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Abstract

This article presents the kinematic analysis of two adjacent structures with pounding using the framework of finite element dynamic
analysis and a non-smooth contact dynamics (NSCD) method for treating contact-impact. The latter consists of a Moreau-Jean
implicit integration scheme that uses Moreau’s sweeping process and Newton’s impact law. Test cases are carried out to prove the
efficiency of the implementation and accuracy of the results relative to the widely used penalty method (PM). Furthermore, finite
element simulations are compared with shaking table results of two structures susceptible to pounding. Models are steel frames
2.5m to 5m high, 3m in span, have reinforced-concrete slabs, and distant 0 to 5cm. Floor displacements, number and time of
occurrence of impacts, as well as shape of the response spectra are in good agreement with experimental observations. Moreover,
using the building pounding frame and the NSCD method, an estimation of a constant value for the coefficient of restitution was
carried out. It is concluded that the NSCD method is a very numerically efficient tool in terms of reduction of CPU time and
description of the impact physics. Consequently, this approach is amenable for fragility analysis of the dynamic response of
structures involving a contact-impact phenomenon.

Keywords: Earthquake, Building-Pounding, NSCD Method, Experimental Campaign, Contact Algorithm, Sensitivity Analysis

1. Introduction

Structural pounding during earthquakes is a recurrent phenomenon in dense urban settings; it occurs when the
building separation is insufficient to accommodate the seismically induced displacements. For large earthquakes, the
consequences of building pounding can be catastrophic (Figure 1), as it was the case for the Mexico City earthquake of
1985, in which building pounding was the main cause of collapse in at least 15% of collapse observations (Bertero[1];
Rosenblueth and Meli[2]). A survey of the buildings damaged during the 1989 Loma Prieta earthquake (Kasai and
Maison[3]) found that pounding occurred primarily in old multi-story masonry buildings, in most cases without sep-
aration; in contrast, pounding events were relatively minor in modern constructions. Similarly, structural pounding
during the 2017 Puebla earthquake affected mostly very flexible flat-slab systems (Reinoso et al.[4]) built prior to
1985, which did not have the minimum separation required by the local seismic code.

Based on observations of the 1985 Mexico City earthquake and the 1989 Loma Prieta earthquake, Jeng et al.[7]
identified the pounding categories summarized in Figure 2. In each case, the pounding damage can range anywhere
from minor architectural damage to partial or total collapse of the building. In addition to an insufficient separation,
building pounding occurs due to a combination of other factors (Bertero[8]), most commonly: (i) vague design guide-
lines and lack of engineering judgement; (ii) ground motion intensities higher than design values; (iii) inadequate
structural configurations, particularly buildings with lateral-torsional coupling, soft stories, or low lateral stiffness and
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(a) Intermediate floor collapse (mid-story) of Hotel
de Carlo in Mexico City, probably caused by pound-
ing against the shorter building to the left; photograph
taken after the Mw 8.1 Mexico earthquake[5]

(b) Pounding damage to the reinforced
concrete frame and masonry infill build-
ing observed during the Mw 7.4, Izmit
earthquake, Turkey, 1999[6]

Figure 1: Exemples of building pounding damage during earthquakes

strength; and (iv) pre-existing tilt and ground deformations.

Separation guidelines in current seismic codes aim to avoid contact under maximum inelastic response of each
adjacent structure. For instance, ASCE 7-16[9] requires that the maximum inelastic deformation of each building,
referred to as δM1 and δM2, “shall be determined at critical locations with consideration for translational and torsional
displacements of the structures including torsional amplifications, where applicable”, and that the net separation
between the structures should be greater than δM1 =

√
(δM1)2 + (δM2)2. Despite their simplicity and apparent conser-

vatism (e.g., both structures reach simultaneously their maximum deformation in opposite directions), these rules do
not guarantee a collision free response, mainly because of the large ground motion and building response uncertain-
ties. Therefore, structural pounding in dense urban areas will probably continue occurring in future earthquakes.

Modelling the seismic response of adjacent buildings subject to pounding remains a very challenging problem,
mainly because of the large number of parameters involved and the coarse assumptions typically made to account for
the energy transfer between buildings. However, the use of simplified models allows reproducing the key response
parameters of the system under different loading conditions. Two modelling approaches for pounding exist in the lit-
erature, commonly referred to as the Penalty Method (PM) (Anagnostopoulos[10, 11, 12] , Jankowski[13, 14, 15, 16],
Naderpour et al.[17], Xu et al.[18]) and the Lagrange Multipliers Method (LMM) (Papadrakakis and Mouzakis[19,
20], Cole[21], Ambiel et al.[22]).

In the former PM approach, the contact forces are modelled through a physical compression gap element between
each pair of contact points. Because of its simplicity, the PM approach is widely used in structural engineering and
is readily available in most finite element software in the form of one-dimensional nonlinear gap elements. These
gap elements allow transferring energy between the two structures and account for local energy dissipation; their
main drawback, however, is that the computation of contact forces relies on semi empirical (often non-physical)
coefficients, which require experimental validation (Candia et al.[23]). For instance, one of the simplest gap element
formulations is the Linear Visco-Elastic (LVE) model, where the contact force between two nodes during a collision
is given by Equation 1.

