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This article presents the kinematic analysis of two adjacent structures with pounding using the framework of finite element dynamic analysis and a non-smooth contact dynamics (NSCD) method for treating contact-impact. The latter consists of a Moreau-Jean implicit integration scheme that uses Moreau's sweeping process and Newton's impact law. Test cases are carried out to prove the efficiency of the implementation and accuracy of the results relative to the widely used penalty method (PM). Furthermore, finite element simulations are compared with shaking table results of two structures susceptible to pounding. Models are steel frames 2.5m to 5m high, 3m in span, have reinforced-concrete slabs, and distant 0 to 5cm. Floor displacements, number and time of occurrence of impacts, as well as shape of the response spectra are in good agreement with experimental observations. Moreover, using the building pounding frame and the NSCD method, an estimation of a constant value for the coefficient of restitution was carried out. It is concluded that the NSCD method is a very numerically efficient tool in terms of reduction of CPU time and description of the impact physics. Consequently, this approach is amenable for fragility analysis of the dynamic response of structures involving a contact-impact phenomenon.

Introduction

Structural pounding during earthquakes is a recurrent phenomenon in dense urban settings; it occurs when the building separation is insufficient to accommodate the seismically induced displacements. For large earthquakes, the consequences of building pounding can be catastrophic (Figure 1), as it was the case for the Mexico City earthquake of 1985, in which building pounding was the main cause of collapse in at least 15% of collapse observations (Bertero [START_REF] De La Llera | on the 1985 Mexico City Earthquake[END_REF]; Rosenblueth and Meli [START_REF] Rosenblueth | Observations of the performance of buildings during the 1985 mexico earthquake, and structural design implications[END_REF]). A survey of the buildings damaged during the 1989 Loma Prieta earthquake (Kasai and Maison [START_REF] Kasai | Building pounding damage during the 1989 loma prieta earthquake[END_REF]) found that pounding occurred primarily in old multi-story masonry buildings, in most cases without separation; in contrast, pounding events were relatively minor in modern constructions. Similarly, structural pounding during the 2017 Puebla earthquake affected mostly very flexible flat-slab systems (Reinoso et al. [START_REF] Reinoso | Intensity and damage statistics of the september 19, 2017 mexico earthquake: influence of soft story and corner asymmetry on the damage reported during the earthquake[END_REF]) built prior to 1985, which did not have the minimum separation required by the local seismic code.

Based on observations of the 1985 Mexico City earthquake and the 1989 Loma Prieta earthquake, Jeng et al. [START_REF] Jeng | Assessment of seismic pounding hazard for taipei city[END_REF] identified the pounding categories summarized in Figure 2. In each case, the pounding damage can range anywhere from minor architectural damage to partial or total collapse of the building. In addition to an insufficient separation, building pounding occurs due to a combination of other factors (Bertero [START_REF]Implications of observed pounding of buildings on seismic code regulations[END_REF]), most commonly: (i) vague design guidelines and lack of engineering judgement; (ii) ground motion intensities higher than design values; (iii) inadequate structural configurations, particularly buildings with lateral-torsional coupling, soft stories, or low lateral stiffness and 1

(a) Intermediate floor collapse (mid-story) of Hotel de Carlo in Mexico City, probably caused by pounding against the shorter building to the left; photograph taken after the Mw 8.1 Mexico earthquake [START_REF] Arnold | Pounding damage at hotel de carlo[END_REF] (b) Pounding damage to the reinforced concrete frame and masonry infill building observed during the Mw 7.4, Izmit earthquake, Turkey, 1999 [START_REF] Sezen | Note effect on pounding[END_REF] Figure 1: Exemples of building pounding damage during earthquakes strength; and (iv) pre-existing tilt and ground deformations.

Separation guidelines in current seismic codes aim to avoid contact under maximum inelastic response of each adjacent structure. For instance, ASCE 7-16 [START_REF]Asce standard-asce/sei 7-16: Minimum design loads for buildings and other structures[END_REF] requires that the maximum inelastic deformation of each building, referred to as δ M1 and δ M2 , "shall be determined at critical locations with consideration for translational and torsional displacements of the structures including torsional amplifications, where applicable", and that the net separation between the structures should be greater than δ M1 = (δ M1 ) 2 + (δ M2 ) 2 . Despite their simplicity and apparent conservatism (e.g., both structures reach simultaneously their maximum deformation in opposite directions), these rules do not guarantee a collision free response, mainly because of the large ground motion and building response uncertainties. Therefore, structural pounding in dense urban areas will probably continue occurring in future earthquakes.

Modelling the seismic response of adjacent buildings subject to pounding remains a very challenging problem, mainly because of the large number of parameters involved and the coarse assumptions typically made to account for the energy transfer between buildings. However, the use of simplified models allows reproducing the key response parameters of the system under different loading conditions. Two modelling approaches for pounding exist in the literature, commonly referred to as the Penalty Method (PM) (Anagnostopoulos [START_REF]Building pounding re-examined: How serious a problem is it?[END_REF][START_REF]Equivalent viscous damping for modeling inelastic impacts in earthquake induced pounding problems[END_REF][START_REF]Pounding of buildings in series during earthquakes[END_REF] , Jankowski [START_REF] Jankowski | Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding[END_REF][START_REF] Jankowski | Comparison of numerical models of impact force for simulation of earthquake-induced structural pounding[END_REF][START_REF] Choong | Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures[END_REF][START_REF] Jankowski | Earthquake-induced structural pounding[END_REF], Naderpour et al. [START_REF] Naderpour | Numerical study on pounding between two adjacent buildings under earthquake excitation[END_REF], Xu et al. [START_REF] Xu | A new formula of impact stiffness in linear viscoelastic model for pounding simulation[END_REF]) and the Lagrange Multipliers Method (LMM) (Papadrakakis and Mouzakis [START_REF] Papadrakakis | A lagrange multiplier solution method for pounding of buildings during earthquakes[END_REF][START_REF] Papadrakakis | Three-dimensional simulation of structural pounding during earthquakes[END_REF], Cole [START_REF] Cole | The effects of details analysis on the prediction of seismic building pounding performance[END_REF], Ambiel et al. [START_REF] Ambiel | Entrechoquement de dalles en béton armé pour des structures soumises à un chargement sismique, AFPS 2019 La société face au risque sismique[END_REF]).

