f) =

Lw∑
l=1

Dw
l e

−j2πfl. (9)

Let Dw
i,j(f) be the (i, j)-th entry of Dw

(f) = [dw
1 (f),dw

2 (f), ..., dw
Nv

(f)]. Then, the PDC measured between
the i-th and j-th nodes (sensors) 1 ≤ i 6= j ≤ Nv at the frequency bin f is given by:

P̃w
i,j(f) =

Dw
i,j(f)√

(dw
j (f))

†dw
j (f)

, 1 ≤ w ≤ Nw (10)

where 1 ≤ f ≤ Nf with Nf standing for the number of frequency bins.

3 Method

3.1 Construction of the PDC-based tensor

It is easy to note from equation (10) that the module of each measured PDC value P̃w
i,j(f) can be considered

as the (k,w, f)-th entry of a 3rd order space×time×frequency PDC-based tensor P of size ((N2
v −Nv)×

Nw ×Nf ), such that:

Pk,w,f = |P̃w
i,j(f)| (11)

where:

k =

{
i+ (j − 1)(Nv − 1)− 1 if i > j
i+ (j − 2)(Nv − 1)− 1 if i < j

(12)

According to equation (11), the PDC-based tensor captures the variability of the PDC measure over time
and frequency directions. It is noteworthy that this tensor can be further extended to capture the potential
PDC variability over several epileptic seizures of the same patient. In this case, the 3rd order PDC tensor can
be extended to a 4th order space×time×frequency×seizure PDC-based one. More precisely, let Pc be the
space×time×frequency PDC-based tensor defined in equation (11) for the c-th seizure (c ∈ {1, . . . , Nc})
where Nc is the number of recorded epileptic seizures, then, Pc can be considered as the c-th sub-tensor of
the 4th order space×time×frequency×seizure PDC-based one Q of size ((N2

v −Nv) ×Nw ×Nf ×Nc)
such that Qk,w,f,c = Pc

k,w,f .
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3.2 Tensor decomposition

As our main objective is to track the temporal variation of brain effective connectivity patterns that underlie
the observed iEEG signals and specify which one is acting on which time epoch and for which frequency
band and possibly analyze these patterns over epileptic seizures, the tensor decomposition of the constructed
PDC-based tensor is quite appropriate for such a task. In fact, based on a tensor decomposition of the
constructed 3rd order/4th order PDC-based tensor, one can easily identify spatial, temporal and frequency
signatures of each connectivity pattern contributing to the observed iEEG signals. To this end, the CPD of
the 3rd order/4th order PDC-based tensor is investigated in this paper. According to definition 2 and for
meaningful CPD, the tensor rank, R, should be optimally determined. Finding the exact rank of a tensor is an
NP-hard problem [22, 30]. It can be very complex especially for low SNR. This may lead to the well-known
over-factoring problem. Therefore, the rank estimation of the tensor could be part of the overall optimization
problem to fit the CPD model. Several techniques have been proposed to solve the rank estimation problem
in the case of CPD such as the CORCONDIA [12], the minimum description length (MDL) [38], the Laplace
Method [39], the cross-validation based method [13], the method for simultaneously estimating the rank
and noise level [34], the quotient of differences in additional values [42] and the group-sparsity of the
over-estimated loading matrices technique recently proposed in [28, 55] which showed higher performance
over the above mentioned techniques. Indeed, recent works [28, 55] suggested to use a new group-sparsity of
the over-estimated loading matrices of the considered tensor as a powerful way to optimally estimate the
tensor rank. More precisely, authors in [28, 55] showed that the mixed `2,1-norm, as a mean to describe the
group sparsity constraint, is a tighter complex envelop of the matrix rank function than the nuclear norm
commonly used in this context. Furthermore, the `2,1-norm defined in equation (1) is attractable from a
numerical complexity point of view compared to the nuclear norm whose minimization relies essentially on
an iterative computation of the singular value decomposition of the considered matrix. Therefore, in this
paper, the group sparsity-based technique [28, 55] is employed for an optimal estimation of the PDC-based
tensor rank. Moreover, as generally few but the most significant connections are of interest, the tensor loading
matrix associated with the space direction is also a sparse matrix. Therefore, the `1-norm on this spatial
loading matrix as a way to describe this sparsity constraint is used in the optimization problem at hand.
Besides, for easy and straightforward spatial, temporal and frequency analysis of inferred directed graph
connectivity over one or several seizures, all loading matrices are assumed to be non-negative. Therefore,
non-negativity constraints of all loading matrices are imposed in the optimization problem as shown in the
subsequent subsections.

