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This work is dedicated to give the reader a wide review for recent advantages in the algebraic study of neutrosophic matrices, refined neutrosophic matrices, and n-refined neutrosophic matrices.

Introduction

Neutrosophy is a new kind of generalized logic proposed by Smarandache [START_REF] Smarandache | Neutrosophic Set a Generalization of the Intuitionistic Fuzzy Sets[END_REF]21], to deal with indeterminacy in real life and science.

Neutrosophic logic found its way in many branches of human knowledge such as graph theory [START_REF] Akram | Single-Valued Neutrosophic Graphs[END_REF], number theory [START_REF] Sankari | Neutrosophic Linear Diophantine Equations With two Variables[END_REF], topology [32], statistics [START_REF] Smarandache | Introduction to Neutrosophic Statistics[END_REF], and equations [START_REF] Abobala | On Some Neutrosophic Algebraic Equations[END_REF].

The neutrosophic algebra was built over the idea of inserting the indeterminacy element I into classical algebraic structures [START_REF] Kandasamy | Infinite Study[END_REF]. This idea lead to many concepts such as neutrosophic spaces [START_REF] Agboola | Neutrosophic Vector Spaces[END_REF][START_REF] Sankari | Solving Three Conjectures About Neutrosophic Quadruple Vector Spaces[END_REF][START_REF] Abobala | AH-Subspaces in Neutrosophic Vector Spaces[END_REF], neutrosophic modules [START_REF] Sankari | n-Refined Neutrosophic Modules[END_REF][START_REF] Hatip | On Refined Neutrosophic R-Module[END_REF][START_REF] Abobala | AH-Substructures in Neutrosophic Modules[END_REF], neutrosophic rings [START_REF] Adeleke | Refined Neutrosophic Rings I[END_REF][START_REF] Adeleke | Refined Neutrosophic Rings II[END_REF], groups [START_REF] Agboola | Neutrosophic Groups and Subgroups[END_REF][START_REF] Abobala | On Some Algebraic Properties of n-Refined Neutrosophic Elements and n-Refined Neutrosophic Linear Equations[END_REF], and functions [START_REF] Sankari | AH-Homomorphisms In Neutrosophic Rings and Refined Neutrosophic Rings[END_REF][START_REF] Abobala | Classical Homomorphisms Between n-refined Neutrosophic Rings[END_REF][START_REF] Abobala | Semi Homomorphisms and Algebraic Relations Between Strong Refined Neutrosophic Modules and Strong Neutrosophic Modules[END_REF].

By refining the indeterminacy I into many levels of indeterminacy , we get refined and n-refined neutrosophic groups [START_REF] Agboola | On Refined Neutrosophic Algebraic Structures[END_REF], rings [START_REF] Smarandache | n-Refined Neutrosophic Rings[END_REF][START_REF] Abobala | A Study of Maximal and Minimal Ideals of n-Refined Neutrosophic Rings[END_REF], modules [START_REF] Sankari | n-Refined Neutrosophic Modules[END_REF][START_REF] Abobala | AH-Substructures In Strong Refined Neutrosophic Modules[END_REF], and spaces [START_REF] Abobala | A Study of AH-Substructures in n-Refined Neutrosophic Vector Spaces[END_REF][START_REF] Smarandache | n-Refined Neutrosophic Vector Spaces[END_REF][START_REF] Ibrahim | On refined Neutrosophic Vector Spaces I[END_REF].

In classical algebra, matrices are playing an important role in the theory of vector spaces. They were generalized to neutrosophic matrices [START_REF] Dhar | A Note on Square Neutrosophic Fuzzy Matrices[END_REF][START_REF] Khaled | The Rectangle Neutrosophic Fuzzy Matrices[END_REF][START_REF] Das | Neutrosophic Fuzzy Matrices and Some Algebraic Operations[END_REF], refined neutrosophic matrices [START_REF] Abobala | On Refined Neutrosophic Matrices and Their Applications In Refined Neutrosophic Algebraic Equations[END_REF], and n-refined neutrosophic matrices [START_REF] Abobala | On Some Algebraic Properties of n-Refined Neutrosophic Elements and n-Refined Neutrosophic Linear Equations[END_REF].

