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Abstract

In this paper, we consider a single-unit system which is subject to shocks and

deterioration over time. We assume that the shocks occur based on a count-

ing process. Each incoming shock affects the system in two ways; the fatal

shock causes the system failure whereas the effective shock weakens the system

by increasing its age. The system degradation is modeled based on a general

degradation path (GDP) model which depends on the impact of shocks received

in the course of system operation and the system virtual age. Both soft and hard

failures are considered and a new degradation-threshold-shock (DTS) model is

proposed. The main focus of this paper is to provide a dynamic maintenance

policy based on the current conditions of the system while both environmen-

tal and operational conditions of the system are uncertain. In this regard, a

condition-based maintenance (CBM) policy with periodic inspection is devel-

oped. Both corrective and preventive replacements are taken into account and

preventive replacement threshold is updated at each inspection time. The up-

date is done in the light of new information on the number and magnitude

of shocks using a rolling horizon approach within the Bayesian framework. A

simulation study has been conducted to show the applicability and efficiency

of the proposed method and the effect of prior information on the maintenance

decisions has been studied.

Keywords: Rolling horizon approach, Parameter uncertainty, Optimal

maintenance policy, Degradation-threshold-shock model
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1. Introduction

Maintenance is an important part of facilities management. The mainte-

nance activities are related with inspection, service, repair and replacement of

system in order to decrease system downtime, reduce the number of major re-

pairs, improve system performance and safety and avoid poor quality products5

and customers dissatisfaction. Because maintenance actions are expensive, com-

panies are looking to develop maintenance plans that ensure system performance

at the lowest cost over time. Such maintenance plans are referred to as optimal

maintenance policies. The search for optimal maintenance policies, resulting

from the work of Barlow and Hunter [1], has been the subject of an enormous10

amount of research for at least five decades. A critical main step in determin-

ing a suitable maintenance plan is knowing why and how the system fails. In

a dynamic environment, two major causes of system failure are deterioration

and shocks. In such environments, to describe the failure behaviour of system

a model is needed that jointly considers competing causes of degradation and15

shocks. Such a class of reliability models has been called degradation-threshold-

shock (DTS) models by Lehmann [16]. In this paper, we first develop a DTS

model in which

• System degradation is modeled based on the GDP model proposed by Lu

and Meeker [19].20

• Both fatal and effective shocks are taken into account.

• System degradation depends on the shocks, each incoming shock either

leads to immediate system failure, or affects the system degradation by

increasing the age of system according to the virtual age model proposed

by Kijima [15], but the arrival of shock is not affected by the system25

degradation.

Today, thanks to development of sensor technology, it is often possible to collect

information on the number and magnitude of shocks over time. For example,

piezoelectric (PE) accelerometers with integral electronics, also called integrated
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electronics pezoelectric (IEPE) accelerometers are vibration sensors designed for30

measurement of dynamic vibration signals at frequencies ranging from very low

(near-dc) to 10 kHz, Levinzon [18]. The information collected by the sensors

allows us to update prior information on the incoming shocks. Based on this

new information, it is wise to reconsider the maintenance decisions which were

previously made based on lesser information. According to Gertsbakh [10],35

the maintenance decisions made by taking to account new information that

is provided during system operation are maintenance decisions with learning

and the formal framework for maintenance with learning will be the so-called

rolling horizon model. The rolling horizon approach has been used in many

fields of science to tackle uncertainty in a dynamic stochastic environment. In40

this approach, the planning horizon is scheduled at periodic times and informa-

tion/forecasts on uncertainty are updated at each discrete inspection/decision

time. Updating is done based on a model that evolves over time. A decision

is made for planning horizon based on the current information and is only im-

plemented up to the next inspection/decision time. Updating is repeated at45

each inspection/decision time justifying the term of rolling horizon. The term

of horizon refers to the number of periods in the future for which updating is

done.

In this paper, we propose a dynamic maintenance policy for a single-unit

system which is subject to shocks and deterioration. The maintenance decisions50

are made based on a new DTS model with uncertain parameters using the

rolling horizon approach in a Bayesian framework. At any inspection time, the

proposed method can choose the best maintenance action based on the current

age and state of the system which minimizes the cost. To our knowledge, no

work has been done in maintenance planning with DTS model where the model55

parameters are unknown. We believe that the assumptions made about failure

and maintenance models in this paper make sense in practice, because in the real

world most of systems operate under both deterioration and unexpected events

while information about these two major causes of failure is often uncertain.

Moreover, the proposed maintenance model provides an answer to the problem60
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of taking into account new information obtained during system operation in

a condition-based-maintenance (CBM) with DTS model. It is worth noting

that beside model-based maintenance policies, several maintenance policies have

been proposed using model-free methods such as artificial intelligence or other

machine learning algorithms, but very few of them consider the impact of new65

information on the decision-making procedure.

The remainder of this work is organized as follows. Section 2, introduces

related previous research. In Section 3, model assumptions are introduced and

a reliability model is derived. Section 4, proposes a CBM model with periodic

inspection and a rolling horizon approach is adopted to tackle parameters un-70

certainty. Section 5, presents a numerical example illustrating the applicability

of the proposed method. Section 6, presents the conclusion and future work.

2. Literature review

2.1. GDP model

The GDP model is a parametric model to describe degradation measure-75

ments. This model has been proposed to move reliability analysis from time-

to-failure analysis to degradation measurements analysis. The GDP model has

been considered by many researchers, e.g., Meeker and Escobar [21] for Alloy-

A fatigue crack , Suzuki et al. [29] for a carbon film, and Tseng et al. [33]

for fluorescent light bulbs. Further, extension of GDP methodology has been80

successfully applied in a variety of applications for prognostic and health man-

agement, Coble and Hines [5].