3.2.1 Single-seizure analysis

In the case of a single seizure analysis, the simultaneous space, time and frequency analysis of brain
effective connectivity is possible, as mentioned previously, using a robust low-rank CPD of the 3rd order
space×time×frequency PDC-based tensor, P obtained by solving the following optimization problem:

min
S,T,F

αS ‖S‖2,1 + δ‖S‖1 + αT‖T‖2,1 + αF‖F‖2,1
s.t. S ≥ 0,T ≥ 0,F ≥ 0 & P =

∑R
r=1 sr ◦ tr ◦ fr

(13)

where S = [s1, · · · , sR], T = [t1, · · · , tR] and F = [f1, · · · , fR] are the loading matrices of the tensor P
associated with its space, time and frequency directions, respectively. αS, αT, αF and δ stand for the penalty
parameters that control the balance between the different norms in the minimization problem. The above
problem can be solved using the well-known Alternating Direction Method of Multipliers (ADMM) [10],
which is based on the minimization of the augmented Lagrangian function L1 associated with equation (13).
Therefore, the above minimization problem defined in equation (13) can be rewritten as:

min
S,T,F,Y

L1
s.t. S ≥ 0,T ≥ 0,F ≥ 0,Y = S

(14)
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with
L1 = αS‖S‖2,1 + δ‖Y‖1 + αT‖T‖2,1 + αF‖F‖2,1 + vec(W)>vec(Y− S) + ρ

2‖Y− S‖2F
+λ

∥∥∥P −∑R
r=1 sr ◦ tr ◦ fr

∥∥∥2
F

where ρ and λ are, respectively, the penalty and regularization parameters and W denotes the Lagrange
multiplier.

The update rules of S, T and F are computed by looking for the stationary points of L1 in S, T, and F,
respectively. These update rules are given by 27, 30, and 33 in Appendix A.1. Technical details regarding the
derivation of these update rules are given in appendices A.1.1,A.1.2 and A.1.3. Regarding the dual variable
Y, and the Lagrange multiplier W, their update rules are given in Appendix A.1 (see equations 34 and 35).

Regarding the non-negativity constraints on S, T and F, they are dealt with at each iteration by setting to zero
all their respective possible negative entries. Regarding the initialization of S, T and F, it is performed using
a few iterations of a non-negative CPD of the tensor P . At each iteration of the algorithm, each matrix is
updated by fixing the other matrices to their last estimate. The algorithm stops either when the number of
maximum iterations is reached or when the CPD quality is higher than 0.92 or when the relative error on the
spatial loading matrix, S, exhibits between two successive iterations a value that is smaller than ε = 10−5.
A pseudo-code summarizing the main steps to solve the optimization problem in equation (14) is given in
Algorithm 1 hereafter.

Algorithm 1

1. Initialization of S, T, F and Rinit

2. While the no. max. of iterations is not reached &
∥∥S it−S it−1

∥∥2∥∥S it
∥∥2 > ε &

∥∥∥P−
∑R

r=1 sr◦tr◦fr
∥∥∥2

‖P‖2 > ν

• Update S using equation (27)
• S←max(S, 0(N2

v−Nv)×R)

• Update Y using equation (34)
• Update W using equation (35)
• Update T using equation (30)
• T←max(T, 0Nw×R)

• Update F using equation (33)
• F←max(F, 0Nc×R)

where it stands for the iteration number.

As generally rank-1 terms in the CPD are not necessarily ordered according to their power, performing such
ordering is helpful for an easy identification of the right minimal number of rank-1 tensors contributing to the
tensor P . Therefore, the rank-1 tensors are ordered in descending way according to their rank-1 power score
proposed in this paper and defined by:

h(r) =

∑N2
v−Nv

n=1 Sn,r
∑Nw

w=1 Tw,r
∑Nf

f=1 Ff,r∑N2
v−Nv

n=1

∑R
r=1 Sn,r

∑Nw
w=1

∑R
r=1 Tw,r

∑Nf

f=1

∑R
r=1 Ff,r

, ∀r ∈ {1, · · · , Rinit} (15)

with Rinit denoting the initial rank value. Once the rank-1 tensors are ordered, the retained tensor rank
corresponds to the number of rank-1 tensors whose h value exceeds a predefined threshold.

3.2.2 Multi-seizure analysis

In the case where several epileptic seizures are available, the variability of effective connectivity through these
seizures can be further evaluated following the same idea as in the above single-seizure analysis 3.2.1. More
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precisely, a simultaneous space, time, frequency and seizure analysis is also possible and can be performed
using a constrained low rank CPD of the 4thorder space×time×frequency×seizure PDC-based tensor Q.
This is henceforth possible by solving the following optimization problem:

min
S,T,F,C

αS ‖S‖2,1 + δ‖S‖1 + αT‖T‖2,1 + αF‖F‖2,1 + αC‖C‖2,1
s.t. S ≥ 0,T ≥ 0,F ≥ 0C ≥ 0 &Q =

∑R
r=1 sr ◦ tr ◦ fr ◦ cr

(16)

Similarly, the ADMM method [10] is employed to solve this optimization problem by minimizing its
associated Lagrangian function L2. This leads to:

min
S,T,F,C,Y

L2
s.t. S ≥ 0,T ≥ 0,F ≥ 0,C ≥ 0,Y = S

(17)

with
L2 = αS‖S‖2,1 + δ‖Y‖1 + αT‖T‖2,1 + αF‖F‖2,1 + αC‖C‖2,1 + vec(W)>vec(Y− S)

+ρ
2‖Y− S‖2F + λ

∥∥∥Q−∑R
r=1 sr ◦ tr ◦ fr ◦ cr

∥∥∥2
F

where sr, tr, fr, cr stand respectively for the r-th column of the loading matrices S, T, F and C.