In the former PM approach, the contact forces are modelled through a physical compression gap element between each pair of contact points. Because of its simplicity, the PM approach is widely used in structural engineering and is readily available in most finite element software in the form of one-dimensional nonlinear gap elements. These gap elements allow transferring energy between the two structures and account for local energy dissipation; their main drawback, however, is that the computation of contact forces relies on semi empirical (often non-physical) coefficients, which require experimental validation (Candia et al. [START_REF] Candia | A physical model for dynamic analysis of wine barrel stacks[END_REF]). For instance, one of the simplest gap element formulations is the Linear Visco-Elastic (LVE) model, where the contact force between two nodes during a collision is given by Equation 1.

F(t) = k s δ(t) + ξ d δ(t) (1) 
Where δ(t) is the interpenetration depth (i.e., the amount of overlap between the colliding nodes); δ(t) the interpenetration rate; and k s and ξ d are the empirical coefficients representative of the stiffness and damping of the contact 2 [START_REF] Jeng | Assessment of seismic pounding hazard for taipei city[END_REF] interface, respectively. Similar gap element formulations are summarized in Table 1.

Several authors (Jankowski [START_REF] Jankowski | Comparison of numerical models of impact force for simulation of earthquake-induced structural pounding[END_REF][START_REF] Jankowski | Earthquake-induced structural pounding[END_REF], Khatami [START_REF] Khatami | Effective formula for impact damping ratio for simulation of earthquake-induced structural pounding[END_REF], Anagnostopoulos [START_REF]Building pounding re-examined: How serious a problem is it?[END_REF][START_REF]Pounding of buildings in series during earthquakes[END_REF], Xu [START_REF] Xu | A new formula of impact stiffness in linear viscoelastic model for pounding simulation[END_REF], Crozet [START_REF] Crozet | Sensitivity analysis of pounding between adjacent structures[END_REF]) have studied the influence of the gap element parameters and the dynamic response of colliding bodies. For instance, Crozet et al. [START_REF] Crozet | Shake table tests of structures subject to pounding[END_REF] found that the contact stiffness should be greater than ten times the stiffness of the most rigid impacting body, and that the maximum time step for a dynamic analysis should be limited to one-fourth of the smallest vibration periods of the two buildings. These simple rules allow minimizing the contact duration, preserve the system kinematics, and yield acceptable computational runtimes. Studying the response of single degree of freedom (SDOF) systems, Anagnostopoulos [START_REF]Pounding of buildings in series during earthquakes[END_REF] found that the contact stiffness has a large effect on the SDOFs accelerations and forces, but a marginal effect on their displacements. Later, based on experimental evidence, Khatiwada et al. [START_REF] Khatiwada | Limitations in simulation of building pounding in earthquakes[END_REF] concludes that the contact stiffness derived from small scale specimens cannot be applied to prototype scale buildings. This latter author is adamant on the limitations of the PM in the building pounding field, highlighting the high sensitivity of the kinematics given the variations in the contact stiffness parameter.

In the Lagrange Multipliers Method (LMM), which derives from the principle of conservation of linear momentum, the contact kinematics is enforced through external loads, and the energy dissipated during inelastic collisions is accounted for by using either the kinematics and internal equilibrium of the system [START_REF] Ambiel | Entrechoquement de dalles en béton armé pour des structures soumises à un chargement sismique, AFPS 2019 La société face au risque sismique[END_REF][START_REF] Papadrakakis | A lagrange multiplier solution method for pounding of buildings during earthquakes[END_REF][START_REF] Acary | Numerical Methods for Nonsmooth Dynamical Systems[END_REF], or the coefficient of restitution e (Acary [START_REF] Acary | Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and coulomb's friction[END_REF]). These external loads enforce a "strict no-penetration condition", but they introduce an instantaneous change in the particle velocities, excite high frequency modes, and create large spurious internal forces.

Reported applications of the PM to building pounding problems are significantly larger than LMM applications, in part, because the implementation of LMM solutions is cumbersome, also with respect to convergence and stability. However, the use of LMM is appealing if the coefficient of restitution e is used since it has a simpler physical interpretation. Therefore, the goal of this article is to present a complementarity method based solution for structural pounding during earthquakes (it has a similar formulation than the LMM); this solution overcomes some of the difficulties found in current LMM implementations, and is based on a single empirical parameter, which simplifies the model definitions.

Indeed, the structural pounding model is based on the Non-Smooth Contact Dynamics (NSCD) algorithm developed by Moreau [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF] and extended by Jean [START_REF] Jean | The non-smooth contact dynamics method[END_REF] and Acary [START_REF] Acary | Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and coulomb's friction[END_REF][START_REF] Acary | Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact[END_REF][START_REF] Acary | Numerical Methods for Nonsmooth Dynamical Systems[END_REF][START_REF] Acary | Contribution à la modélisation mécanique et numérique des édifices mac ¸onnés[END_REF] to account for deformable systems. To our knowledge, the use of the NSCD approach to structural pounding problems has not been reported in the literature. In the following sections, the formulation of the NSCD algorithm is presented along with two validation examples: (i) the "bouncing ball test"; and (ii) a plane frame pounding tests, where the NSCD approach is used to reproduce the shaking table response of one and two-story buildings. 