2.2. DTS model and maintenance

The class of DTS models have been examined by several authors, for exam-

ple; Lemoine and Wenocur [17], Singpurwalla [28], Peng et al. [24], Wang et al.85

[35] and Fan et al. [6]. The problem of optimal maintenance policy under shock

models was first studied by Taylor [31] and has become the subject of several

subsequent generalization works, including CBM with DTS model. Existing
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works on CBM with DTS model can be classified into two categories: first one,

where system degradation is modeled by a stochastic process such as gamma90

process, Huynh et al. [11], Huynh et al. [12], Zhu et al. [44], Zhu et al. [45], Cas-

tro et al. [2] and Yousefi et al. [42]; Wiener process, Yang et al. [38] and inverse

Gaussian process, Wang et al. [34]. Second one, where system degradation is

modeled by a GDP model; Peng et al. [24] and Yang et al. [39].

In all the works mentioned above, the model parameters are assumed to be95

known.

2.3. Maintenance with parameter uncertainty

The problem of parameter uncertainty in maintenance modeling has been

considered by some authors. The common approach in such situations is to

use the Bayesian theorem to update prior information about uncertain param-100

eters and to propose an adaptive maintenance policy. The existing works in

this field could be classified into two parts based on the assumptions made

on the system failure mechanism. The first one is those that consider a ran-

dom distribution with uncertain parameters for system failure time as well as

a maintenance model such as: age replacement model, Fox [9] and Sathe and105

Hancock [26]; age and block replacement models with minimal repair, Mazzuchi

and Soyer [20]; age replacement model by taking into account the randomness

of minimal repair cost, Sheu et al. [27]; age replacement model incorporating

minimal repair, major repair, planned replacement, unplanned replacement and

periodic scheduled maintenance, Juang and Anderson [13]. The second one is110

related to deteriorating systems in which a stochastic degradation process with

unknown parameters is considered, failure mechanism is defined based on soft

failure and a CBM model with periodic or aperiodic inspection times is consid-

ered as a maintenance model, Kallen and van Noortwijk [14], Flage et al. [8]

and Mosayebi et al. [22].115

2.4. Dynamic maintenance model

In the reliability literature, maintenance model with updating is called dy-

namic maintenance model. Recently, Wu et al. [36] have proposed a dynamic
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maintenance strategy with iteratively updated group information. They have

formulated a new dynamic planning framework that captures economic depen-120

dence in both preventive and opportunistic replacement. The method proposed

by them can be viewed as a dynamic version of the rolling horizon approach,

which can be implemented iteratively until the end of the system service life

without specifying and rolling the planning horizon. Yang et al. [40] have pro-

posed an operations and maintenance (O&M) framework with fully considera-125

tion of both dynamic wind conditions and turbine operation conditions. In their

work the impacts of dynamic wind conditions on both production and mainte-

nance are integrated into decision-making process. A dynamic maintenance

policy for multi-component systems with individually repairable components

based on the reinforcement learning approach has been developed by Yousefi130

et al. [43], where each component experiences two competing failure processes

of degradation and random shocks. Wu et al. [37] have proposed a dynamic

CBM model based on an inverse Gaussian process with stochastic parameters

where the distribution of drift parameters is updated over time and a dynamic

maintenance threshold function (DMTF) has been proposed to replace the fixed135

maintenance threshold. Tang et al. [30] have formulated a dynamic maintenance

policy in a semi-Markov decision process framework. In their work, a random-

coefficient autoregressive model with time effect is developed to describe system

degradation and a Bayesian approach for periodically updating the estimates of

stochastic coefficients is proposed.140

3. Reliability model

For this paper, we use the following mathematical symbols and notations.
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3.1. Notations

CBM Condition-based maintenance

DTS Degradation-threshold-shock

GDP General degradation path

{Ni(t), t ≥ 0}, i = 1, 2 Fatal and effective shock arrival processes

Tv Virtual age

Wi Random increment due to the ith effective shock

F Distribution function of W

A Random vector related to system random properties

g(t;A), t ≥ 0 General degradation path model

T Lifetime of system

z0 Degradation threshold

h(z,A), z ≥ 0 Inverse function of g with respect to t

F k∗ k−fold convolution of F

G(a) Distribution function of A

M Preventive threshold

kτ, k = 0, 1, ... Periodic inspection times

Pp(kτ), Pc(kτ) Preventive and corrective replacement probabilities at kτ

cp Cost of a preventive replacement

cc Cost of a corrective replacement

c0 Cost of an inspection

L(M) Average long-run maintenance cost per unit of time

Tr A renewal cycle

Cr Maintenance cost per a renewal cycle

Θ Model parameters vector

π(Θ) Prior distribution function of Θ

Θ(1),Θ(2) Model parameters vectors related to external and internal sources

π(Θ(i)), πi(Θ
(i)|data) Prior and posterior distribution functions of Θ(i), i = 1, 2

HPP Homogeneous poisson process

ζ Arbitrary small positive number
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Here, we present a reliability model for a single-unit system which is sub-

ject to random shocks and deterioration. The model is proposed based on the145

following assumptions.

3.2. Shock assumptions

Each shock either causes immediate system failure or increases the age of

system. The first one is called a fatal shock and the second one is called an

effective shock. The shocks arrive according to the counting processes, N1(t)150

and N2(t), where N1(t) and N2(t) count the number of fatal and effective shocks

that have occurred up to time t. The arrival of fatal and effective shocks are

independent.

3.3. Degradation assumptions

Suppose that the system starts operating at time t = 0. The time t, since155

the system starts operating is called calendar age of the system. Because the

effective shocks affect the system by increasing its age, it is reasonable to con-

sider a real age that describes the system state at each time. This real age is

called virtual age in accordance with the established terminology on system age,

Finkelstein [7]. It is clear that virtual age should depend on calendar age and160

both virtual and calendar ages coincide where there is no shock. Let Tv be the

system virtual age at time t. It is assumed that each effective shock increases

the system age by random increment Wi ≥ 0, with distribution function F .