The update rules of S, T, F and C, are computed by looking for the stationary points of L2 in S, T, and F,
respectively. These update rules are given by 40, 43, 46 and 49 in Appendix A.2. Technical details regarding
the derivation of these update rules are given in appendices A.2.1,A.2.2 , A.2.3 and A.2.4. Regarding the dual
variable Y, and the Lagrange multiplier W, their update rules are given in Appendix A.2 (see equations 50
and 51).

Similarly to the case of single-seizure analysis 3.2.1, the non-negativity constraints on S, T and F are dealt
with at each iteration by setting to zero all their respective possible negative entries. Furthermore, matrices S,
T, F and C, are initialized using few non-negative CPD iterations of the 4th order tensor Q.

At each iteration of the algorithm, each matrix is updated by fixing the other matrices to their last estimate.
Similarly, the algorithm stops either when the number of maximum iterations is reached or when the CPD
quality is higher than 0.92 or when the relative error on the spatial loading matrix, S, exhibits between two
successive iterations a value that is smaller than ε = 10−5. A pseudo-code summarizing the main steps to
solve the above optimization problem defined in equation (17) is given in Algorithm 2 hereafter.

Algorithm 2

1. Initialization of S, T, F, C and Rinit

2. While the no. max. of iterations is not reached &
∥∥S it−S it−1

∥∥2∥∥S it
∥∥2 > ε &

∥∥∥Q−
∑R

r=1 sr◦tr◦fr◦cr
∥∥∥2

‖Q‖2 > ν

• Update S using equation (40)
• S←max(S, 0(N2

v−Nv)×R)

• Update Y using equation (50)
• Update W using equation (51)
• Update T using equation (43)
• T←max(T, 0Nw×R)

• Update F using equation (46)
• F←max(F, 0Nf×R)

• Update C using equation (49)
• C←max(C, 0Nc×R)
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Table 1: Numerical complexity of both methods
Numerical complexity (flops)

single seizure
analysis

Nit[
2R3

3 (Nf
3 +Nw

3 +Nv
3(Nv − 1)3)

+R2(2(N2
w +N2

v (Nv − 1) +Nf
2) +Nv(Nv − 1)Nw +Nv(Nv − 1)Nf +NfNw)

+R(3(Nf +Nw +Nv(Nv − 1)) + 5Nv(Nv − 1)Nw +Nv(Nv − 1)Nf +NfNw)]

Nit[
2R3

3 (Nf
3 +Nw

3 +Nv
3(Nv − 1)3 +Nc

3)

multi-seizure
analysis

+R2(2(N2
w +N2

v (Nv − 1) +Nf
2 +Nc

2) +Nv(Nv − 1)NwNc)
+R2(Nv(Nv − 1)NfNc +NfNwNc +Nv(Nv − 1)NfNw)
+R(3(Nf +Nw +Nv(Nv − 1) +Nc) + 5Nv(Nv − 1)NwNc)
+R(Nv(Nv − 1)NfNc +NfNwNc +Nv(Nv − 1)NfNc)]

where it stands for the iteration number.

In order to identify the right tensor rank, the estimated rank-1 tensors are ordered in a descending way
according to the proposed rank-1 power score :

h(r) =

∑N2
v−Nv

n=1 Sn,r
∑Nw

v=1 Tv,r
∑Nf

f=1 Ff,r
∑Nc

c=1 Cc,r∑N2
v−Nv

n=1

∑R
r=1 Sn,r

∑Nw
v=1

∑R
r=1 Tv,r

∑Nf

f=1

∑R
r=1 Ff,r

∑Nc
c=1

∑R
r=1 Cc,r

, ∀r ∈ {1, · · · , Rinit}

(18)

Once the rank-1 tensors are ordered, the retained tensor rank corresponds to the number of rank-1 tensors
whose h value exceeds a predefined threshold.

3.3 Numerical Complexity

The numerical complexity of the two proposed strategies (single-seizure and multi-seizure analysis) are
expressed here in the number of numerical flops required for each method to reach the final solution. A nu-
merical flop is defined as a multiplication followed by an addition. However, in practice more multiplications
than additions are encountered. Therefore, in Table 1 only the number of multiplications is considered to
compute the numerical complexity. Note that Nit stands for the total number of iterations used, by each
scheme, to reach the final solution.