Name

Impact Force F(t) ξ d ξ r Hertz Non-Linear (HNL) [START_REF] Hertz | Ueber die Ausbreitungsgeschwindigkeit der electrodynamischen Wirkungen[END_REF][START_REF] Goldsmith | The Theory and Physical Behaviour of Colliding Solids[END_REF] k s δ 3 2 (t) / / HertzDamp Non-Linear (HDNL) [START_REF] Ye | A modified kelvin impact model for pounding simulation of base-isolated building with adjacent structures[END_REF] k s δ

3 2 (t) + ξ d δ(t) k s ( 8(1-e) 5e(v - 1 -v - 2 ) ) / Linear Visco-Elastic (LVE)[12] k s δ(t) + ξ d δ(t) 2ξ r k s m 1 m 2 m 1 +m 2 -ln(e) √ π 2 +(ln(e)) 2
Modified Linear Visco-Elastic (MLVE) [START_REF] Jankowski | Earthquake-induced structural pounding[END_REF] Approach period :

k s δ(t) + ξ d δ(t)
1-e 2 e(e(π-2)+2)

Restitution period : k s δ(t) Non-Linear Visco-Elastic (NLVE) [START_REF] Jankowski | Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding[END_REF][START_REF] Jankowski | Comparison of numerical models of impact force for simulation of earthquake-induced structural pounding[END_REF][START_REF] Migda | Non-linear analysis of inter-story pounding between wood-framed buildings during ground motion[END_REF][START_REF] Naderpour | Numerical study on pounding between two adjacent buildings under earthquake excitation[END_REF] Approach period :

k s δ 3 2 (t) + ξ d δ(t) 2ξ r k s √ δ m 1 m 2 m 1 +m 2 9 √ 5 2
1-e 2 e(e(9π-16)+16)

Restitution period :

k s δ 3 2 (t)
m 1 and m 2 are nodal masses ; e is the coefficient of restitution; ξ d and ξ r are respectively the damping coefficient and damping ratio. Approach period means means that δ > 0, when relative velocity is positive, thus interpenetration is ongoing. Restitution period means that δ ≤ 0, when relative velocity is negative, thus when bodies are departing from each other.

NSCD method

This section presents the NSCD approach and integration scheme for the case of two collision-prone linear multi degree of freedom (MDOF) systems. Without significant loss of generality, consider two planar moment resisting frames with lumped masses and net separation g 0 , as shown schematically in Figure 3. Each structure is characterized by a constant mass matrix M i , and a vector of nonlinear internal forces P i (q i , qi ) defined in generalized coordinates q i ,with i = 1, 2. Pounding forces may develop at n discrete locations along the contact interface (i.e., node-to-node contact) between pairs of point-masses on each building, henceforth a contact pair. The impact and energy dissipation on each contact pair are modelled using Newton's impact law and the conservation of linear momentum. The equations of motion for both systems can be written in augmented form as M q + P(q, q) -F = 0

where q = [q T 1 q T 2 ] T , q and q the are the first and second time derivatives of q, respectively. The term P(q, q) = [P T 1 P T 2 ] T is the vector of internal forces, and the composite mass matrix M is the block-diagonal concatenation of matrices M 1 and M 2 . The term F are a set external forces conjugated in work with q, which accounts for static and dynamic loads.

The NSCD integration scheme [START_REF] Jean | The non-smooth contact dynamics method[END_REF], presented herein, is used to solve Equation 2 in discrete time. The method uses the Moreau-Jean [START_REF] Moreau | Standard inelastic shocks and the dynamics of unilateral constraints[END_REF] stepping algorithm to step from time t i to t i+1 = t i + ∆t in addition to the Signorini-Moreau conditions for contact detection. The contribution of Acary [START_REF] Acary | Contribution à la modélisation mécanique et numérique des édifices mac ¸onnés[END_REF] allowed for the application of the method to deformable bodies, and highlighted its energy conservation properties [START_REF] Acary | Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact[END_REF].

Moreau-Jean stepping algorithm

After integrating Eq. 2 from t i to t i+1 and approximating the integral of the nonlinear forces with the midpoint rule, the equation of motion can be written in incremental form as presented in Eq. ( 4), where R k+1 stands for the residuals at time t i+1 , G i = t i+1 t i Fdt, and the sub-index i + θ denotes the time t i+θ = t i + θ∆t.

t i+1 t i M qdt + t i+1 t i Pdt - t i+1 t i Fdt = 0 (3) R k+1 = M( qi+1 -qi ) + P i+θ ∆t -G i = 0 (4) 
Expressions for q i+1 , qi+θ , and q i+θ are shown in Eqs. 5 to 7 based on the Euler-θ approximation method.