That is,

Tv = t+

N2(t)∑
i=0

Wi. (1)

where W0 = 0. This assumption has been recently used by Qingan and Lirong165

[25]. Moreover, it is assumed that the system deteriorates over time according

to a GDP model proposed by Meeker and Escobar [21] which takes to account

the system virtual age instead of the system calendar age. Accordingly, the

system degradation value at time t, is defined as follows:
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g(t+

N2(t)∑
i=0

Wi;A) = g(Tv;A), (2)

where g is a non-decreasing invertible function with respect to t that in practice170

may be derived from physics-of-failure models or from degradation test data,

Coble and Hines [5] and A is a random vector related to random properties

of the system. According to Ye and Xie [41], other than the simplicity, there

are advantages of using the GDP model: (a) it is very flexible in incorporating

random effects. In comparison, a stochastic process model has limited ways in175

incorporating covariates and random effects. (b) The GDP model is more robust

than process-based models. Although, the GDP model is applicable only when

the unexplained randomness due to environmental factors is sufficiently small,

there are many degradation real cases with a very low volatility, for example

systems subject to friction or erosion, such as brake pads, see Figure (2) taken180

from Trilla et al. [32].

Note that given A, the system degradation is not deterministic; it is governed

by an increasing piecewise-deterministic process that jumps at random arrival

times of shocks. Figure (3) shows an example of degradation path under given

model.185

3.4. Failure mechanism

A system failure occurs when 1) system degradation reaches a critical level

z0 (threshold model) or 2) a fatal shock arrives (shock model). The failure due

to the first cause is called soft failure and due to the second cause is called hard

failure.190

3.5. Reliability modeling

Let T be the system lifetime and h denote the inverse function of g with

respect to t. The conditional reliability function of system is given by
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P (T > t | N1(t) = 0, N2(t) = n,A = a) = P (g(t+

n∑
i=0

Wi; a) ≤ z0)

= Fn∗(h(z0; a)− t)

(3)

where F k∗ is k−fold convolution of F with itself i.e,

F k∗(t) =


1(t) k = 0,

F (t) k = 1,∫∞
−∞ F (k−1)∗(t− x)f(x)dx k ≥ 2,

f(.) = F ′(.) and195

1(t) =

 1 t ≥ 0,

0 t ≤ 0.

From (3), it is concluded that

P (T > t | A = a) = P (N1(t) = 0)

∞∑
n=0

Fn∗(h(z0; a)− t)P (N2(t) = n) (4)

and then, the reliability function of T is given by

F̄ s(t) = P (T > t) = P (N1(t) = 0)

∞∑
n=0

EA{Fn∗(h(z0;A)− t)}P (N2(t) = n)

= P (N1(t)=0){EA{F 0∗(h(z0;A)−t)}P (N2(t)=0)+
∑∞
n=1 EA{F

n∗(h(z0;A)−t)}P (N2(t)=n)}

= P (N1(t)=0)
{
P (N2(t)=0)

∫
h(z0;a)≥t dG(a)+

∑∞
n=1(

∫
Fn∗(h(z0;a)−t)dG(a))P (N2(t)=n)

}
.

(5)

where EA is expectation with respect to A and G(a) is the distribution function

of A. The proposed model could be considered as a generalization of the models

proposed by Cha and Finkelstein [3] and Nakagawa [23].200

4. Maintenance modeling

4.1. Maintenance policy

Suppose that inspection is scheduled at periodic times kτ, k = 1, 2, .... The

time interval (kτ − τ, kτ ] will be called the kth period. We assume that (a) the
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system failure is not self-announced, (b) inspection is performed at the end of205

each period and (c) the time needed for inspection and maintenance replacement

is negligible. At the end of the kth period, a failure is announced if during this

period a fatal shock arrives or the system degradation level attains a critical

level z0. The system is replaced by a new identical one if a failure is detected

or the system degradation level exceeds a preventive threshold M(M < z0).210

For the first case, the maintenance task is called corrective maintenance and for

the second is called preventive maintenance. The time between two successive

replacements is referred to as a (renewal) cycle. Let Pp(kτ) and Pc(kτ) denote

preventive and corrective maintenance probabilities at the end of the kth period,

respectively.215

A preventive replacement is carried out at the end of the kth period when

• g(kτ − τ +
∑N2(kτ−τ)
i=0 Wi;A) < M & N1(kτ) = 0 & M < g(kτ +∑N2(kτ)

i=0 Wi;A) < z0.

Based on the failure mechanism, corrective replacement is performed at the end

of the kth period if220

• g(kτ − τ +
∑N2(kτ−τ)
i=0 Wi;A) < M & N1(kτ) = 0 & z0 < g(kτ +∑N2(kτ)

i=0 Wi;A)

or

• g(kτ − τ +
∑N2(kτ−τ)
i=0 Wi;A) < M & N1(kτ − τ) = 0 & N1(kτ) = 1

The following costs are considered. A cost cc occurs when a failed system225

is replaced (corrective maintenance cost). A cost cp is incurred when a non-

failed system is exchanged before failure (preventive maintenance cost) and c0

is the cost of inspection. Let E(Cr) and E(Tr) denote the expected maintenance

cost per cycle and expected cycle length, respectively. According to the classical

renewal theorem, the average long-run maintenance cost per unit of time, L(M),230

equals to the expected maintenance cost per cycle divided by the expected cycle
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length, that is

L(M) =
E(Cr)

E(Tr)
(6)

where

E(Cr) =

∞∑
k=1

((kc0 + cc)Pc(kτ) + (kc0 + cp)Pp(kτ))

and

E(Tr) =

∞∑
k=1

kτ(Pc(kτ) + Pp(kτ)).