4 Numerical Experiments

The performance of the proposed method has been evaluated on simulated data and on real iEEG epileptic
signals. To do so, the order of the MVAR model and PDC values were estimated over overlapping sliding
windows of the same size (Mw = 2048 points) and sliding at 75% of this size. Note that, for each sliding
window, the model order was estimated using the AIC [1].

4.1 Simulated data

A realistic dynamic network is considered in this section to evaluate the proposed method. This dynamic
network was built by concatenating four sequences of simulated brain activities. Each sequence was generated
using a directed graph with specific effective connectivity patterns. The four sequences were generated based
on the MVAR model introduced in [21] to simulate brain activity. For this network to be dynamic over both
time and space, some connections (edges) in this MAVR model [21] were activated/deactivated and permuted
across time and space, respectively (see equations (19)-(22)). The number of active edges in sequences 1, 2,
3 and 4, were set respectively to 4, 6, 10 and 11 as shown in Figure 1. The first three sequences correspond to
graphs with limited numbers of nodes and edges whereas the fourth sequence was extracted from [21].
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Figure 1: The four directed graphs generated using an MVAR modelling according to equations (19)-(22)
and used to define sequences 1, 2, 3 and 4.

Simulated brain activity signals consisted of 20000-point signals, each sequence being composed of 5000
samples. The time-frequency representations of these signals are represented in Figure 4 . The generated data
were sampled at Fe = 256 Hz with the same time windowing than the one used for the PDC measure in
section 2.3. For each channel, the four different sequences are concatenated in a single time signal. Indeed,
it is easy to foresee the cuts between sequences around 19, 38 and 57 seconds. Moreover, the frequential
informative content is mainly around 35 Hz and some secondary activity can also be noticed between 70 Hz
and 120 Hz.

Sequence 1:

x1(m) = 0.4x3(m− 1)− 0.4x3(m− 2) + e1(m)

x2(m) = −0.3x7(m− 3) + 0.4x2(m− 3) + e2(m)

x3(m) = 0.95
√
2x3(m− 1)− 0.9025x3(m− 2) + e3(m)

x4(m) = 0.5x4(m− 1) + e4(m)

x5(m) = 0.5x5(m− 1) + e5(m)

x6(m) = 0.5x6(m− 1) + e6(m)

x7(m) = −0.9x1(m− 2) + 0.4x7(m− 3) + 0.3x2(m− 3) + e7(m)

x8(m) = 0.5x8(m− 1) + e8(m)

x9(m) = 0.5x9(m− 1) + e9(m)

x10(m) = 0.5x10(m− 1) + e10(m)

(19)
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Sequence 2:

x1(m) = 0.5x10(m− 2) + e1(m)

x2(m) = −0.5x10(m− 2) + e2(m)

x3(m) = 0.4x10(m− 1)− 0.4x10(m− 2) + e3(m)

x4(m) = 0.5x4(m− 1) + e4(m)

x5(m) = −0.9x3(m− 2) + 0.4x5(m− 3) + 0.3x6(m− 3) + e5(m)

x6(m) = −0.3x5(m− 1) + 0.4x6(m− 3) + e6(m)

x7(m) = 0.5x7(m− 1) + 0.4x7(m− 3) + 0.3x2(m− 3) + e7(m)

x8(m) = 0.5x8(m− 1) + e8(m)

x9(m) = 0.5x9(m− 1) + e9(m)

x10(m) = 0.95
√
2x10(m− 1)− 0.9025x10(m− 2) + e10(m)

(20)

Sequence 3:

x1(m) = −0.3x10(m− 3) + 0.4x1(m− 3) + e1(m)

x2(m) = −0.5x2(m− 1) + e2(m)

x3(m) = 0.95
√
2x3(m− 1)− 0.9025x3(m− 2) + e3(m)

x4(m) = 0.5x3(m− 2) + e4(m)

x5(m) = 0.9x4(m− 3) + e5(m)

x6(m) = −0.5x3(m− 2) + e6(m)

x7(m) = 0.8x6(m− 4)− 0.4x1(m− 2) + e7(m)

x8(m) = −0.8x6(m− 4) + e8(m)

x9(m) = 0.4x3(m− 1)− 0.4x3(m− 2) + e9(m)

x10(m) = −0.9x9(m− 2) + 0.4x10(m− 3) + 0.3x1(m− 3) + e10(m)

(21)

Sequence 4:

x1(m) = 0.95
√
2x1(m− 1)− 0.9025x1(m− 2) + e1(m)

x2(m) = 0.5x1(m− 2) + e2(m)

x3(m) = 0.9x2(m− 3) + e3(m)

x4(m) = −0.5x1(m− 2) + e4(m)

x5(m) = 0.8x4(m− 4)− 0.4x9(m− 2) + e5(m)

x6(m) = −0.8x4(m− 4) + e6(m)

x7(m) = 0.4x1(m− 1)− 0.4x1(m− 2) + e7(m)

x8(m) = −0.9x7(m− 2) + 0.4x8(m− 3) + 0.4x9(m− 3) + e8(m)

x9(m) = −0.3x8(m− 3) + 0.4x9(m− 3) + e9(m)

x10(m) = −0.75x7(m− 4) + e10(m)

(22)

where noise terms ei(t), 1 ≤ i ≤ 10, are realizations of independent and standardized Gaussian random
variables Ei.