F(t) = ksδ(t) + ξdδ̇(t) (1)

Where δ(t) is the interpenetration depth (i.e., the amount of overlap between the colliding nodes); δ̇(t) the inter-
penetration rate; and ks and ξd are the empirical coefficients representative of the stiffness and damping of the contact
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Figure 2: Scheme of critical configurations of structures defined by Jeng et al.[7]

interface, respectively. Similar gap element formulations are summarized in Table 1.

Several authors (Jankowski[14, 16], Khatami[24], Anagnostopoulos[10, 12], Xu[18], Crozet[25]) have studied the
influence of the gap element parameters and the dynamic response of colliding bodies. For instance, Crozet et al.[26]
found that the contact stiffness should be greater than ten times the stiffness of the most rigid impacting body, and
that the maximum time step for a dynamic analysis should be limited to one-fourth of the smallest vibration periods
of the two buildings. These simple rules allow minimizing the contact duration, preserve the system kinematics,
and yield acceptable computational runtimes. Studying the response of single degree of freedom (SDOF) systems,
Anagnostopoulos[12] found that the contact stiffness has a large effect on the SDOFs accelerations and forces, but a
marginal effect on their displacements. Later, based on experimental evidence, Khatiwada et al.[27] concludes that
the contact stiffness derived from small scale specimens cannot be applied to prototype scale buildings. This latter
author is adamant on the limitations of the PM in the building pounding field, highlighting the high sensitivity of the
kinematics given the variations in the contact stiffness parameter.

In the Lagrange Multipliers Method (LMM), which derives from the principle of conservation of linear momen-
tum, the contact kinematics is enforced through external loads, and the energy dissipated during inelastic collisions
is accounted for by using either the kinematics and internal equilibrium of the system [22, 19, 28], or the coefficient
of restitution e (Acary[29]). These external loads enforce a “strict no-penetration condition”, but they introduce an
instantaneous change in the particle velocities, excite high frequency modes, and create large spurious internal forces.

Reported applications of the PM to building pounding problems are significantly larger than LMM applications,
in part, because the implementation of LMM solutions is cumbersome, also with respect to convergence and stability.
However, the use of LMM is appealing if the coefficient of restitution e is used since it has a simpler physical interpre-
tation. Therefore, the goal of this article is to present a complementarity method based solution for structural pounding
during earthquakes (it has a similar formulation than the LMM); this solution overcomes some of the difficulties found
in current LMM implementations, and is based on a single empirical parameter, which simplifies the model definitions.
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Indeed, the structural pounding model is based on the Non-Smooth Contact Dynamics (NSCD) algorithm devel-
oped by Moreau[30] and extended by Jean[31] and Acary[29, 32, 28, 33] to account for deformable systems. To our
knowledge, the use of the NSCD approach to structural pounding problems has not been reported in the literature. In
the following sections, the formulation of the NSCD algorithm is presented along with two validation examples: (i)
the “bouncing ball test”; and (ii) a plane frame pounding tests, where the NSCD approach is used to reproduce the
shaking table response of one and two-story buildings.

Table 1: Main gap element formulations for dynamic pounding analysis

Name Impact Force F(t) ξd ξr

Hertz Non-Linear (HNL)[34, 35] ksδ
3
2 (t) / /

HertzDamp Non-Linear (HDNL)[36] ksδ
3
2 (t) + ξdδ̇(t) ks(

8(1−e)
5e(v−1−v−2 ) ) /

Linear Visco-Elastic (LVE)[12] ksδ(t) + ξdδ̇(t)
2ξr

√
ks

m1m2
m1+m2

- ln(e)√
π2+(ln(e))2

Modified Linear Visco-Elastic (MLVE)[16] Approach period : ksδ(t) + ξdδ̇(t) 1−e2

e(e(π−2)+2)Restitution period : ksδ(t)

Non-Linear Visco-Elastic (NLVE)[13, 14, 37, 17] Approach period : ksδ
3
2 (t) + ξdδ̇(t) 2ξr

√
ks
√
δ m1m2

m1+m2

9
√

5
2

1−e2

e(e(9π−16)+16)Restitution period : ksδ
3
2 (t)

m1 and m2 are nodal masses ; e is the coefficient of restitution; ξd and ξr are respectively the damping coefficient
and damping ratio. Approach period means means that δ̇ > 0, when relative velocity is positive, thus interpenetration
is ongoing. Restitution period means that δ̇ ≤ 0, when relative velocity is negative, thus when bodies are departing
from each other.
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2. NSCD method

This section presents the NSCD approach and integration scheme for the case of two collision-prone linear multi
degree of freedom (MDOF) systems. Without significant loss of generality, consider two planar moment resisting
frames with lumped masses and net separation g0, as shown schematically in Figure 3. Each structure is characterized
by a constant mass matrix Mi, and a vector of nonlinear internal forces Pi(qi, q̇i) defined in generalized coordinates
qi,with i = 1, 2. Pounding forces may develop at n discrete locations along the contact interface (i.e., node-to-node
contact) between pairs of point-masses on each building, henceforth a contact pair. The impact and energy dissipation
on each contact pair are modelled using Newton’s impact law and the conservation of linear momentum.