Our objective is to search M , such that minimizes the average long-run main-

tenance cost per unit of time.235

Let Θ = (θ1, ..., θm) denote the vector of model parameters. We assume

that there is an uncertainty about Θ. In other words, there exists a range of

potential values of θi over which θi varies unpredictably and thus randomly.

Assume that the uncertainty about the actual value of Θ can be represented by

a prior distribution function π(Θ). In this case, the values of Pp(kτ) and Pc(kτ)240

are obtained as follows:

Pp(kτ) = EΘ(Pp(kτ |Θ)) =

∫
Θ

Pp(kτ |Θ)dπ(Θ) (7)

and

Pc(kτ) = EΘ(Pc(kτ |Θ)) =

∫
Θ

Pc(kτ |Θ)dπ(Θ) (8)

where Pp(kτ |Θ) and Pc(kτ |Θ) are preventive and corrective maintenance prob-

abilities given Θ and are derived as follows:

Pp(kτ |Θ) = PΘ2
(N1(kτ) = 0)

∞∑
x=0

∑
y≤x

[
PΘ3

(N2(kτ) = x,N2(kτ − τ) = y)×

(∫ ∞
0

∫ h(M,a)−kτ+τ

0

(F
(x−y)∗
Θ1

(h(z0, a)− kτ − u)− F (x−y)∗
Θ1

(h(M,a)− kτ − u))dF y∗Θ1
(u)dGΘ4

(a)

)]
,

(9)
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where Θ1,Θ2,Θ3 and Θ4 are the model parameters related to distribution func-

tions of W,N1(t), N2(t) and A, respectively. Further,

Pc(kτ |Θ) = Pc1(kτ |Θ) + Pc2(kτ |Θ),

245

Pc1(kτ |Θ) = PΘ2(N1(kτ) = 0)

∞∑
x=0

∑
y≤x

[
PΘ3(N2(kτ) = x,N2(kτ − τ) = y)×

(∫ ∞
0

∫ h(M,a)−kτ+τ

0

(
1− F (x−y)∗

Θ1
(h(z0, a)− kτ − u)

)
dF y∗Θ1

(u)dGΘ4
(a)

)]
,

(10)

and

Pc2(kτ |Θ) = PΘ2
(N1(kτ − τ) = 0, N1(kτ) = 1)×

∞∑
y=0

[(∫ ∞
0

F y∗Θ1
(h(M,a)− kτ + τ)dGΘ4

(a)

)
PΘ3

(N2(kτ − τ) = y)

]
.

(11)

For more details, see appendices A1 and A2.

4.2. Rolling horizon and information updating

The preventive and corrective maintenance probabilities given in (7-8) are

obtained by integrating the product of two parts: a permanent part, {Pp(kτ |Θ), Pc(kτ |Θ)},250

and a variable part, π(Θ). Using the rolling horizon approach, the variable

part is changed and updated based on the information received during the sys-

tem operation. Set Θ = (Θ(1),Θ(2)), where Θ(1) = (θ1, ..., θj) is the model

parameters related to external (environmental) source, i.e. the shocks, and

Θ(2) = (θj+1, ..., θm) is the model parameters related to internal source, i.e. the255

system degradation.

Suppose that Θ(1) and Θ(2) are independent and π1(Θ(1)) and π2(Θ(2)) rep-

resent prior distribution functions of Θ(1) and Θ(2), respectively. In order to

simplify and make tractable the formal part of our investigation, some assump-

tions are made as follows:260
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• Before the system starts operating, some initial information about the

variable part is available and could be summarized in the form of prior

distribution functions denoted by Data(0) = {π1(Θ(1)), π2(Θ(2))}.

• W = κW ∗, where W ∗ is the effective shock magnitude and κ is known.

This assumption means that the effective shock impact on the system age265

is proportional to its magnitude, Fan et al. [6].

• Number of shocks and their magnitude could be observed at the end of

each inspection time.

• Information received in the course of system operation does not depend

on the system properties and comes from external sources.270

Based on Data(0) and equations (7) and (8), an optimal value of M , which

minimizes (6) is obtained. This value is the optimal preventive threshold with-

out updating the information. If the system does not fail during (0, τ ], new

information about the number of effective shocks, n2(τ), and their magni-

tude {w1, ..., wn2(τ)} is received at the end of the first period. Set data1 =275

{n2(τ), w1, ..., wn2(τ)}. This new information, data1, is applied to recompute

the prior distributions into the posterior distributions according to the Bayesian

theorem. Therefore, at the end of the first period, the variable part is partially

updated and denoted by

Data(1) = {π1(Θ(1)|data1), π2(Θ(2))}

where π1(Θ(1)|data1) is the posterior distribution function of Θ(1). Since Θ(1)
280

is the model parameters related to shocks, its prior distribution function could

be updated based on the information received in the course of system operation

while this is not the case for Θ(2), consequently π2(Θ(2)) is not changed. Now,

we look for an optimal value of M given Data(1). First, the probabilities of

preventive and corrective maintenance are updated as follows:285

Pp(kτ) =

∫
Θ(2)

∫
Θ(1)

Pp(kτ |Θ(1),Θ(2))dπ1(Θ(1)|data1)dπ2(Θ(2)) (12)
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and

Pc(kτ) =

∫
Θ(2)

∫
Θ(1)

Pc(kτ |Θ(1),Θ(2))dπ1(Θ(1)|data1)dπ2(Θ(2)) (13)

Then, based on (12) and (13), an optimal value of M , which minimizes (6),

is obtained. This optimal value is denoted by M1, and used to make deci-

sion about the system preventive replacement at inspection time τ . If the

system does not fail during (τ, 2τ ], the second inspection takes place at time290