q i+1 = q i + qi+θ ∆t (5) 
q i+θ = (1 -θ)q i + θq i+1 (6) qi+θ = (1 -θ) qi + θ qi+1 (7) 
The Moreau-Jean algorithm embedded in the NSCD approach uses θ = 1 2 , which results in an implicit integration scheme unconditionally stable relative to regards ∆t, similar to the algorithms by Euler and Newmark. If no collisions occur between t i and t i+1 , the velocities qi+1 can be obtained solving Eq. (4) (i.e., R k+1 ≤ , where is a scalar arbitrarily taken close to 0) using the Newton Raphson (NR) algorithm, in which case the velocities in the (k + 1)th NR iteration can be written as

qk+1 i+1 = qk i+1 -(J k ) -1 R k i+1 ( 8 
)
where the Jacobian

J k = ∂R k i+1 ∂ qk i+1
is defined in terms of the tangent damping and stiffness operators C t,k i+θ and K t,k i+θ , respectively, as

J k = M + C t,k i+θ ∆t θ + K t,k i+θ ∆t 2 θ 2 (9) 

Contact detection and impact forces

If the relative displacements between the buildings are sufficient to close the gap, a collision takes place and a set of impact forces must be added to enforce the no-penetration condition. The separation g i and separation rate ġi at the n contact pairs is obtained from the linear relation

g i = Hq i + g 0 (10) ġi = H qi (11) 
where H is a kinematic transformation matrix, and

g 0 = [g 1 0 g 2 0 ...g n 0 ]
T is the initial separation along the contact interface, as shown in Fig 3 . When stepping from t i to t i+1 , pounding will occur if the predicted gap at time t i+1 is less than zero for any of the contact nodes. In the current NSCD approach, the Signorini-Moreau contact condition is used to predict the separation at time t i+1 as a function of the separation rate shown in Eq. ( 12), where the constant γ takes a value of 3 2 .

ĝi+1 = g i + γ∆ġ i (12) 
Based on Newton's impact law, if pounding is detected in a contact pair subset Ω, (i.e., min(ĝ i+1,α ) ≤ 0, with α ∈ Ω), the rate of separation of each pair is ġi+1 = -e ġi , where e is the coefficient of restitution. To compute the new velocities and enforce the contact kinematics, an impulse vector p i+1 is added to the equilibrium Equation (4) in addition to the linear constraints in Equations ( 14) and [START_REF] Choong | Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures[END_REF].

Rk+1 = M( qi+1 -qi ) + P i+θ ∆t -G i -H T p i+1 = 0 (13) 6 ġi+1 ≤ -e ġi (14) 
p i+1 ≥ 0 (15) 
Solving the system's unknowns qi+1 and p i+1 from Equations ( 13) to 15 is equivalent to solving a linear optimization problem, for which a vast body of literature exists. Herein, we propose the Gauss-Seidel type solution introduced by Acary [START_REF] Acary | Contribution à la modélisation mécanique et numérique des édifices mac ¸onnés[END_REF], which uses a successive elimination of equations. Thus, the impulse at the α-th contact pair within the k-th NR iteration is computed as

p k i+1,α = 1 W k α,α -b k α + ġα - β α W k αβ p k i+1 + W k αα p k i+1,α ≥ 0 (16) ġα = -eH qi,α (17) 
The terms b k α and W k αβ , respectively, the α-entry and (α,β) entries of matrices b k and W k defined as

b k = H(J k ) -1 R k + H qk i+1 (18) 
W k = H(J k ) -1 H T (19) 
A residue on the impact force to ensure the validation of the impulse is introduced with the following formulation proposed by Acary in collaboration with the authors, with ρ a scalar superior or equal to 1.

R c k = p k i+1,Ω α -max 0, p k i+1,Ω α -ρ(W (Ω α ,Ω α ) p k i+1,Ω α + b Ω α + e ġi,Ω α ) (20) 
The algorithm of the entire method is presented here below.

(i) For the i-th time step iteration Newton-Raphson iteration step : k = 1 Impulse vector : 12) DOF contact prediction : ĝi+1 = g i + γ∆t ġi with γ = 3 2 Identification List of potential contact location : Ω α = ĝi+1 ≤ 0 (ii) Kinematic first estimation from Euler implicit + θ method (with θ = 1 2 ) Eq. ( 7)

p k i+1 = 0 qk i+1 = qi ġk i+1 = ġi = H qi Eq. (
qk i+θ = (1 -θ) qi + θ qk i+1
Eq. ( 5) q k i+1 = q i + qk i+θ ∆t Eq. ( 6)

q k i+θ = (1 -θ)q i + θq k i+1
(iii) Assembling of the tangent operator J k , the internal forces residue with impact Rk and the impulse residue R c k Eq. ( 9) 

J k = M + C t,k i+θ θ ∆t + K t,k i+θ θ 2 ∆t 2 Eq. (4) R k = -M qk -qi -C t,k i+θ qk i+θ + K t,k i+θ q k i+θ ∆t -G i Eq. (13) Rk+1 = M( qi+1 -qi ) + P i+θ ∆t -G i -H T p i+1 R c k = 1 to
k = H(J k ) -1 R k + ġk i+1 Eq. (19) W k = H(J k ) -1 H T (vi) Calculation of impulse vector p k i+1 , (Eqs.(16,17)) For α ∈ Ω α ġα = -eH qi,α p k i+1,α = max 0, 1 W k α,α -b k α + ġα - β α W k αβ p k i+1 + W k αα p k i+1,α
End For Loop (vii) New velocity qk determination Eq. ( 13)

Rk = R k + H T p k i+1
Eq. ( 8)

qk+1 i+1 = qk i+1 -(J k ) -1 Rk (viii)
Kinematic update as in (ii), (Eqs. [START_REF] Jeng | Assessment of seismic pounding hazard for taipei city[END_REF][START_REF] Arnold | Pounding damage at hotel de carlo[END_REF][START_REF] Sezen | Note effect on pounding[END_REF])) (ix) Update of the tangent operators C t,k i+θ , K t,k i+θ and J k (Eq. ( 9)), residue Rk , (Eq. ( 4)) (x) Update of the impulse residue R c k (Eq.( 20))