Regarding the penalty parameters αS, αT, αF, δ and λ in equation (13), they were set to 3, 1, 3, 1 and 1,
respectively. The choice of these values was made in a trial-and-error manner such that the best solution to
the minimization problem given in equation (13) was obtained. An optimal choice of these parameters is still
an open question and requires further and deeper investigation which is beyond the scope of this paper. As
the rank estimation method is based on the group sparsity of the overestimated loading matrices, S,T and F,
(see [28] for more details), the initial rank was set to Rinit = 10. Figure 2 shows the rank-1 tensor power
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Figure 2: Normalized power of the 10 rank-1 tensors.

score of the 10 rank-1 tensors ordered in descending order. We can notice from this figure that the rank-1
tensor power becomes close to zero beyond a rank equal to four. Hence, the retained rank was R = 4.

According to Figure 3 and following the temporal signature of the retained rank-1 terms, the inferred sequence
of graph connectivity can be ordered chronologically as (d)→ (c)→ (a)→ (b). The contribution of each
graph structure is well described and can be easily identified by investigating its corresponding temporal
signature. This result is in accordance with the ground truth. Regarding the frequency analysis, according to
Figure 3, all estimated directed graph structures act on the same frequency band [0, 128] Hz but with higher
contribution around 30 Hz and between 70 Hz and 120 Hz as suggested by the time-frequency analysis from
Figure 4.

4.2 iEEG data

The proposed approach is then evaluated on real epileptic iEEG signals recorded during three different
epileptic seizures of the same patient. This patient suffered from a drug-resistant focal epilepsy on mesial
temporal region. A non-invasive pre-surgical examination has been done by the medical team, including an
EEG-video recording. Among the different iEEG recordings, three of them were selected by the expert to be
analyzed and were limited to the first 32 seconds of the ictal phase. These signals were sampled at 256 Hz
and the amplitudes of these real data varied from -3000 to 2000 µV as shown in Figure 5, 6 and 7. The same
three channels for which the ground truth was provided by the clinical expert were considered for the three
epileptic seizures. These three channels were labeled in two groups according to their involvement along
the ictal phase. According to the clinical expert, (i) nodes 1 and 2 were the ones corresponding to the area
of the cortex that was responsible for initiating the seizure (i.e., brain areas belonging to the onset group)
and (ii) node 3 was considered as a sink receiving the information flow (brain area belonging to the seizure
propagation group). Time-Frequency representations of the first, second and third seizures are depicted in
decibels in Figures 5, 6 and 7, respectively. These figures highlight a high contribution of low frequencies
(below 50 Hz) in the iEEG signals of channels 1 and 2 whereas a wide range of frequency components in the
frequency band [1, 128] Hz are present in the signal of channel 3. This fact holds valid for the three epileptic
seizures under study. For each epileptic seizure the model order was estimated using the AIC [1] for each
seizure independently and then a PDC-based 3rd order tensor was built and consequently analyzed.

The initial rank was set to Rinit = 10, and the penalty parameters were set to αS = 3, αT = 1, αF = 3,
αC = 0.5, δ = 1 and λ = 1. According to Figure 3, we note that the inferred directed graphs are in
accordance with the expert’s opinion since a causal influence from nodes 1 and 2 to node 3 is observed in
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Figure 3: Space, time and frequency signatures of the retained four relevant rank-1 tensors.
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Figure 4: Time-frequency analysis of the 10 channels of simulated data

each seizure. For each seizure, the retained tensor rank is equal to one which means that each seizure can be
described by a single directed graph that generates the epileptic iEEG signals at hand.

Regarding the case of multi-seizure analysis (i.e. the case of 4th order PDC-based tensor), similar results
compared to the case of 3rd order PDC-based tensor were obtained. The retained rank is also equal to one as
shown in Figure 8 which indicates that the three seizures have the same structure in terms of spatial graph,
temporal evolution and frequency responses. Again, the obtained results are in accordance with the clinical
expert. More precisely, obtained frequency signatures are in agreement with the time-frequency analysis
obtained with power spectral density shown in Figures 5, 6 and 7. In fact, obtained frequency signatures show
clearly that all frequencies in the frequency band [0, 128] Hz are generally contributing to the observed iEEG
spectrum but, as observed in Figures 5, 6 and 7, with relatively higher contribution of low frequencies (below
50 Hz) compared to those beyond 50 Hz.