2τ . Now, we reconsider all information including Data(1) and the new infor-

mation received during the second period. This new information is denoted by

data2 = {n2(2τ), w1, ..., wn2(2τ)} and applied to construct Data(2) as follows:

Data(2) = {π1(Θ(1)|data2), π2(Θ(2))}

where π1(Θ(1)|data2) is the posterior distribution function of Θ(1) at the second

stage of rolling horizon approach. Given Data(2), the probabilities of preventive295

and corrective maintenance are updated once again at the second inspection

time as follows:

Pp(kτ) =

∫
Θ(2)

∫
Θ(1)

Pp(kτ |Θ(1),Θ(2))dπ1(Θ(1)|data2)dπ2(Θ(2)) (14)

and

Pc(kτ) =

∫
Θ(2)

∫
Θ(1)

Pc(kτ |Θ(1),Θ(2))dπ1(Θ(1)|data2)dπ2(Θ(2)) (15)

Based on (14) and (15), an optimal value of M which minimizes (6) is ob-

tained. This optimal value is denoted by M2, and used to make decision about300

the system preventive replacement at inspection time 2τ . For next inspections,

the information is updated again and the algorithm proceeds in a similar way

resulting in M3,M4, .....

As we will see later, the values of M1,M2,M3, .... tend to a constant value

which is the optimal preventive threshold where the model parameters are305

known. Therefore, the rolling horizon approach stops when a convergence in

the successive obtained optimal values of M is observed.
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5. Numerical example

The following numerical example shows how the rolling horizon approach is

used to obtain an optimal preventive threshold. In this example, a single-unit310

system is considered and the following assumptions have been made:

1. The system degradation follows a linear degradation path model g(t, A) =

T
A , where T is the system virtual age at time t, h(z,A) = Az, A ∈

{7.25, 9.25}, P (A = 7.25) = θ and P (A = 9.25) = 1− θ.

2. The system is subject to shocks and the shocks arrive according to homo-315

geneous poisson process (HPP) with intensity λ. Each shock is fatal with

probability p and is effective with complementary probability q = 1 − p.

Thus, we have a thinning of the process that results in two HPP processes

such that the process of effective shock is HPP with rate (1− p)λ and the

process of fatal shock is HPP with rate pλ, [4].320

3. The magnitude of effective shock, W ∗, follows a gamma distribution with

shape parameter α and scale parameter η, i.e, f(w) = wα−1

ηαΓ(α)e
−wη . The

quantities α and η are independent.

4. κ = 1, that is W = W ∗.

5. The number and magnitude of shocks are observable.325

Without loss of generality, we suppose that inspections are scheduled at

periodic times k, k = 1, 2, .... At each inspection, a preventive replacement

is carried out if the system degradation level reaches a specified value and a

corrective replacement is performed if a hard or soft failure occurs. We set

z0 = 10, cc = 1000, cp = 500 and c0 = 50.330

5.1. Optimal value of M when the model parameters are known

We suppose that the model parameters Θ = (p, λ, α, η, θ) are known and

we have (p, λ, α, η, θ) = (0.01, 4, 2, 1, 0.3). Let M∗ denote the optimal value of

M . Based on the given parameters and using numerical methods, the following

values are obtained for M∗ and L(M∗) :

M∗ = 7.8, and L(M∗) = 146.86.
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These values are used to compare the accuracy of the following methods.

5.2. Optimal value of M when the model parameters are unknown and there is

no learning

In this method, the probabilities of corrective and preventive maintenance335

are obtained from (7) and (8) without updating the prior distributions. Then,

the optimal value of M is obtained by minimizing (6) with respect to M . A

critical main step in this method is to specify the prior distributions in order to

quantify the expert belief about the model parameters. In this regard, physical

meaning of the parameters could be sometimes helpful. We consider an infor-340

mative prior for λ in terms of its physical meaning as follows. It is known that

for a HPP with intensity λ, the mean number of shocks in any interval of length

one is λ. This physical meaning of λ might be usefully exploited to formulate

the prior knowledge about λ regarding to a mean value µ and a standard devi-

ation value σ. That is, if a gamma distribution is chosen as prior distribution345

for λ, πλ(λ) = λa−1

baΓ(a)e
−λb , the hyperparameters a, b can be related to the prior

knowledge by a = µ2

σ2 and b = σ2

µ . Now, suppose that based on the engineer’s

experience, we know that µ = 4 and σ2 = 3.2. As a result, the hyperparameters

are obtained as a = 5 and b = 0.8.

Further, suppose that according to the existing information, the fatal shock350

rate is 0.01. We choose a beta distribution πp(p) = pe−1(1−p)f−1

B(e,f) with e = 1 and

f = 99 as prior distribution for p that supports a strong belief of the rarity of

fatal shocks. For the shape parameter α of density function f(w), a uniform

distribution on the interval (1.5, 2.5) is used as prior distribution. Note that

the uniform distribution is a special case of discrete beta distribution which is355

commonly used as prior distribution for the shape parameter.

As prior distribution for η, a gamma distribution πη(η) = ηc−1

dcΓ(c)c
− ηd is cho-

sen. We set the hyperparameters as c = 4 and d = 0.75, resulting in E(η) = 3

and V ar(η) = 2.25. Assume that there is no information about θ. In such a

case, we believe that it is reasonable to present prior knowledge by a flat prior,

i.e., uniform distribution on the interval (0, 1). We refer to the prior distribu-
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tions given in this section as Prior I. Let M I
0 denote the optimal value of M

under Prior I . Using numerical methods, the following values are obtained for

M I
0 and L(M I

0 ) :

M I
0 = 7.1, and L(M I

0 ) = 234.69.

It is observed that the results obtained in this section are significantly different

from the similar results in section 5.1. Therefore, using the Bayesian method

without learning leads to a significant bias in results.