R c k = p k i+1,Ω α -max 0, p k i+1,Ω α -ρ(W (Ω α ,Ω α ) p k i+1,Ω α + b Ω α + e ġi,Ω α ) k = k + 1 End While Loop qi = qk+1 i+1
End For Loop

Bouncing Ball test

The capabilities of the NSCD and PM approaches are compared for a test case of a rigid ball bouncing on a rigid floor (Figure 4). The analytical solution is known from Acary [START_REF] Acary | Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and coulomb's friction[END_REF], so the parameters used are the same. The ball has a mass m =1kg and is released from a height h=1m, with a zero initial velocity V o and vertical acceleration g=2m/s 2 . The LVE and NLVE (Jankowski [START_REF] Jankowski | Comparison of numerical models of impact force for simulation of earthquake-induced structural pounding[END_REF])PM models are tested. A sensitivity analysis is performed to assess the value of the contact stiffnesses k s delivering the best results. The mass ratio m 1 m 2 m 1 +m 2 in Table 1 simplified to m = m 1 . Two time steps are chosen, 10 -3 s and 10 -4 s, to highlight the dependency of the results accuracy on time step, and the study length is fixed to 3.5s. The coefficient of restitution e equals to 0.5. The figures 5a and 5b present respectively the displacements and velocities of the three approaches, analytical (black curve), NSCD (red dots), and PM (LVE and NLVE in grey curves). It is apparent that the NSCD procedure provides the exact response without the need of defining a contact stiffness and no time step to refine. As opposed to the NSCD method, it is highly difficult to reproduce the analytical kinematics with the PM after the second rebound. The out-of-phase motion spotted for ∆t = 10 -3 s is barely improved by refining it to 10 -4 s, and at to the cost of increasing computation time. Also, the impact stiffness yielding the best results changes with time step and the impact law considered. This comparison of both methods is now to be applied in the frame of a scale 1:1 building pounding system.

h m = m 1 V o = 0 g

Plain Frame Pounding test

Shaking table experimental set-up

In the frame of the ANR SINAPS1 project to improve knowledge on vulnerability and resistance of strategic buildings (e.g., nuclear power plants) against earthquakes, series of pull back and seismic tries to induce pounding between single-story or two-story structures were carried out at the Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) de Saclay by Crozet et al. [START_REF] Crozet | Shake table tests of structures subject to pounding[END_REF][START_REF] Crozet | Etude de l'entrechoquement entre bâtiments au cours d'un séisme[END_REF][START_REF] Crozet | Sensitivity analysis of pounding between adjacent structures[END_REF].

The two steel-framed structures with rectangular reinforced concrete slabs were fixed side by side to the shaking table AZALEE of the EMSI laboratory2 . These structures are identified respectively 1 and 2 from left to right (Figure 6b, they can alternatively be set up as one story high (2.5m), or two stories high (5m) by adding or removing additional elements. The gap separation is also adjustable. Finally, to keep the structural motion only in the longitudinal axis, bracing systems (steel cables) are used to limit transverse and torsional displacements (Figures 6a and6b).

To ensure impact occurrences under seismic motion, the modal responses of both structures are different (Table 6). Thus, one structure is heavier (9200kg versus 7000kg), while the other one is stiffer (HEA140 versus HEA100 steel columns). Sensors are installed on the shaking table, slabs and columns to measure the accelerations with low frequency capacitive accelerometers (0-150Hz) and high-frequency piezoelectric accelerometers (0-4000Hz). 

Validation of model parameters: Pull back tests

This subsection focuses on determining a value of the coefficient of restitution e from experimental pull back tests. It also compares results from the NSCD method and PM in a real scale pounding system. Indeed, no consensual formulation has been delivered in the literature to calculate e before collision, and in most cases its value is defined constant and arbitrary between 0 and 1. Jankowski [START_REF] Jankowski | Experimental study on earthquake-induced pounding between structural elements made of different building materials[END_REF][START_REF] Jankowski | Earthquake-induced structural pounding[END_REF] worked on assessing the variation of the e with the relative velocities by dropping balls on rigid floors made of different materials. However, Crozet [START_REF] Crozet | Etude de l'entrechoquement entre bâtiments au cours d'un séisme[END_REF], despite confirming the trend of Jankowski curves, pointed out the high difficulty to experimentally assess such value with monitored real scale structures. Thus, constant values of e are assumed in this article.

The pull back tests are done in four steps and only applied to the single-story structures whose slabs are separated by a 2cm average distance S . First, Structure 1 is fixed to a reference frame by electric suction pads. Secondly, the shaking table is slowly moved longitudinally 2cm to 4cm apart, deforming the columns of Structure 1. The third step is a symmetry check, to verify that the pads each take the same load. Finally, the suction pads power supply is cut off, the left structure is released and is allowed to impact the right-hand side structure. The scheme to illustrate the set-up and data is shown in Figures 6a and7. In Figure 7, m j , ξ j and k j are respectively the mass, damping coefficient, and stiffness of the SDOF j, with j = [1;2]. g 0 is the separation distance between structures, and U o is the pull back distance of the left-hand side structure before its release.