5 Discussion

In this study, the most dominant effective connectivity patterns were inferred based on simultaneous space-
time-frequency analysis of epileptic iEEG data. More precisely, the time periods and the frequency bands
on which these patterns are acting were identified by the proposed method. Both simulated and real iEEG
signals were used to evaluate the performance of this approach. For simulated signals, the method showed
good results with 3 to 10 nodes in the epileptic graph of propagation and was able to extract unidirectional
and bidirectional links. It should be noticed that the sparsity constraints can be violated when the number of
considered nodes is relatively small. However, our method behaved well even for small number of electrodes
as demonstrated on real iEEG data. Inferred directed graphs for both simulated and real epileptic iEEG data
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Figure 5: Time profile and time-frequency representation of the three channels from seizure 1

were compatible with the available ground truth. Once the directed graph is established using our method,
further graph analysis study could be conducted. For example, one can resort to specific graph measures
such as the node inward/outward degree, to distinguish between nodes involved in the seizure initiation and
those implied in the seizure propagation. For instance, in our experiment on real data, the outward degrees
of node 1, node 2 and node 3 were respectively 1, 1, 0 while their corresponding inward degrees were 0, 0,
2. This shows clearly that nodes 1 and 2 irrigate node 3 which is in accordance with the clinical expertise.
In addition, promising results provided by our approach pave the way for an extensive study on a larger
database to come up with its applicability in a clinical context. Providing frequency and time signatures of
each inferred graph connectivity could help the clinician in his understanding of the seizure initiation and/or
evolution. However, in some cases like neocortical or frontal focal epilepsies, the electrical discharges affect
simultaneously different structures and then deeper investigations could be needed.
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Figure 6: Time profile and time-frequency representation of the three channels from seizure 2

6 Conclusion

In this paper, a new method to track brain effective connectivity over the space, time and frequency domains
and also over several seizures was proposed. It is based on the low-rank canonical polyadic decomposition
of a specific PDC-based tensor built from epileptic iEEG data of a given seizure. Two space, time and
frequency analyses have been introduced in this paper: (i) a single-seizure analysis where a robust low
rank CPD of a space×time×frequency PDC-based tensor was used and (ii) a multi-seizure analysis where
several epileptic seizures from the same patient were simultaneously analyzed using a low rank CPD of a
space×time×frequency×seizure PDC-based tensor. The good performance has been assessed with simulated
signals and real iEEG signals from a patient suffering from mesial temporal focal epilepsy. Obtained time
and frequency signatures of inferred directed graphs permitted to efficiently track these graphs over time and
frequency for one or several epileptic seizures. In addition to the CPD, other tensor decomposition models
could be figured out such as the Block Term Decomposition (BTD) [36, 37] and the Tucker decomposition
[56] which could be further investigated to deal with possible interactions between tensor directions.
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Figure 7: Time profile and time-frequency representation of the three channels from seizure 3
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Figure 8: Space, time and frequency signatures of the single retained rank-1 tensor (case of multi-seizure
analysis of real epileptic iEEG signals).

A Appendices

A.1 Technical materials on the minimization of L1 defined in equation (14)

As mentioned in section 3.2.1, solving the minimization problem defined in equation (13) is possible by
minimizing its associated augmented Lagrangian function L1 given by:

L1 =αS ‖S‖2,1 + δ‖Y‖1 + αT‖T‖2,1 + αF‖F‖2,1 + vec(W)>vec(Y− S) +
ρ

2
‖Y− S‖2F

+ λ

∥∥∥∥∥P −
R∑

r=1

sr ◦ tr ◦ fr

∥∥∥∥∥
2

F

(23)

=αSTr(S>ΓSS) + δ‖Y‖1 + αTTr(T>ΓTT) + αFTr(F>ΓFF)

+ vec(W)>vec(Y− S) +
ρ

2
‖Y− S‖2F + λ

∥∥∥∥∥P −
R∑

r=1

sr ◦ tr ◦ fr

∥∥∥∥∥
2

F

(24)

with respect to its variable matrices S, T, F. This minimization is possible by looking for the stationary
points of L1 in these variable matrices, as shown hereafter. Note that according to definition 3, we can write
P(1) = S(F� T)>, P(2) = T(S� F)> and P(3) = F(T� S)>. For mathematical convenience, derivation of
the update rules will be expressed in a vector form.

A.1.1 Update of S

The stationary point of L1 defined in equation (14) in S is computed by solving the equation ∂L1
∂vec(S) = 0.