5.3. Dynamic optimal value of M when the model parameters are unknown360

through the rolling horizon approach

In this method, the prior distribution of λ and the joint prior distribution of

(α, η) are updated at the end of the kth period. Updating is done based on the

information received on the number and magnitude of effective shocks up to the

kth inspection through the rolling horizon approach. After updating the prior365

distributions, both probabilities of corrective and preventive maintenance are

subsequently updated and applied in (6). At each inspection time, an optimal

value of M is obtained by minimizing (6) with respect to M , resulting in a dy-

namic maintenance policy throughout the monitoring procedure. The detailed

steps of this method are given in appendix A3 and Figure (1).370

The information on the number and magnitude of shocks and the observed

degradation values were generated as follows. The number of incoming shocks

in each period with length one was generated from a Poisson distribution with

parameter λ = 4, and the magnitude of effective shocks was generated from a

gamma distribution with shape parameter α = 2, and scale parameter η = 1.375

According to the GDP model, observed degradation value is equal to real degra-

dation value plus measurement error, i.e., gobs(t, a) = g(t, a) + ξ where gobs(t, a)

is the observed degradation value at time t. Moreover, based on the simulation

assumptions, the real degradation value at time t is g(T, a) = T
a =

t+
∑N2(t)
i=0 Wi

a .

We set a = 9.25 as real value of a, and we suppose that the measurement error380

ξ follows a normal distribution with mean µξ = 0 and variance σ2
ξ = 0.3. The

generated data have been reported in Table (1).
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Based on the given prior distributions in previous section and new infor-

mation received on the number of shocks, a gamma distribution with shape

parameter n+ a and scale parameter b
kb+1 is concluded as updated prior distri-385

bution of λ given data (posterior distribution),πλ(λ|data), when n is the number

of effective shocks up to the kth period . The updated joint prior distribution

of (α, η) given data (joint posterior distribution) is obtained as follows:

π(α,η)(α, η|data) ∝ L(data|α, η)πη(η)πα(α) =
wα−1
p e−(wsη + η

d )

ηnα−c+1Γn(α)
,

1.5 < α < 2.5, 0 < η <∞. (16)

where πα(α) is prior distribution of α, wp = Πn
i=1wi and ws = Σni=1wi.

Let M I
k , k = 1, 2, ...., denote the optimal value of M at the kth inspection390

time obtained by the rolling horizon approach under Prior I. The prior dis-

tributions, and then Pp(kτ) and Pp(kτ), are updated based on the information

receivied at the kth inspection time via the rolling horizon approach and applied

in (6). Then, M I
k is obtained by minimizing (6) with respect to M . Table (3,

first row) gives M I
k and L(M I

k ) for k = 0, ..., 8 and Figure (8) describes the evo-395

lution of M I
k over successive inspection times. From the results, it is observed

that at the first inspection time with n = 3, the value of M I
1 is the same as the

value of M I
0 . This means that the number of observations, n = 3, is not enough

to affect M I
1 . At the second inspection time with n = 8, the value of M I

2 begins

to increase and from the 3th inspection time to the 8th inspection time, the400

value of M I
k moves between two values: 7.6 and 7.7. This means that M I

k has

a stationary behaviour after the 3th inspection time. That is, the value of M I
k

moves toward the desired value of M∗ over inspection times and eventually its

mean value becomes constant and its variance decreases. Moreover, the value of

L(M I
k ) has a decreasing rate from 169.21 at the first inspection time to 148.01405

at the 8th inspection time that the latter is close to L(M∗) = 146.86. From

the numerical results obtained here, it is concluded that the rolling horizon ap-

proach is efficient as it is accurate enough for providing optimal value of M over

time while working under uncertainty.
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The number of inspections considered here for applying the rolling horizon410

approach has been limited to 8. The reason is that based on the simulated degra-

dation values, Table (1) and the obtained optimal values of M , Table(3, first

row), the system should be replaced at the 8th inspection time as a preventive

act. Therefore, it is not available after the 8th inspection time .

5.4. The effect of prior information415

In order to study the effect of prior information on the obtained results,

besides Prior I, three other priors denoted by Prior II, Prior III and Prior IV

have been considered. Prior III is less informative than Prior II and Prior IV is

less informative than Prior I. Table (2) provides details about the priors. The

evolution of updated prior distributions given data (posterior distributions) for420

λ and (α, η) has been shown in Figures (4-7). The Figures reveal that the pos-

terior distributions are highly influenced by the prior distributions at the first

stage of the rolling horizon approach. This happens because posterior distri-

bution is affected by likelihood and prior distribution (Posterior distribution ∝

Likelihood× Prior distribution). At the first stage of the rolling horizon ap-425

proach, the number of observations is small (n = 3). Therefore, the influence

of prior distribution on the posterior distribution is greater than the likelihood

function. But, as the number of observations increases, the posterior distribu-

tion is more affected by the likelihood function. Moreover, by increasing the

number of observations, the variations decrease and then the tail of univariate430

distributions of α and η becomes shorter resulting in a narrow and compact

posterior contour plot.

Let Mm
k , k = 0, 1, ...8,m = I, II, III, IV denote the optimal value of M

under Prior m at the kth inspection time. Table (3) and Figures (8-9) reveal

some facts concerning evolution of Mm
k , as follows:435

• The evolution behaviour of optimal value of M is similar for all priors.

That is, for each m = I, II, III, IV , there is no significant difference

between the values of Mm
0 and Mm

1 , the value of Mm
k increases from k = 1

up to k = 4 and then moves around a constant value. This means that
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the evolution behavior of optimal value of M depends on the information440

received in the course of system operation, i.e., the number and magnitude

of shocks.