Figure 3: Idealized structures in a deformed position; solid circles represent the contact pairs along
the contact interface.

The equations of motion for both systems can be written in augmented form as

Mq̈ + P(q, q̇) − F = 0 (2)

where q = [qT
1 qT

2 ]T , q̇ and q̈ the are the first and second time derivatives of q, respectively. The term P(q, q̇) =

[PT
1 PT

2 ]T is the vector of internal forces, and the composite mass matrix M is the block-diagonal concatenation of
matrices M1 and M2. The term F are a set external forces conjugated in work with q, which accounts for static and
dynamic loads.

The NSCD integration scheme[31], presented herein, is used to solve Equation 2 in discrete time. The method
uses the Moreau-Jean[30] stepping algorithm to step from time ti to ti+1 = ti + ∆t in addition to the Signorini-
Moreau conditions for contact detection. The contribution of Acary[33] allowed for the application of the method to
deformable bodies, and highlighted its energy conservation properties[32].

2.1. Moreau-Jean stepping algorithm

After integrating Eq. 2 from ti to ti+1 and approximating the integral of the nonlinear forces with the midpoint rule,
the equation of motion can be written in incremental form as presented in Eq. (4), where Rk+1 stands for the residuals
at time ti+1, Gi =

∫ ti+1

ti
Fdt, and the sub-index i + θ denotes the time ti+θ = ti + θ∆t.

∫ ti+1

ti
Mq̈dt +

∫ ti+1

ti
Pdt −

∫ ti+1

ti
Fdt = 0 (3)
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Rk+1 = M(q̇i+1 − q̇i) + Pi+θ∆t −Gi = 0 (4)

Expressions for qi+1, q̇i+θ, and qi+θ are shown in Eqs. 5 to 7 based on the Euler-θ approximation method.

qi+1 = qi + q̇i+θ∆t (5)

qi+θ = (1 − θ)qi + θqi+1 (6)

q̇i+θ = (1 − θ)q̇i + θq̇i+1 (7)

The Moreau-Jean algorithm embedded in the NSCD approach uses θ = 1
2 , which results in an implicit integration

scheme unconditionally stable relative to regards ∆t, similar to the algorithms by Euler and Newmark. If no collisions
occur between ti and ti+1, the velocities q̇i+1 can be obtained solving Eq. (4) (i.e., ‖Rk+1‖ ≤ ε, where ε is a scalar
arbitrarily taken close to 0) using the Newton Raphson (NR) algorithm, in which case the velocities in the (k + 1)th
NR iteration can be written as

q̇k+1
i+1 = q̇k

i+1 − (Jk)−1Rk
i+1 (8)

where the Jacobian Jk =
∂Rk

i+1

∂q̇k
i+1

is defined in terms of the tangent damping and stiffness operators Ct,k
i+θ and Kt,k

i+θ,
respectively, as

Jk = M + Ct,k
i+θ∆t θ + Kt,k

i+θ∆t2θ2 (9)

2.2. Contact detection and impact forces
If the relative displacements between the buildings are sufficient to close the gap, a collision takes place and a set

of impact forces must be added to enforce the no-penetration condition. The separation gi and separation rate ġi at the
n contact pairs is obtained from the linear relation

gi = Hqi + g0 (10)

ġi = Hq̇i (11)

where H is a kinematic transformation matrix, and g0 = [g1
0g2

0...g
n
0]T is the initial separation along the contact

interface, as shown in Fig 3. When stepping from ti to ti+1, pounding will occur if the predicted gap at time ti+1 is less
than zero for any of the contact nodes. In the current NSCD approach, the Signorini-Moreau contact condition is used
to predict the separation at time ti+1 as a function of the separation rate shown in Eq. (12), where the constant γ takes
a value of 3

2 .

ĝi+1 = gi + γ∆ġi (12)

Based on Newton’s impact law, if pounding is detected in a contact pair subset Ω, (i.e., min(ĝi+1,α) ≤ 0, with
α ∈ Ω), the rate of separation of each pair is ġi+1 = −e ġi, where e is the coefficient of restitution. To compute the
new velocities and enforce the contact kinematics, an impulse vector pi+1 is added to the equilibrium Equation (4) in
addition to the linear constraints in Equations (14) and (15).