Recently, there is an increasing interest in the algebraic properties of these matrices such as diagonalization problem [37], invertibility [37], determinants [37,[START_REF] Hatip | A Contribution to Neutrosophic Groups[END_REF][START_REF] Abobala | On Some Algebraic Properties of n-Refined Neutrosophic Elements and n-Refined Neutrosophic Linear Equations[END_REF], and algebraic representations by linear functions [START_REF] Abobala | On The Representation of Neutrosophic Matrices by Neutrosophic Linear Transformations[END_REF].

Through this work, we review the recent published developments in the algebraic study of neutrosophic matrices, refined neutrosophic matrices, and n-refined neutrosophic matrices, to provide the interested reader a strong background in this area. Also, we list some of the most important open questions about these matrices, which may represent the future of this branch of studies.

Elementary Properties of Neutrosophic Matrices

Definition 1: [28] Let be a non-empty fixed set. A neutrosophic set is an object having the form , where , represent the degree of membership, the degree of indeterminacy, and the degree of non-membership respectively of each element to the set .

Definition 2: [START_REF] Kandasamy | Infinite Study[END_REF] Let be a field, the neutrosophic file generated by which is denoted by .

Definition 3: [START_REF] Kandasamy | Infinite Study[END_REF] Classical neutrosophic number has the form where are real or complex numbers and is the indeterminacy such that and which results that for all positive integers .

Definition 4: [4]

Let where is a neutrosophic field. We call to be the neutrosophic matrix

Remark 5: [9]

The neutrosophic field is not a field by classical meaning, since I is not invertible. Let be a square neutrosophic matrix, then is an eigen value of if and only if is an eigen value of , and is an eigen value of . As well as, the eigen vector of is if and only if is the corresponding eigen vector of and is the corresponding eigen vector of .

Proof:

We suppose that is an eigen vector of with the corresponding eigen value , hence , this implies . We get:

, so that is an eigen vector of , is an eigen vector of . The corresponding eigen value of is , and the corresponding eigen value of is .

For the converse, we assume that is an eigen vector of with as the corresponding eigen value, and is an eigen vector of with as the corresponding eigen value, so that we get ).

Let us compute

. Thus is an eigen vector of M with as a neutrosophic eigen value.

Theorem 19: [37]

The eigen values of a neutrosophic matrix can be computed by solving the neutrosophic equation .

Example 20: [37]

Consider the neutrosophic matrix defined in Example 10, we have Thus, the neutrosophic eigen vectors of M are .

Neutrosophic matrices as linear transformations

Theorem 21: [START_REF] Abobala | On The Representation of Neutrosophic Matrices by Neutrosophic Linear Transformations[END_REF] Let be two vector spaces over the field with , be the corresponding neutrosophic vector spaces over the corresponding neutrosophic field . Let be two linear transformations, then there exists a neutrosophic linear transformation

, where is defined as follows:

. Proof:

We define , where .

f is a linear transformation, that is because:

for every , we have:

. On the other hand, consider an arbitrary neutrosophic number , then

. Thus f is a neutrosophic linear transformation.

Definition 22: [35]

The neutrosophic linear transformation defined in Theorem 21 is called a full AH-linear transformation.

Definition 23: [35]

Let be a full AH-linear transformation, be an neutrosophic matrix over , we call M the neutrosophic matrix of if and only if for every .

Theorem 24: [35]

Let be any full AH-linear transformation, then is the corresponding neutrosophic matrix if and only if A is the matrix of , B is the matrix of .

Proof:

We assume that A is the matrix of , B is the matrix of , hence . We have:

. Thus M is the neutrosophic matrix of .