• All values of Mm
k , k = 0, 1, ...8,m = I, II, III, IV are less than M∗, and

are influenced by the prior information, particularly at the first stage of the

rolling horizon. At the first stage of the rolling horizon, the evolution paths445

related to the less informative priors have a downward shift compared to

the informative priors. This is because at the initial inspection times

due to lack of information, the prior distribution has more impact on the

posterior distribution than the likelihood function while the opposite is

true for the next inspection times with enough information.450

• Under the less informative priors, the values of Mm
k , k = 0, 1, ..., are more

spread out.

From a statistical point of view, since the degradation parameters are not

updated over time, even for k →∞, the value of Mm
k is biased. Its bias depends

on the existing information about Θ(2). Therefore, a particular attention should455

be paid to collect information about Θ(2), as far as possible.

From an economic point of view, the results show that the preventive re-

placement decision made at the initial inspection times is more costly. This

is due to the conservatism of the preventive maintenance decision to take into

account the uncertainty about the model parameters. Therefore, it is recom-460

mended to continue the rolling horizon till the obtained preventive threshold

reaches to a constant value.

21



6. Conclusion

In this work, we first developed a DTS model for a single-unit system where

i) both fatal and effective shocks are considered, ii) the system degradation465

follows a GDP model and depends on the effective shocks, iii) the impact of

effective shocks on the system degradation is expressed through the virtual age

concept, iv) the system fails due to soft or hard failure. Then, we investigated an

optimal maintenance strategy for the system based on the proposed DTS model

where there is an uncertainty about the model parameters. A rolling horizon470

approach in the Bayesian framework has been adopted for this purpose. Accord-

ing to this method the system learns about environmental conditions through

the information received at each inspection time and in the light of this knowl-

edge the maintenance decisions are improved. The results obtained from the

numerical simulation studies reveal the applicability and efficiency of the pro-475

posed method. The obtained preventive threshold by this method is improved

over time and tends to a constant value which is close to the optimal value

of preventive threshold where the model parameters are known. Based on the

sensitivity analysis, it is observed that prior knowledge highly influences on the

early stage of rolling horizon approach and the evolution behaviour of optimal480

preventive threshold depends on the information received at each inspection.

This work could be developed at least in three following aspects as future

work. First, in the maintenance model represented in this work the inspection

times are scheduled at periodic times while it is more convenient to consider ape-

riodic inspection times and update both the next inspection time and preventive485

degradation level by the rolling horizon approach. It is more complicated but it

is less costly plan. Second, preventive act here is the system replacement while

there are another types of preventive maintenance which are less costly such

as imperfect or minimal repair. Although, this work considers the uncertainty

about the degradation model parameters, proposing a maintenance model with490

possibility of updating degradation model parameters as well as shock model

parameters could be third aspect of developing current work.
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Appendix

A1. Preventive replacement probability

Suppose that Θ = (Θ1,Θ2,Θ3,Θ4) is the vector of model parameters where495

Θ1,Θ2,Θ3 and Θ4 are the model parameters related to distribution functions

of W,N1(t), N2(t) and A, respectively.

Given values of Θ, A,N1(kτ), N2(kτ), andN2(kτ−τ), the conditional preven-

tive replacement probability at the kth period Pp(kτ |Θ, A,N1(kτ), N2(kτ), N2(kτ−

τ)) is given by500

Pp(kτ |Θ, A,N1(kτ) = 0, N2(kτ), N2(kτ − τ)) =

P

M ≤ g(kτ +

N2(kτ)∑
i=0

Wi;A) < z0, g(kτ − τ +

N2(kτ−τ)∑
i=0

Wi;A) < M

 =

P

h(M,A)− kτ ≤
N2(kτ)∑
i=0

Wi < h(z0, A)− kτ,
N2(kτ−τ)∑

i=0

Wi < h(M,A)− kτ + τ

 =

∫ h(M,A)−kτ+τ

0

P

h(M,A)− kτ ≤
N2(kτ)∑
i=0

Wi < h(z0, A)− kτ,
N2(kτ−τ)∑

i=0

Wi = u

 du =

∫ h(M,A)−kτ+τ

0

[
P

h(M,A)− kτ − u ≤
N2(kτ)∑

i=N2(kτ−τ)+1

Wi < h(z0, A)− kτ − u

×
f
N2(kτ−τ)∗
Θ1

(u)

]
du =

∫ h(M,A)−kτ+τ

0

(
F

∆N(kτ)∗
Θ1

(h(z0, A)− kτ − u)− F∆N(kτ)∗
Θ1

(h(M,A)− kτ − u)
)
dF

N2(kτ−τ)∗
Θ1

(u).

(17)

where fn∗Θ1
(u) is the probability density function of

∑n
i=0Wi and ∆N(kτ) =

N2(kτ)−N2(kτ − τ).

By taking expectation with respect to A,N1(kτ), N2(kτ), and N2(kτ − τ),

the preventive replacement probability at the kth period given Θ, Pp(kτ |Θ) is

obtained as follows:505
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Pp(kτ |Θ) =
∞∑
x=0

∑
y≤x

[
PΘ2(N1(kτ) = 0)PΘ3(N2(kτ) = x,N2(kτ − τ) = y)×

(∫ ∞
0

∫ h(M,a)−kτ+τ

0

(F
(x−y)∗
Θ1

(h(z0, a)− kτ − u)− F (x−y)∗
Θ1

(h(M,a)− kτ − u))dF y∗Θ1
(u)dGΘ4

(a)

)]
.