R̂k+1 = M(q̇i+1 − q̇i) + Pi+θ∆t −Gi −HT pi+1 = 0 (13)
6
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ġi+1 ≤ −e ġi (14)

pi+1 ≥ 0 (15)

Solving the system’s unknowns q̇i+1 and pi+1 from Equations (13) to 15 is equivalent to solving a linear optimiza-
tion problem, for which a vast body of literature exists. Herein, we propose the Gauss-Seidel type solution introduced
by Acary[33], which uses a successive elimination of equations. Thus, the impulse at the α-th contact pair within the
k-th NR iteration is computed as

pk
i+1,α =

1
Wk

α,α

(
− bk

α + ġα −
∑
β,α

Wk
αβp

k
i+1 + Wk

ααpk
i+1,α

)
≥ 0 (16)

ġα = −eH q̇i,α (17)

The terms bk
α and Wk

αβ, respectively, the α-entry and (α,β) entries of matrices bk and Wk defined as

bk = H(Jk)−1Rk + Hq̇k
i+1 (18)

Wk = H(Jk)−1HT (19)

A residue on the impact force to ensure the validation of the impulse is introduced with the following formulation
proposed by Acary in collaboration with the authors, with ρ a scalar superior or equal to 1.

Rc
k = pk

i+1,Ωα
− max

(
0,pk

i+1,Ωα
− ρ(W(Ωα,Ωα)pk

i+1,Ωα
+ bΩα

+ e ġi,Ωα
)
)

(20)

The algorithm of the entire method is presented here below.

7
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(i) For the i-th time step iteration
Newton-Raphson iteration step : k = 1
Impulse vector : pk

i+1 = 0
q̇k

i+1 = q̇i

ġk
i+1 = ġi = Hq̇i

Eq. (12) DOF contact prediction : ĝi+1 = gi + γ∆t ġi with γ = 3
2

Identification List of potential contact location : Ωα = ĝi+1 ≤ 0
(ii) Kinematic first estimation from Euler implicit + θ method (with θ = 1

2 )
Eq. (7) q̇k

i+θ = (1 − θ)q̇i + θq̇k
i+1

Eq. (5) qk
i+1 = qi + q̇k

i+θ ∆t
Eq. (6) qk

i+θ = (1 − θ)qi + θqk
i+1

(iii) Assembling of the tangent operator Jk, the internal forces residue with impact R̂k and the impulse residue Rc
k

Eq. (9) Jk = M + Ct,k
i+θ θ∆t + Kt,k

i+θ θ
2 ∆t2

Eq. (4) Rk = −M
(
q̇k − q̇i

)
−

[
Ct,k

i+θq̇
k
i+θ + Kt,k

i+θq
k
i+θ

]
∆t − Gi

Eq. (13) R̂k+1 = M(q̇i+1 − q̇i) + Pi+θ∆t −Gi −HT pi+1

Rc
k = 1 to force the entry in the Solving Algorithm

(iv) Beginning of a Solving Algorithm to annihilate ‖R̂k‖ and ‖Rc
k‖

While ‖R̂k‖ > ε and ‖Rc
k‖ > εc with ε and εc scalars arbitrarily less than 10−3

(v) Solving operators
ġk

i+1 = Hq̇k
i+1 the relative contact DOF velocities at iteration k

Eq. (18) bk = H(Jk)−1Rk + ġk
i+1

Eq. (19) Wk = H(Jk)−1HT

(vi) Calculation of impulse vector pk
i+1, (Eqs.(16,17))

For α ∈ Ωα

ġα = −eH q̇i,α

pk
i+1,α = max

[
0, 1

Wk
α,α

(
− bk

α + ġα −
∑
β,α

Wk
αβp

k
i+1 + Wk

ααpk
i+1,α

)]
End For Loop

(vii) New velocity q̇k determination
Eq. (13) R̂k = Rk + HT pk

i+1
Eq. (8) q̇k+1

i+1 = q̇k
i+1 − (Jk)−1R̂k

(viii) Kinematic update as in (ii), (Eqs. (7,5,6))
(ix) Update of the tangent operators Ct,k

i+θ, Kt,k
i+θ and Jk (Eq. (9)), residue R̂k, (Eq. (4))

(x) Update of the impulse residue Rc
k (Eq.(20))

Rc
k = pk

i+1,Ωα
− max

(
0,pk

i+1,Ωα
− ρ(W(Ωα,Ωα)pk

i+1,Ωα
+ bΩα

+ e ġi,Ωα
)
)

k = k + 1
End While Loop
q̇i = q̇k+1

i+1
End For Loop

8
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3. Bouncing Ball test

The capabilities of the NSCD and PM approaches are compared for a test case of a rigid ball bouncing on a rigid
floor (Figure 4). The analytical solution is known from Acary[29], so the parameters used are the same. The ball has
a mass m =1kg and is released from a height h=1m, with a zero initial velocity Vo and vertical acceleration g=2m/s2.