Then according to equation (24) we can write:

∂L1

∂vec(S)
=αS

∂Tr(S>ΓSS)
∂vec(S)

+
∂vec(W)>vec(Y− S)

∂vec(S)
+

ρ

2

∂ ‖Y− S‖2F
∂vec(S)

+ λ
∂
∥∥P(1) − S(F� T)>

∥∥2
F

∂vec(S)
(25)

Now, based on the properties of matrix trace, Kronecker product [46] and on those A.1, A.2 [16], we obtain:
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∂L1

∂vec(S)
=− 2λ((F� T)⊗ IN2

v−Nv
)>vec(P(1))− vec(W)− ρvec(Y)

+ (2αSIR ⊗ ΓS + 2λ((F� T)>(F� T))⊗ IN2
v−Nv

+ ρIR(N2
v−Nv

))vec(S) (26)

Then, by solving ∂L1
∂vec(S) = 0 with respect to vec(S), we get:

vec(S) =(αSIR ⊗ ΓS + λ((F� T)>(F� T))⊗ IN2
v−Nv

+ ρIR(N2
v−Nv))

−1

× ((λ(F� T)> ⊗ IN2
v−Nv

)vec(P(1)) +
vec(W)

2
+

ρ

2
vec(Y)) (27)

A.1.2 Update of T

Similarly, the stationary point of L1 defind in equation (14) in T is computed by solving the equation
∂L1

∂vec(T) = 0. Then according to equation (24), we can write:

∂L1

∂vec(T)
= αT

∂Tr(TΓTT>)

∂vec(T)
+ λ

∂
∥∥P(2) − T(S� F)>

∥∥2
F

∂vec(T)
(28)

Based also on the properties of matrix trace, Kronecker product [46] and [16], we obtain:

∂L1

∂vec(T)
= 2λ((S� F)⊗ INw)

>vec(P(2)) + (2αSIR ⊗ ΓT + 2λ((S� F)(S� F)>)⊗ INw)vec(T)

(29)

Then, by solving ∂L1
∂vec(S) = 0, we get:

vec(T) =(αTIR ⊗ ΓT + λ((S� F)>(S� F))⊗ INw)
−1(λ(S� F)> ⊗ INw)vec(P(2)) (30)

A.1.3 Update of F

Similarly, the stationary point of L1 defined in equation (14) in F is computed by solving the equation
∂L1

∂vec(F) = 0. Then according to equation (24) we can write:

∂L1

∂vec(F)
= αF

∂Tr(FΓFF>)

∂vec(F)
+ λ

∂
∥∥P(3) − F(T� S)>

∥∥2
F

∂vec(F)
(31)

Based also on the properties of matrix trace, Kronecker product [46] and [16], we obtain:

∂L1

∂vec(F)
=2λ((T� S)⊗ INf

)>vec(P(3)) + (2αFIR ⊗ ΓF + 2λ((T� S)(T� S)>)⊗ INf
)vec(F)

(32)

Then, by solving ∂L1
∂vec(F) = 0, we get:

vec(F) =(αFIR ⊗ ΓF + λ((T� S)>(T� S))⊗ INf
)−1(λ(T� S)> ⊗ INf

)vec(P(3)) (33)
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A.1.4 Update of Y

The update rule of the dual variable Y is given by:

Y← Y + proxφ, δ
ρ
(S +

W
ρ
) (34)

A.1.5 Update of W

The update rule of the Lagrange multiplier W is given by:

W←W + ρ(S− Y) (35)

A.2 Technical materials on the minimization of L2 defined in equation (17)

As mentioned in section 3.2.2, solving the minimization problem defined in equation (16) is possible by
minimizing its associated augmented Lagrangian function L2 given by:

L2 =αS ‖S‖2,1 + δ‖Y‖1 + αT‖T‖2,1 + αF‖F‖2,1 + αC‖C‖2,1 + vec(W)>vec(Y− S) +
ρ

2
‖Y− S‖2F

+ λ

∥∥∥∥∥Q−
R∑

r=1

sr ◦ tr ◦ fr ◦ cr

∥∥∥∥∥
2

F

(36)

=αSTr(S>ΓSS) + δ‖Y‖1 + αTTr(T>ΓTT) + αFTr(F>ΓFF) + αCTr(C>ΓCC)

+ vec(W)>vec(Y− S) +
ρ

2
‖Y− S‖2F + λ

∥∥∥∥∥Q−
R∑

r=1

sr ◦ tr ◦ fr ◦ cr

∥∥∥∥∥
2

F

(37)

with respect to its variable matrices S, T, F and C. This minimization is possible by looking for the stationary
points of L2 in these variable matrices, as shown hereafter. Note that according to definition 3, the unfolding
matrices associated with the first, the second, the third and the fourth direction of the 4rd order tensor Q
are given, respectively, by: Q(1) = S(C� F� T)>, Q(2) = T(S� C� F)>, Q(3) = F(T� S� C)> and
Q(4) = C(F� T� S)>. For mathematical convenience, derivation of the update rules will be expressed in a
vector form.