Conversely, suppose that is the neutrosophic matrix of , we shall prove that A is the matrix of and B is the matrix of .

According to the assumption, we have , hence

This implies that , so that . By considering the arbitrariness of and we get that A is the matrix of and B is the matrix of .

Example 25: [35]

(a) Let , consider the following neutrosophic matrix

. The corresponding neutrosophic linear transformation is defined as follows:

( )= )= . (b) 
. Where .

Theorem 26: [35]

Let be two vector spaces over the field , with , let be any neutrosophic matrix over . Then M can be represented by a unique full AH-linear transformation , where A is the matrix of and B is the matrix of .

Proof:

According to Theorem 24, the neutrosophic matrix can be represented by a neutrosophic full AH-linear transformation , where A is the matrix of and B is the matrix of . For the uniqueness condition, we suppose that is another linear AH-transformation with the property . We have:

. Thus and is unique.

The following theorem shows an algorithm to find a basis for the neutrosophic vector space V(I) from any basis of the corresponding classical vector space V.

Theorem 27: [35]

Let V(I) be any neutrosophic vector space over the neutrosophic field F(I), V be its corresponding classical vector space over the field F. Let { } be a basis of V over F, then is a basis of V(I) over F(I).

Example 28: [35]

It is well known that {x=(1,0), y=(0,1)} is a basis of V= . The corresponding basis of V(I)= is

The following theorem shows that every linear transformation between ) and must be a full AH-linear transformation.

Theorem 29: [35]

Let be two vector spaces over the field , with , let be the corresponding neutrosophic vector spaces over . Let be any linear transformation, then is a full AH-linear transformation.

Proof:

Let be any linear transformation, we must prove that there exists two classical linear transformations , where .

Suppose that { } is a basis of V, then is a basis of V(I). It is known that is a basis of W(I), that is because the direct image of a basis by any linear transformation is a gain a basis.

Define . It is clear that

. This means that . Now, we must prove that are classical linear transformations.

Let be any two elements of V, we have . We have:

. For any , thus is a linear transformation.

On the other hand, we have .

. This implies that are two classical linear transformations, thus are linear transformations, which implies that is a full AH-linear transformation.

Refined neutrosophic Matrices Definition 31: [34]

Let = be an matrix, if , then it is called an refined neutrosophic matrix. Where is an refined neutrosophic field.

Example 32: [START_REF] Abobala | On Refined Neutrosophic Matrices and Their Applications In Refined Neutrosophic Algebraic Equations[END_REF] is a refined neutrosophic matrix.

Remark 33: [34]

(a) If A is an matrix, then it can be represented as an element of the refined neutrosophic ring of matrices like the following:

. Where are classical matrices with elements from the ring R and from size .

For example .

(b) The addition operation can be defined by using the representation in Remark 3.2 as follows:

. (c) Multiplication can be defined by using the same representation as a special case of multiplication on refined neutrosophic rings as follows:

. This method of multiplication is exactly equivalent to the normal multiplication between matrices; but it is easier to deal with in this way.

Example 34: [34]

Let ( ) be two refined neutrosophic matrices over the refined neutrosophic field of reals. We have:

(a) .

(b) . (c) . (d)

.

(e) If we computed the multiplication using the previous representation, we get:

. Hence,

Theorem 35: [34]

The set of all square refined neutrosophic matrices together make a ring.

Proof:

The proof holds directly from the definition of n-refined neutrosophic rings by taking .

Remark 36: [34]

The identity with respect to multiplication is the normal unitary matrix.

Definition 37: [34]

Let A be a square refined neutrosophic matrix, then it is called invertible if there exists a refined square neutrosophic matrix B such that . Where is the unitary classical matrix.

Theorem 38: [34]

Let = be a square refined neutrosophic matrix, then it is invertible if and only if are invertible. The inverse of X is .

Definition 39: [34]

We defined the determinant of a square refined neutrosophic matrix as . This definition is supported by the condition of invertibility.