A2. Corrective replacement probability

Given values of Θ, A,N1(kτ), N2(kτ) and N2(kτ−τ), the conditional correc-

tive replacement probability at the kth period Pc(kτ |Θ, A,N1(kτ) = 0, N2(kτ), N2(kτ−

τ)) is obtained as follows:

Pc(kτ |Θ, A,N1(kτ) = 0, N2(kτ), N2(kτ − τ)) =

Pc1(kτ |Θ, A,N1(kτ) = 0, N2(kτ), N2(kτ − τ)) + Pc2(kτ |Θ, A,N1(kτ) = 1, N2(kτ), N2(kτ − τ))

(18)

where510

Pc1(kτ |Θ, A,N1(kτ) = 0, N2(kτ), N2(kτ − τ)) =

P

z0 ≤ g(kτ +

N2(kτ)∑
i=0

Wi;A), g(kτ − τ +

N2(kτ−τ)∑
i=0

Wi;A) < M

 =

P

h(z0, A)− kτ ≤
N2(kτ)∑
i=0

Wi,

N2(kτ−τ)∑
i=0

Wi < h(M,A)− kτ + τ

 =

∫ h(M,A)−kτ+τ

0

P

h(z0, A)− kτ ≤
N2(kτ)∑
i=0

Wi,

N2(kτ−τ)∑
i=0

Wi = u

 du =

∫ h(M,A)−kτ+τ

0

[
P

h(z0, A)− kτ − u ≤
N2(kτ)∑

i=N2(kτ−τ)+1

Wi

×
f
N2(kτ−τ)∗
Θ1

(u)

]
du =

∫ h(M,A)−kτ+τ

0

(
1− F∆N(k)∗

Θ1
(h(z0, A)− kτ − u)

)
dF

N2(kτ−τ)∗
Θ1

(u).

(19)
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and

Pc2(kτ |Θ, A,N1(kτ − τ) = 0, N1(kτ) = 1, N2(kτ − τ)) =

P

g(kτ − τ +

N2(kτ−τ)∑
i=0

Wi;A) < M

 = P

N2(kτ−τ)∑
i=0

Wi < h(M,A)− kτ + τ

 =

= F
(N2(kτ−τ))∗
Θ1

(h(M,A)− kτ + τ).

(20)

By taking expectation with respect to A,N1(kτ), N2(kτ), and N2(kτ − τ), it

follows that

Pc1(kτ |Θ) =

∞∑
x=0

∑
y≤x

[
PΘ2

(N1(kτ) = 0)PΘ3
(N2(kτ) = x,N2(kτ − τ) = y)×

(∫ ∞
0

∫ h(M,a)−kτ+τ

0

(
1− F (x−y)∗

Θ1
(h(z0, a)− kτ − u)

)
dF y∗Θ1

(u)dGΘ4
(a)

)]
and

Pc2(kτ |Θ) = PΘ2(N1(kτ − τ) = 0, N1(kτ) = 1)×( ∞∑
y=0

(∫ ∞
0

F y∗Θ1
(h(M,a)− kτ + τ)dGΘ4

(a)

)
PΘ3

(N2(kτ − τ) = y)

)
.

Finally, we have

Pc(kτ |Θ) = Pc1(kτ |Θ) + Pc2(kτ |Θ).

A3. Procedure of obtaining the optimal value of M via the rolling horizon ap-515

proach

1. Set initial values τ, c0, cc, cp, z0, ζ and initial prior distributions Data(k) =

{π1(Θ(1)|datak), π2(Θ(2))}, k = 0.

2. Update the prior distributions and then the probabilities of preventive and

corrective replacement based on the Data(k) according to:520

Pp(kτ) =

∫
Θ(2)

∫
Θ(1)

Pp(kτ |Θ(1),Θ(2))dπ1(Θ(1)|datak)dπ2(Θ(2)).

(21)
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and

Pc(kτ) =

∫
Θ(2)

∫
Θ(1)

Pc(kτ |Θ(1),Θ(2))dπ1(Θ(1)|datak)dπ2(Θ(2)).

(22)

3. Obtain the optimal preventive degradation level Mk
∗, such that

M∗k = argminML(M).

4. If |M∗k −M∗k−1| < ζ, go to the next step. Otherwise, set k = k + 1 and

go back to step 2.

5. Output the optimal preventive degradation level M∗k and L(M∗k).
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Figure 1: Flowchart of the optimization procedure under the proposed maintenance strategy
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Table 1: Generated data including number (n) and magnitude of effective shocks (W) as well

as observed degradation at each inspection time

k nk
Wi

i=1,...,nk

Observed degradation

at the kth inspection time

1 3 1.530, 2.986, 1.165 0.3287

2 5 3.594, 1.084, 0.912, 1.043, 2.416 1.708

3 4 2.918, 1.753, 1.949, 2.900 2.723

4 5 0.743, 5.217, 0.865,1.185, 3.768 4.274

5 2 1.993, 0.702 4.678

6 4 2.091, 0.411, 2.080,2.072 4.827

7 3 6.387, 3.079, 1.080 6.452

8 4 0.625, 0.756,0.652, 1.617 7.611

9 0 — 7.848

10 2 3.044, 1.374 7.943

Table 2: Different configurations for priors

Prior a b c d E(λ) Var(λ) E(η) Var(η)

I 5 0.8 4 0.75 4 3.2 3 2.25

II 5 0.6 2 1 3 1.8 2 2

III 5 0.6 0.04 50 3 1.8 2 100

IV 2.7 1.5 4 0.75 4.05 6.07 3 2.25
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Figure 2: Evaluation of brake pad prognostic with the sliding window prediction technique

(Figure taken from reference [32])

Figure 3: Degradation path under two effective shocks with increments w1 and w2 where g

is a linear function and A = a
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Figure 4: Prior and posterior distribution functions for λ with different hyperparameters
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Figure 5: Evolution of posterior distribution function for (α, η) where c = 4 and d = 0.75

Figure 6: Evolution of posterior distribution function for (α, η) where c = 2 and d = 1

37



Figure 7: Evolution of posterior distribution function for (α, η) where c = 0.04 and d = 50
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Figure 8: Evolution of optimal preventive threshold over time under different priors
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Figure 9: Comparison of optimal preventive threshold evolution paths under different priors
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