k 1 m 1 ξ 1 -U o X S tructure 1 k 2 m 2 ξ 2 g 0 S tructure 2 X
The Linear Visco-Elastic (LVE) model is used herein using Anagnostopoulos [START_REF]Pounding of buildings in series during earthquakes[END_REF] approach, as well as the Non-Linear Visco-Elastic models (NLVE) by Jankowski [START_REF] Jankowski | Pounding force response spectrum under earthquake excitation[END_REF] and Khatami [START_REF] Khatami | Effective formula for impact damping ratio for simulation of earthquake-induced structural pounding[END_REF]; e is fixed at 0.65. Regarding the contact stiffness, it is calibrated in a range centred around the maximum value of k 1 and k 2 . For the NSCD method, results are analysed for values of e equal to 0.2, 0.6 and 0.9; the time step equals 10 -3 s. Tables 2 and3 present the available data and the analytical parameters of the impact models of the structures. Results of the analytical models are then compared with the experimental outcomes. Since the transverse and torsional eigenfrequencies of the single-story structures were not available, the finite elements models used for the pull back and seismic tests are respectively SDOF and planar-frame models. They fit the experimental modal and damping behaviour, as observed graphically in Figure 8 and more thoroughly explained in section 4.3.

NSCD results: Sixteen pull back tests were performed [START_REF] Crozet | Etude de l'entrechoquement entre bâtiments au cours d'un séisme[END_REF], with pulling distances ranged from 2.1cm to 3.4cm, and six of them were modelled numerically. Different e values of 0.2, 0.6 and 0.9 were investigated. Figure 8(a) shows, for a pull back test of 2.4cm, the displacements of the two contact degrees of freedom compared with the experimental ones for an e value of 0.6. Matching of the curves is excellent, showing both an accurate impact occurrence, kinematic and damping evolution. These modal and damping parametrizations are then validated and kept for the single-story seismic tests presented in the next section. The Figure 8(b) presents the acceleration of the degree of freedom of the contact node of Structure 2 for values of e= 0.2, and 0.6 and 0.9. It appears that the value 0.6 is the one giving the exact impact occurrence among the three propositions. The value 0.2 delivering a lower post-impact velocity, the next contact comes later than 0.6. On the other hand, e = 0.9 impacts land quicker than for 0.6 and 0.2. Figure 9 presents the spectra of pseudo-displacements, pseudo-velocities and pseudo-accelerations for Structure 1 (left column) and 2 (right column), and different values of e. They are compared to the experimental averaged pseudo-accelerations. The differences are relatively small for the spectra of pseudo-displacements and pseudo-velocities, even with really different values of e; the relative error is always lower than 10%. However, differences are significant in the high frequencies of the pseudo-accelerations spectra where both curves of e=0.2 and e=0.9 depart from the experimental curve.

PM results: To keep the plots understandable, only the Structure 1 responses are presented in the Figure 10. For ∆t = 10 -3 s, the contact stiffness equal to 0.01max(k 1 , k 2 ) yields the best results for each model, but out-of-phase motion increases at each impact. The amplitudes and impact occurrences are afterwards less and less accurate. Taking a higher stiffness (10 times the highest value of contact stiffness, by Anagnostopoulos [START_REF]Pounding of buildings in series during earthquakes[END_REF]), would decrease the phase shift. Nevertheless, it also brings non-realistic kinematic values, unless one takes a much smaller time step and thus increasing the computation cost. Figure 11 presents the displacements with a 10 -6 s time step for Jankowski and Khatami models. Like for the bouncing ball, the contact stiffness yielding the best results vary with the time step and PM used. The new results in dark grey show a better match with the experimental curves, but the computation time is multiplied by a thousand, and major differences remain. Since the kinematics is not good, the spectra studied has been omitted. Overall in the NSCD method, the value e=0.6 is from now on taken for future calculations. On this particular study case, the NSCD method has proven its accuracy and ergonomics capabilities into yielding outcomes and comparing them to experimental data. Good matching is also possible with PM, but the parameter assessment requires more time. Only the NSCD method will now be tested with seismic tests on single-story frames.

Seismic response of the single-story frames

Figure 12a presents the plane frame finite element model and the structures parameters are the same as for the previous section. The time step calculation equals 0.001s. With a 2cm separation gap, collision is detected for seven signals (Cadarache 0.25g and 0.30g, El Centro 0.4g and 0.45g, Northridge 0.3g and 0.35g, and Kobe 0.4g). Table 4 presents for each case the damping coefficients ξ 1 and ξ 2 of both structures, and the number of impacts simulated numerically and detected experimentally. Damping coefficients ξ 1 and ξ 2 between [0.4;0.6]% computed inside a Superposition Damping matrix [START_REF] Chopra | Dynamics of Structures 4th Edition[END_REF] yield the best comparison with the experimental results and e still equals to 0.6. The Cadarache 0.25g test is now analysed. It yields very interesting results, especially considering the important number of impacts for the Cadarache signals. Indeed, in this case, the number of impact is high [START_REF]Pounding of buildings in series during earthquakes[END_REF] and the simulation delivered 9 of them, always at right times, which shows the good treatment of the impact of the algorithm. As a matter of fact, even after several collisions and potential sources of divergences, the model outcomes kept matching the real displacements. The figure displays the numerical and experimental comparison in displacements (upper figure) and accelerations peaks due to collisions (lower figure). The six remaining signal comparisons are presented in Appendix 5.