h

m = m1

Vo = 0 g

Figure 4: Bouncing ball test case

The LVE and NLVE (Jankowski[14])PM models are tested. A sensitivity analysis is performed to assess the value
of the contact stiffnesses ks delivering the best results. The mass ratio m1m2

m1+m2
in Table 1 simplified to m = m1. Two

time steps are chosen, 10−3s and 10−4s, to highlight the dependency of the results accuracy on time step, and the study
length is fixed to 3.5s. The coefficient of restitution e equals to 0.5. The figures 5a and 5b present respectively the
displacements and velocities of the three approaches, analytical (black curve), NSCD (red dots), and PM (LVE and
NLVE in grey curves).
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Figure 5: Comparison of the NSCD and PM results for the bouncing ball test case

It is apparent that the NSCD procedure provides the exact response without the need of defining a contact stiffness
and no time step to refine. As opposed to the NSCD method, it is highly difficult to reproduce the analytical kinematics
with the PM after the second rebound. The out-of-phase motion spotted for ∆t = 10−3s is barely improved by refining
it to 10−4s, and at to the cost of increasing computation time. Also, the impact stiffness yielding the best results
changes with time step and the impact law considered. This comparison of both methods is now to be applied in the
frame of a scale 1:1 building pounding system.
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4. Plain Frame Pounding test

4.1. Shaking table experimental set-up

In the frame of the ANR SINAPS1 project to improve knowledge on vulnerability and resistance of strategic build-
ings (e.g., nuclear power plants) against earthquakes, series of pull back and seismic tries to induce pounding between
single-story or two-story structures were carried out at the Commissariat à l’Energie Atomique et aux Energies Alter-
natives (CEA) de Saclay by Crozet et al.[26, 38, 25].

The two steel-framed structures with rectangular reinforced concrete slabs were fixed side by side to the shaking
table AZALEE of the EMSI laboratory2. These structures are identified respectively 1 and 2 from left to right (Figure
6b, they can alternatively be set up as one story high (2.5m), or two stories high (5m) by adding or removing additional
elements. The gap separation is also adjustable. Finally, to keep the structural motion only in the longitudinal axis,
bracing systems (steel cables) are used to limit transverse and torsional displacements (Figures 6a and 6b).

To ensure impact occurrences under seismic motion, the modal responses of both structures are different (Table
6). Thus, one structure is heavier (9200kg versus 7000kg), while the other one is stiffer (HEA140 versus HEA100
steel columns). Sensors are installed on the shaking table, slabs and columns to measure the accelerations with low
frequency capacitive accelerometers (0-150Hz) and high-frequency piezoelectric accelerometers (0-4000Hz).

~X
~Y

~Z

2, 2m

2, 2m3, 2m

S tructure 1
4600kg

HEA100

S tructure 2
3500kg
HEA140

g0 = 2cm

(a) Scheme of the single-story structures (b) Two-story structures[26]

Figure 6: Single-story and Two-story Structures

Four signals were used to excite both single-story and two-story structures, Cadarache (artificial acceleration
signal), El Centro (1940), Northridge (1994) and Kobe (1995). Different amplification factors were applied to generate
from these signals different Peak Ground Accelerations (PGA) ranging from 0,1g to 0,45g, with g the acceleration of
gravity.

4.2. Validation of model parameters: Pull back tests

This subsection focuses on determining a value of the coefficient of restitution e from experimental pull back
tests. It also compares results from the NSCD method and PM in a real scale pounding system. Indeed, no consensual
formulation has been delivered in the literature to calculate e before collision, and in most cases its value is defined
constant and arbitrary between 0 and 1. Jankowski[39, 16] worked on assessing the variation of the e with the relative
velocities by dropping balls on rigid floors made of different materials. However, Crozet[38], despite confirming the
trend of Jankowski curves, pointed out the high difficulty to experimentally assess such value with monitored real

1ANR, Agence Nationale de la Recherche, SINAPS, Séisme et Installations Nucléaires, Améliorer et Pérenniser la Sûreté - https://www.institut-
seism.fr/projets/sinaps/

2EMSI Laboratory, Laboratoire d’Etudes de Mécanique SIsmique - http://www-tamaris.cea.fr/index.php
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scale structures. Thus, constant values of e are assumed in this article.

The pull back tests are done in four steps and only applied to the single-story structures whose slabs are separated
by a 2cm average distance S . First, Structure 1 is fixed to a reference frame by electric suction pads. Secondly, the
shaking table is slowly moved longitudinally 2cm to 4cm apart, deforming the columns of Structure 1. The third step
is a symmetry check, to verify that the pads each take the same load. Finally, the suction pads power supply is cut off,
the left structure is released and is allowed to impact the right-hand side structure. The scheme to illustrate the set-up
and data is shown in Figures 6a and 7.

k1

m1

ξ1

−Uo~X
S tructure 1

k2

m2

ξ2

g0

S tructure 2 ~X

Figure 7: Pull back test SDOF model

In Figure 7, m j, ξ j and k j are respectively the mass, damping coefficient, and stiffness of the SDOF j, with j =

[1;2]. g0 is the separation distance between structures, and Uo is the pull back distance of the left-hand side structure
before its release.