A.2.1 Update of S

The stationary point of L2 defined in equation (17) in S is computed by solving the equation ∂L2
∂vec(S) = 0.

Then according to equation (37) we can write:

∂L2

∂vec(S)
=αS

∂Tr(S>ΓSS)
∂vec(S)

+
∂vec(W)>vec(Y− S)

∂vec(S)
+

ρ

2

∂ ‖Y− S‖2F
∂vec(S)

+ λ
∂
∥∥Q(1) − S(C⊗ F� T)>

∥∥2
F

∂vec(S)
(38)

Now based on the properties of matrix trace, Kronecker product [46] and [16], we obtain:

∂L2

∂vec(S)
=− 2λ((F� T)⊗ IN2

v−Nv
)>vec(Q(1))− vec(W)− ρvec(Y)

+ (2αSIR ⊗ ΓS + 2λ((F� T)>(F� T))⊗ IN2
v−Nv

+ ρIR(N2
v−Nv))vec(S) (39)

Then, by solving ∂L2
∂vec(S) = 0 with respect to vec(S), we get:
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vec(S) =(αSIR ⊗ ΓS + λ((C⊗ F� T)>(C⊗ F� T))⊗ IN2
v−Nv

+ ρIR(N2
v−Nv))

−1

× ((λ(C⊗ F� T)> ⊗ IN2
v−Nv

)vec(Q(1)) +
vec(W)

2
+

ρ

2
vec(Y)) (40)

A.2.2 Update of T

Similarly, the stationary point of L2 defined in equation (17) in T is computed by solving the equation
∂L2

∂vec(T) = 0. Then according to equation (37) we can write:

∂L2

∂vec(T)
= αT

∂Tr(TΓTT>)

∂vec(T)
+ λ

∂
∥∥Q(2) − T(S� F)>

∥∥2
F

∂vec(T)
(41)

Based also on the properties of matrix trace, Kronecker product [46] and [16], we obtain:

∂L2

∂vec(T)
=2λ((S� F)⊗ INw)

>vec(Q(2)) + (2αSIR ⊗ ΓT + 2λ((S� C� F)(S� C� F)>)⊗ INw)vec(T)

(42)

Then, by solving ∂L2
∂vec(S) = 0, we get:

vec(T) =(αTIR ⊗ ΓT + λ((S� C� F)>(S� C� F))⊗ INw)
−1(λ(S� C� F)> ⊗ INw)vec(Q(2))

(43)

A.2.3 Update of F

The stationary point of L2 defined in equation (17) in F is computed by solving the equation ∂L2
∂vec(F) = 0.

Then, according to equation (24) we can write:

∂L1

∂vec(F)
= αF

∂Tr(FΓFF>)

∂vec(F)
+ λ

∂
∥∥Q(3) − F(T� S)>

∥∥2
F

∂vec(F)
(44)

Based also on the properties of matrix trace, Kronecker product [46] and [16], we obtain:

∂L2

∂vec(F)
=2λ((T� S� C)⊗ INf

)>vec(Q(3))

+ (2αFIR ⊗ ΓF + 2λ((T� S� C)(T� S� C)>)⊗ INf
)vec(F) (45)

Then, by solving ∂L2
∂vec(F) = 0, we get:

vec(F) =(αFIR ⊗ ΓF + λ((T� S� C)>(T� S� C))⊗ INf
)−1(λ(T� S� C)> ⊗ INf

)vec(Q(3))

(46)
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A.2.4 Update of C

Similarly, the stationary point of L2 defined in equation (17) in C is computed by solving the equation
∂L2

∂vec(C) = 0. Then according to equation (24) we can write:

∂L2

∂vec(C)
= αC

∂Tr(CΓCC>)

∂vec(C)
+ λ

∂
∥∥Q(4) − C(F� T� S)>

∥∥2
F

∂vec(C)
(47)

Based also on the properties of matrix trace, Kronecker product [46] and [16], we obtain:

∂L2

∂vec(C)
=2λ((F� T� S)⊗ INc)

>vec(Q(4))

+ (2αCIR ⊗ ΓC + 2λ((F� T� S)(F� T� S)>)⊗ INc)vec(C) (48)

Then, by solving ∂L2
∂vec(C) = 0, we get:

vec(C) =(αCIR ⊗ ΓC + λ((F� T� S)>(F� T� S))⊗ INc)
−1(λ(F� T� S)> ⊗ INc)vec(Q(4)) (49)

A.2.5 Update of Y

The update rule of the dual variable Y is given by:

Y← Y + proxφ, δ
ρ
(S +

W
ρ
) (50)

A.2.6 Update of W

The update rule of the Lagrange multiplier W is given by:

W←W + ρ(S− Y) (51)
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