• • • • • • • • • • X Z 2, 5m 2 
Nine of the first ten impacts happen at the exact right instant, and the only one missing (close to 9s) has a small amplitude compared to the others. Since the accelerations peak from the sensors is small, barely noticeable, it can suggest that the structures simply brushed past each other, barely triggering the sensors. Structure 1 numerical displacements are smaller in amplitude starting at 16s, leading to the two remaining contacts not detected (18s and 22s). First in Figure 14a, there is a noticeable change in the number and time instants of the impacts with the coefficient of restitution. Among the twelve collisions expected (red dots), only seven and nine are respectively reproduced for the e values of 0.2 and 0.9 (grey markers). Even more for e=0.9, four impacts occur where there is no impact evidence between 10s and 12s. The value of 0.6 yields once again the better match. Regarding the spectra of Figure 14b, the peak values of pseudo-displacements, pseudo-velocities, pseudo-accelerations and the general trend of the curves are quite accurate, especially around the fundamental frequencies. Discrepancies appear after 10Hz, but only with the e value of 0.9.

Overall, taking a constant value of 0.6 for e yields once again good results, both in terms of kinematics and spectral trends for all the seven different signal comparisons (c.f plots in Appendix 5). 16

Seismic response of the two-story frames

For the two-story structures separated by a 5cm distance, pounding occurred for the following signals: Cadarache 0.45g, El Centro 0.3g, Northridge 0.2g, and Kobe 0.2g and 0.25g. Because the experimental transverse and torsional eigenfrequencies were available, a 3D-fiber model is used to better model the structures. Figures 6b and12b show the real scale and numerical models of the frames respectively. Each structure is composed of fourteen nodes and thirty two elements. The NSCD method is applied in between the two close corners of each slab so that eight degrees of freedom are involved into the contact detection. The time step calculation is kept at 10 -3 s. Furthermore, average experimental displacements are obtained from the double integration of the four acceleration piezoelectric sensors on the slab.

Sources of discrepancy: one source of discrepancy comes from the correct evaluation of the damping and modal behaviour. During the experiments, three different tests were carried out to determine the real eigenfrequencies and damping coefficients of each fundamental mode of the structures. They are denoted from the Covariance Driven Stochastic Sub-Space Identification (SSI-COV) white noise analysis, a second one with a decremental logarithmic analysis (SSI-COV (DLA)), and a hammer test. According to Crozet et al. [START_REF] Crozet | Etude de l'entrechoquement entre bâtiments au cours d'un séisme[END_REF], the SSI-COV (DLA) values applied to their own model yielded the best comparisons. Unfortunately, in our case the damping coefficients of the second transverse and torsional modes could not be obtained. As a first approximation, they are taken here equal to the first transverse and torsional coefficient respectively. A damping superposition matrix [START_REF] Chopra | Dynamics of Structures 4th Edition[END_REF] is computed on each structure so that their dynamic behaviour is as similar as possible with the experimental one. Table 5 presents the values of damping coefficients finally identified, and Table 6 presents the matching of the numerical eigenfrequencies with the experimental ones. L. B., Tr. B., and To. signify respectively the Longitudinal Bending, Transverse Bending, and Torsion modes. Also, set-up imperfections may create an unplanned motion of the frames. As spotted during the experimental campaign [START_REF] Crozet | Shake table tests of structures subject to pounding[END_REF][START_REF] Crozet | Etude de l'entrechoquement entre bâtiments au cours d'un séisme[END_REF], the planar surfaces where pounding occurs are not perfectly aligned. The gap separations of the two ends are different, one being 5cm and the other 5.5cm. This one important parameter corrupt the experimental kinematic response, creating non-planar and torsional motion. To reproduce the torsional peaks of the experimental pseudo-spectra plots, different separation gaps in the range between 4.0cm and 6.0cm were chosen, with a maximum of ± 0.5cm difference between the two contact corners gaps.

For the five tests involving pounding, Table 7 displays the asymmetric gap and the number of impacts simulated numerically and detected experimentally. The gaps displayed are the ones, inside the range [4.0;6.0]cm, yielding the best comparison with the experimental results. Herein, the data extracted from the sensors are not averaged so that torsional effects are visible. Overall, the general trend of the pseudo-displacements and pseudovelocities are well reproduced for all signals, especially around the fundamental frequency. Bigger differences appear in the high frequencies, more notably from the pseudo-accelerations presented in Figure 16. The triggering of the first and second torsional mode are now observable both numerically because structures were misaligned as for the experimental configurations. First, the experimental second torsional frequency is lower than the one numerically targeted during the modal configuration. Indeed, for Structure 1, the peak is triggered around 22Hz while it was estimated at 24,4Hz by the SSI-COV (DLA) tests (26Hz rather than 28Hz for Structure 2). The same happened with the four remaining signals (see Appendix 5). The inferred modal eigenfrequencies were probably slightly different than the real ones. Finally, the peak amplitudes in high frequencies are very different. It can be explained by the uncertainties on the slab alignment, which has an important effect on the amplitude of the torsional mode peak.

Discussion

This article presents a numerically efficient algorithm for solving the equations of motion of structural systems subjected to pounding, herein referred to the NSCD method. The algorithm is an implicit Moreau-Jean integration scheme combined with Newton's law of impacts, which relies on the coefficient of restitution e and accounts for energy dissipation upon contact. To illustrate the accuracy and robustness of the NSCD approach, two application examples are presented: (i) a bouncing ball test, and a (ii) building collision test, where NSCD-based solutions are compared with shaking table test results. From this study, the following conclusions can be drawn:

• The NSCD solution to the bouncing ball problem yields the exact analytical solutions, even with larger time steps. On the other, the Penalty Method (PM) yields similar results at the expense of shorter time step and larger computational effort.