The Linear Visco-Elastic (LVE) model is used herein using Anagnostopoulos[12] approach, as well as the Non-
Linear Visco-Elastic models (NLVE) by Jankowski[40] and Khatami[24]; e is fixed at 0.65. Regarding the contact
stiffness, it is calibrated in a range centred around the maximum value of k1 and k2. For the NSCD method, results
are analysed for values of e equal to 0.2, 0.6 and 0.9; the time step equals 10−3s. Tables 2 and 3 present the available
data and the analytical parameters of the impact models of the structures. Results of the analytical models are then
compared with the experimental outcomes.

Table 2: Structural model data

Data Structure 1 Structure 2
Fundamental Frequency (Hz) 3.50 6.55
Fundamental Period (s) 0.29 0.15
Mass (kg), mi 4600 3500
Longitudinal Stiffness (N/m), ki 2.11e6 5.31e6
Damping Coefficient (%), ξi 0.4 to 0.6 0.4 to 0.6

Table 3: NSCD and PM parameters

Models ks (N/m) ξd (%) ξr (%) e
NSCD method / / / [0.2;0.6;0.9]
Anagnostopoulos[12]**

[0.01;0.1;1;10;100]max(k1,k2)
8.46e4 0.136

0.65Jankowski[13, 14]*** * 0.373
Khatami et al.[24]**** * 0.0428

In Table 3, the contact stiffness ks is the multiplication of the coefficient of impact (here taken in [0.01,0.1,1,10,100])
11
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by max(k1, k2).

* The formulation ξd = 2ξr

√
ks
√
δ m1m2

m1+m2
with δ the interpenetration distance.

** With ξr and ξd expressed in (LVE) in Table 1.
*** With ξr and ξd expressed as in (NLVE) in Table 1.
**** With ξr =

(1−e)e0.204

eα+0.204+3.351eπ and α = 1.05e0.653.

Since the transverse and torsional eigenfrequencies of the single-story structures were not available, the finite el-
ements models used for the pull back and seismic tests are respectively SDOF and planar-frame models. They fit the
experimental modal and damping behaviour, as observed graphically in Figure 8 and more thoroughly explained in
section 4.3.

NSCD results: Sixteen pull back tests were performed[38], with pulling distances ranged from 2.1cm to 3.4cm,
and six of them were modelled numerically. Different e values of 0.2, 0.6 and 0.9 were investigated. Figure 8(a)
shows, for a pull back test of 2.4cm, the displacements of the two contact degrees of freedom compared with the
experimental ones for an e value of 0.6.
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Figure 8: NSCD method : evaluation of e

Matching of the curves is excellent, showing both an accurate impact occurrence, kinematic and damping evo-
lution. These modal and damping parametrizations are then validated and kept for the single-story seismic tests
presented in the next section. The Figure 8(b) presents the acceleration of the degree of freedom of the contact node
of Structure 2 for values of e= 0.2, and 0.6 and 0.9. It appears that the value 0.6 is the one giving the exact impact oc-
currence among the three propositions. The value 0.2 delivering a lower post-impact velocity, the next contact comes
later than 0.6. On the other hand, e = 0.9 impacts land quicker than for 0.6 and 0.2. Figure 9 presents the spectra of
pseudo-displacements, pseudo-velocities and pseudo-accelerations for Structure 1 (left column) and 2 (right column),
and different values of e. They are compared to the experimental averaged pseudo-accelerations.
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Figure 9: Displacement, velocity and acceleration Spectra for different values of e

The differences are relatively small for the spectra of pseudo-displacements and pseudo-velocities, even with re-
ally different values of e; the relative error is always lower than 10%. However, differences are significant in the high
frequencies of the pseudo-accelerations spectra where both curves of e=0.2 and e=0.9 depart from the experimental
curve.

PM results: To keep the plots understandable, only the Structure 1 responses are presented in the Figure 10.
For ∆t = 10−3s, the contact stiffness equal to 0.01max(k1, k2) yields the best results for each model, but out-of-phase
motion increases at each impact. The amplitudes and impact occurrences are afterwards less and less accurate. Taking
a higher stiffness (10 times the highest value of contact stiffness, by Anagnostopoulos[12]), would decrease the phase
shift. Nevertheless, it also brings non-realistic kinematic values, unless one takes a much smaller time step and thus
increasing the computation cost.
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Figure 10: Comparison of PM with experimental values : ks = 0.01max(k1, k2), ∆t = 10−3s
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Figure 11 presents the displacements with a 10−6s time step for Jankowski and Khatami models. Like for the
bouncing ball, the contact stiffness yielding the best results vary with the time step and PM used. The new results in
dark grey show a better match with the experimental curves, but the computation time is multiplied by a thousand,
and major differences remain. Since the kinematics is not good, the spectra studied has been omitted.
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Figure 11: Structure 1 : Effects of ∆t and ks on results accuracy