Theorem 40: [START_REF] Abobala | On Refined Neutrosophic Matrices and Their Applications In Refined Neutrosophic Algebraic Equations[END_REF] Let = be a square refined neutrosophic matrix, we have: 

Theorem 41: [34]

Let = be a square refined neutrosophic matrix, we have:

(a) X is nilpotent if and only if are nilpotent.

(b) X is idempotent if and only if are idempotent.

Proof:

(a) First of all we will prove that .

We use the induction, for it is clear. Suppose that it is true for , we prove it for . = = .

X is nilpotent if there is a positive integer r such that . This is equivalent to .

(b) The proof is similar to (a).

Example 42: [34]

Consider the following refined neutrosophic matrix , we have:

(a)

Where B= , C=( ) , D=( ) . .

(b) . (c)

.

It is easy to find that .

(d) +

.

If we computed the determinant of A by using the classical way, we will get the same result. Now, we illustrate an example to clarify the application of refined neutrosophic matrices in solving refined neutrosophic algebraic equations defined in [START_REF] Abobala | On Some Neutrosophic Algebraic Equations[END_REF].

Example 43: [34]

Consider the following system of refined neutrosophic linear equations:

(*), (**).

.

The corresponding refined neutrosophic matrix is

Since A is invertible, we get the solution of the previous system by computing the product:

.Thus

n-Refined Neutrosophic Matrices

Definition 44: [START_REF] Abobala | On Some Algebraic Properties of n-Refined Neutrosophic Elements and n-Refined Neutrosophic Linear Equations[END_REF] Let = be an matrix, if , then it is called an n-refined neutrosophic matrix. Where is an n-refined neutrosophic ring.

Remark 45: [39]

If A is an matrix, then it can be represented as an element of the n-refined neutrosophic ring of matrices like the following:

. Where are classical matrices with elements from the ring R and from size .

For example + is a 3-refined neutrosophic matrix.

Remark 47: [39]

The identity with respect to multiplication is the normal unitary matrix.

Definition 48: [39]

Let A be a square n-refined neutrosophic matrix, then it is called invertible if there exists an n-refined square neutrosophic matrix B such that . Where is the unitary classical matrix.

Definition 49: [39]

Let = be an n-refined neutrosophic element, we define its canonical sequence as follows:

;

. For example .

Remark 50: [39]

The multiplication operation between two n-refined neutrosophic elements can be represented by the following equation:

, where are the canonical sequences of , respectively.

Proof:

For , the statement is true easily. Suppose that it is true for , we must prove it for . We compute the multiplication .

( a )

 a The eigen values of the matrix A are {1,2}, and {1,3} for the matrix . This implies that the eigen values of the neutrosophic matrix are (b) If we solved the equation =0 has been solved, the same values will be gotten. (c) The eigen vectors of A are the eigen vectors of are .

  It holds directly from (b).

Definition 7: [37]

  