• The NSCD method matched reasonably well the experimental results of 2 two-story buildings in terms of amplitude and phase of the displacement histories, as well as pounding occurrences. The response spectra (e.g., PSD, PSV, PSA) around the fundamental frequency of each buildings is captured accurately by the numerical scheme; however, some differences are apparent in higher frequencies. Among several factors, these differences can be attributed to small accidental slab misalignments observed in the experiments, and the inferred modal damping values. These numerical simulations relied on a constant e value, which is also a source of uncertainties.

• A sensitivity analysis was performed and an e value of 0.6 resulted in very good agreement between the numerical and experimental response. With high quality experimental data and under the assumption of a constant value for e, this calibration process is straightforward as the number of empirical parameters is reduced to a minimum. In contrast, finding the correct stiffness coefficient, damping ratio, and integration time step on a PM implementation is cumbersome.

Overall, the NSCD method is a very useful tool for building pounding analyses and a good complement to traditional penalty method approaches. Work is underway to evaluate the effect of pounding in the context of performancebased design and risk analysis. 
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 2 Figure2: Scheme of critical configurations of structures defined by Jeng et al.[START_REF] Jeng | Assessment of seismic pounding hazard for taipei city[END_REF] 
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 3 Figure 3: Idealized structures in a deformed position; solid circles represent the contact pairs along the contact interface.
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 5 Figure 5: Comparison of the NSCD and PM results for the bouncing ball test case
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 6 Figure 6: Single-story and Two-story Structures
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 7 Figure 7: Pull back test SDOF model
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 8 Figure 8: NSCD method : evaluation of e
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 9 Figure 9: Displacement, velocity and acceleration Spectra for different values of e
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 10 Figure 10: Comparison of PM with experimental values : k s = 0.01max(k 1 , k 2 ), ∆t = 10 -3 s
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 11 Figure 11: Structure 1 : Effects of ∆t and k s on results accuracy
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 12 Figure 12: Numerical models used for seismic tests
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 13 Figure 13: Single-story results (Cadarache 0.25g signal) : numerical versus experimental comparison
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 14 Figure 14: Sensitivity analysis of e : Cadarache 0.25g on single-story structures

Table 7 : 4 The

 74 Impact occurrences Signal Gaps of Left/Right corners (cm) Number of impacts: Numerical/Experimental Cadarache 0Kobe 0.25g second floor results are presented here below. The four remaining signals responses, Cadarache 0.45g, El Centro 0.30g, Northridge 0.20g and Kobe 0.20g, are included in Appendix 5. Due to the 3D nature of the models, it is possible to plot the displacements of the four facing corners, two of them called "left corners", and two others "right corners". For a sake of readability, only the displacements and accelerations of the left corner are plotted in Figure 15.
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 1516 Figure 15: Two-story results (Kobe 0.25g signal) : numerical versus experimental comparison
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Table 1 :

 1 Main gap element formulations for dynamic pounding analysis

Table 2 :

 2 Structural model data

	Data	Structure 1	Structure 2
	Fundamental Frequency (Hz)	3.50	6.55
	Fundamental Period (s)	0.29	0.15
	Mass (kg), m i	4600	3500
	Longitudinal Stiffness (N/m), k i	2.11e6	5.31e6
	Damping Coefficient (%), ξ i	0.4 to 0.6	0.4 to 0.6

Table 3 :

 3 NSCD and PM parameters

	Models	k s (N/m)	ξ d (%)	ξ r (%)	e
	NSCD method	/	/	/	[0.2;0.6;0.9]
	Anagnostopoulos[12]**		8.46e4	0.136	
	Jankowski[13, 14]***	[0.01;0.1;1;10;100]max(k 1 ,k 2 )	*	0.373	0.65
	Khatami et al.[24]****		*	0.0428	
	In				

Table 3

 3 The formulation ξ d = 2ξ r k s √ δ m 1 m 2 m 1 +m 2 with δ the interpenetration distance. ** With ξ r and ξ d expressed in (LVE) in Table 1. *** With ξ r and ξ d expressed as in (NLVE) in Table 1. **** With ξ r = (1-e)e 0.204 e α+0.204 +3.351eπ and α = 1.05e 0.653 .

, the contact stiffness k s is the multiplication of the coefficient of impact (here taken in [0.01,0.1,1,10,100]) by max(k 1 , k 2 ). *

Table 4 :

 4 Single-story Structures : Modal damping coefficients and impact occurrences

	Signal	ξ 1 -ξ 2 (%)	Number of impacts: Numerical/Experimental
	Cadarache 0.25g	0.6 -0.5	9 / 12
	Cadarache 0.30g	0.6 -0.5	8 / 14
	El Centro 0.40g	0.5 -0.5	1 / 3
	El Centro 0.45g	0.5 -0.5	4 / 5
	Northridge 0.30g	0.4 -0.4	2 / 4
	Northridge 0.35g	0.4 -0.4	3 / 3
	Kobe 0.4g	0.6 -0.5	2 / 2

Table 5 :

 5 Experimental Damping Coefficients ξ from SSI-COV (DLA) test[26, 38] 1 st L. B. 2 nd L. B. 1 st Tr. B. 2 nd Tr. B. 1 st To.

	2 nd To.

Table 6 :

 6 Experimental and Numerical eigenfrequencies

		1 st L. B.	2 nd L. B.	1 st Tr. B.	2 nd Tr. B.	1 st To.	2 nd To.
	Structure 1 Exp (Hz)	2.10	5.60	6.10	17.5	8.60	24.4
	Structure 1 Model (Hz)	2.10	5.60	6.11	17.5	8.60	24.4
	Structure 2 Exp (Hz)	3.70	10.4	8.20	25.2	10.1	28.0
	Structure 2 Model (Hz)	3.69	10.4	8.20	25.2	10.2	28.0
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