Overall in the NSCD method, the value e=0.6 is from now on taken for future calculations. On this particular study
case, the NSCD method has proven its accuracy and ergonomics capabilities into yielding outcomes and comparing
them to experimental data. Good matching is also possible with PM, but the parameter assessment requires more
time. Only the NSCD method will now be tested with seismic tests on single-story frames.
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4.3. Seismic response of the single-story frames

Figure 12a presents the plane frame finite element model and the structures parameters are the same as for the
previous section. The time step calculation equals 0.001s. With a 2cm separation gap, collision is detected for seven
signals (Cadarache 0.25g and 0.30g, El Centro 0.4g and 0.45g, Northridge 0.3g and 0.35g, and Kobe 0.4g). Table
4 presents for each case the damping coefficients ξ1 and ξ2 of both structures, and the number of impacts simulated
numerically and detected experimentally. Damping coefficients ξ1 and ξ2 between [0.4;0.6]% computed inside a
Superposition Damping matrix[41] yield the best comparison with the experimental results and e still equals to 0.6.

•

• • •

••

• • •

•

~X

~Z 2, 5m

2, 2m3, 2m
S tructure 1

4600kg

HEA100

S tructure 2

3500kg
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g0 = 2cm

(a) Single-story 2D-Frame model
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~Z

2, 2m

2, 2m3, 2m

S tructure 1
9200kg

HEA100

S tructure 2
7000kg
HEA140

g0 = 5cm

(b) Two-story 3D-Frame model

Figure 12: Numerical models used for seismic tests

Table 4: Single-story Structures : Modal damping coefficients and impact occurrences

Signal ξ1 - ξ2 (%) Number of impacts: Numerical/Experimental
Cadarache 0.25g 0.6 - 0.5 9 / 12
Cadarache 0.30g 0.6 - 0.5 8 / 14
El Centro 0.40g 0.5 - 0.5 1 / 3
El Centro 0.45g 0.5 - 0.5 4 / 5
Northridge 0.30g 0.4 - 0.4 2 / 4
Northridge 0.35g 0.4 - 0.4 3 / 3
Kobe 0.4g 0.6 - 0.5 2 / 2

The Cadarache 0.25g test is now analysed. It yields very interesting results, especially considering the important
number of impacts for the Cadarache signals. Indeed, in this case, the number of impact is high (12) and the simulation
delivered 9 of them, always at right times, which shows the good treatment of the impact of the algorithm. As a matter
of fact, even after several collisions and potential sources of divergences, the model outcomes kept matching the real
displacements. The figure displays the numerical and experimental comparison in displacements (upper figure) and
accelerations peaks due to collisions (lower figure). The six remaining signal comparisons are presented in Appendix
5.

Nine of the first ten impacts happen at the exact right instant, and the only one missing (close to 9s) has a small
amplitude compared to the others. Since the accelerations peak from the sensors is small, barely noticeable, it can
suggest that the structures simply brushed past each other, barely triggering the sensors. Structure 1 numerical dis-
placements are smaller in amplitude starting at 16s, leading to the two remaining contacts not detected (18s and 22s).
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Figure 13: Single-story results (Cadarache 0.25g signal) : numerical versus experimental compar-
ison

A parametric analysis of e on this same Cadarache 0.25g test is presented on Figures 14a and 14b. They compare
both numerically and experimentally the time occurrence and the number of impacts along with the spectra of the two
structures, respectively.
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Figure 14: Sensitivity analysis of e : Cadarache 0.25g on single-story structures

First in Figure 14a, there is a noticeable change in the number and time instants of the impacts with the coefficient
of restitution. Among the twelve collisions expected (red dots), only seven and nine are respectively reproduced for
the e values of 0.2 and 0.9 (grey markers). Even more for e=0.9, four impacts occur where there is no impact evidence
between 10s and 12s. The value of 0.6 yields once again the better match. Regarding the spectra of Figure 14b, the
peak values of pseudo-displacements, pseudo-velocities, pseudo-accelerations and the general trend of the curves are
quite accurate, especially around the fundamental frequencies. Discrepancies appear after 10Hz, but only with the e
value of 0.9.

Overall, taking a constant value of 0.6 for e yields once again good results, both in terms of kinematics and spectral
trends for all the seven different signal comparisons (c.f plots in Appendix 5).
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4.4. Seismic response of the two-story frames

For the two-story structures separated by a 5cm distance, pounding occurred for the following signals: Cadarache
0.45g, El Centro 0.3g, Northridge 0.2g, and Kobe 0.2g and 0.25g. Because the experimental transverse and torsional
eigenfrequencies were available, a 3D-fiber model is used to better model the structures. Figures 6b and 12b show
the real scale and numerical models of the frames respectively. Each structure is composed of fourteen nodes and
thirty two elements. The NSCD method is applied in between the two close corners of each slab so that eight degrees
of freedom are involved into the contact detection. The time step calculation is kept at 10−3s. Furthermore, average
experimental displacements are obtained from the double integration of the four acceleration piezoelectric sensors on
the slab.