	and (b) Since If			are existed, and are diagonalizable, then M is diagonalizable. The neutrosophic are invertible matrices, then . if and only if
	(b) We have Definition 12 diagonalization matrix of M is ] [37 :	exists too. Now	to	prove	is the inverse of . The corresponding
	be a neutrosophic diagonal matrix is Let	square	. matrix, where	and	are two	square	matri	. ces
	is satisfying the orthogonality property if and only if .	.
	(c) We can compute	.
	(c) It is easy to see that	.	.
	Theorem	] [37 Neutrosophic Eigen Values and Diagonalization Conditions : 12
	, we suppose that and (d) We can compute conversely property Let	.	is invertible, thus there is a matrix matrices, then square be two neutrosophic	=	, with the	.
	) Definition 13 3.7.1 ( Definition 17: [37] ] [37 :	.	=	. Hence, we get:
	(a) 3.7.2 ( Let Let	)				. be a square neutrosophic matrix, we say that M is diagonalizable if and only be a square neutrosophic matrix over the neutrosophic field we say
	thus, such that is a neutrosophic Eigen vector if and only if . 1 if and only if if there is an invertible neutrosophic matrix ) 3.7.3 that ( (b) diagonal neutrosophic matrix neutrosophic number is called the Eigen value of the eigen vector .	. Where . The	is a
	Proof: orem 14 The Theorem 18: [37] ] [3 :		. This implies that	is invertible.
	Definition 6: [37] ] [37 : 9 Theorem (a)
	Let is invertible matrix a neutrosophic square matrix, where and are two squares matrices, . if and only if .
	then		is called an	invertible	neutrosophic	square	matrix	, if and only if there exists a	n
	square matrix Proof:				, where	and	are two	square ,	matri	ces	such	that
	From	Theorem	8	where we find that	identity matrix. is invertible matrix if and only if denotes the ,	are two invertible
	matrices, hence				which means	,
	Let						be a neutrosophic square matrix. The determinant of M is defined as . ,
	. Example	10	:	[37 .	]	
	Theorem 8: [37] Consider the following neutrosophic matrix (b) We have	is	, the corresponding
	Let diagonal matrix is a neutrosophic square . Where , we can see that matrix, where , are two squares . , . Also, the diagonalization matrix
	invertible matrices and thus it is equivalent to , the corresponding diagonal matrix is are and invertible if and only if is equivalent to is matrices, then (a) (c) of is . It is easy to
	check that						.	.
	Proof: Remark:							.

.

The result in the section (c) can be generalized easily to the following fact: be any square neutrosophic matrix. Then M is diagonalizable if and only if Let are diagonalizable.

Remark 15: [37]

If is the diagonalization matrix of , and is the diagonalization matrix of , then is the diagonalization matrix of

Example 16: [37]

Consider the neutrosophic matrix defined in Example 10, we have:

(a) is a diagonalizable matrix. Its diagonalization matrix

= .

Thus, the coefficient of is . Also, the coefficient of ; is .

Where . Hence, our proof is complete by induction.

Theorem 51: [START_REF] Abobala | On Some Algebraic Properties of n-Refined Neutrosophic Elements and n-Refined Neutrosophic Linear Equations[END_REF] Let = be an n-refined neutrosophic element, then it is invertible if and only if are invertible. The inverse of X is .

Proof:

X is invertible if and only if there exists Y= , where . By using Remark 4.2, we can write:

. This implies that:

, for all i. Where is the zero element. Hence we get, . So that are invertible.

On the other hand, we put now we compute = .

Example 52: [39]

Consider the 2-refined neutrosophic ring of integers, the set of invertible elements in is . Hence the set of all invertible elements in the corresponding 2-refined neutrosophic ring is .

Remark 53: [39]

Let = be a square n-refined neutrosophic matrix, then it is invertible if and only if are invertible. The inverse of X is .

Definition 54: [39]

We defined the determinant of a square n-refined neutrosophic matrix as . This definition is supported by the condition of invertibility.

Theorem 55: [START_REF] Abobala | On Some Algebraic Properties of n-Refined Neutrosophic Elements and n-Refined Neutrosophic Linear Equations[END_REF] Let = be a square n-refined neutrosophic matrix, we have:

(a) X is invertible if and only if .

(b) If is a square n-refined neutrosophic matrix, then .

(c)

Proof:

(a) If , this will be equivalent to , i.e. are invertible, thus X is invertible according to Theorem 3.3.

(b)

. Hence = = .

(c) It holds directly from (b).

Future Research Directions

Here are some of open questions about neutrosophic matrices:

1-) How refined neutrosophic matrices can be represented by AH-linear transformations? Describe these transformations.

2-) How n-refined neutrosophic matrices can be represented by AH-linear transformations? Describe these transformations.

3-) Find an algorithm to compute the eigen values/vectors of n-refined neutrosophic matrices.

4-) Determine the necessary and sufficient conditions for the diagonalization of n-refined neutrosophic matrices.