Sources of discrepancy: one source of discrepancy comes from the correct evaluation of the damping and modal
behaviour. During the experiments, three different tests were carried out to determine the real eigenfrequencies and
damping coefficients of each fundamental mode of the structures. They are denoted from the Covariance Driven
Stochastic Sub-Space Identification (SSI-COV) white noise analysis, a second one with a decremental logarithmic
analysis (SSI-COV (DLA)), and a hammer test. According to Crozet et al.[38], the SSI-COV (DLA) values applied
to their own model yielded the best comparisons. Unfortunately, in our case the damping coefficients of the second
transverse and torsional modes could not be obtained. As a first approximation, they are taken here equal to the first
transverse and torsional coefficient respectively. A damping superposition matrix[41] is computed on each structure
so that their dynamic behaviour is as similar as possible with the experimental one. Table 5 presents the values of
damping coefficients finally identified, and Table 6 presents the matching of the numerical eigenfrequencies with the
experimental ones. L. B., Tr. B., and To. signify respectively the Longitudinal Bending, Transverse Bending, and
Torsion modes.

Table 5: Experimental Damping Coefficients ξ from SSI-COV (DLA) test[26, 38]

1st L. B. 2nd L. B. 1st Tr. B. 2nd Tr. B. 1st To. 2nd To.
ξ (%) Structure 1 0.7 0.2 1.3 1.3 2.0 2.0
ξ (%) Structure 2 1.0 0.2 1.0 1.0 3.0 3.0

Table 6: Experimental and Numerical eigenfrequencies

1st L. B. 2nd L. B. 1st Tr. B. 2nd Tr. B. 1st To. 2nd To.
Structure 1 Exp (Hz) 2.10 5.60 6.10 17.5 8.60 24.4
Structure 1 Model (Hz) 2.10 5.60 6.11 17.5 8.60 24.4
Structure 2 Exp (Hz) 3.70 10.4 8.20 25.2 10.1 28.0
Structure 2 Model (Hz) 3.69 10.4 8.20 25.2 10.2 28.0

Also, set-up imperfections may create an unplanned motion of the frames. As spotted during the experimental
campaign[26, 38], the planar surfaces where pounding occurs are not perfectly aligned. The gap separations of the
two ends are different, one being 5cm and the other 5.5cm. This one important parameter corrupt the experimental
kinematic response, creating non-planar and torsional motion. To reproduce the torsional peaks of the experimental
pseudo-spectra plots, different separation gaps in the range between 4.0cm and 6.0cm were chosen, with a maximum
of ± 0.5cm difference between the two contact corners gaps.
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For the five tests involving pounding, Table 7 displays the asymmetric gap and the number of impacts simulated
numerically and detected experimentally. The gaps displayed are the ones, inside the range [4.0;6.0]cm, yielding the
best comparison with the experimental results.

Table 7: Impact occurrences

Signal Gaps of Left/Right corners (cm) Number of impacts: Numerical/Experimental
Cadarache 0.45g 5 / 5.5 3 / 3
El Centro 0.30g 5 / 5.5 3 / 3
Northridge 0.20g 5.5 / 6 1 / 1
Kobe 0.20g 4.5 / 5 3 / 3
Kobe 0.25g 5 / 5.5 3 / 4

The Kobe 0.25g second floor results are presented here below. The four remaining signals responses, Cadarache
0.45g, El Centro 0.30g, Northridge 0.20g and Kobe 0.20g, are included in Appendix 5. Due to the 3D nature of the
models, it is possible to plot the displacements of the four facing corners, two of them called ”left corners”, and two
others ”right corners”. For a sake of readability, only the displacements and accelerations of the left corner are plotted
in Figure 15.

Figure 15: Two-story results (Kobe 0.25g signal) : numerical versus experimental comparison

Figure 15 shows good agreement of kinematic responses and impact occurrences between experimental and nu-
merical outcomes. One impact was not reproduced at 11s, and by checking the displacements, it was missed by a few
millimeters.
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Figure 16: Two-story (Kobe 0.25g signal) Spectra : numerical versus experimental comparison

Figure 16 compares the numerical versus experimental spectra. Herein, the data extracted from the sensors are
not averaged so that torsional effects are visible. Overall, the general trend of the pseudo-displacements and pseudo-
velocities are well reproduced for all signals, especially around the fundamental frequency. Bigger differences appear
in the high frequencies, more notably from the pseudo-accelerations presented in Figure 16. The triggering of the
first and second torsional mode are now observable both numerically because structures were misaligned as for the
experimental configurations. First, the experimental second torsional frequency is lower than the one numerically
targeted during the modal configuration. Indeed, for Structure 1, the peak is triggered around 22Hz while it was
estimated at 24,4Hz by the SSI-COV (DLA) tests (26Hz rather than 28Hz for Structure 2). The same happened with
the four remaining signals (see Appendix 5). The inferred modal eigenfrequencies were probably slightly different
than the real ones. Finally, the peak amplitudes in high frequencies are very different. It can be explained by the
uncertainties on the slab alignment, which has an important effect on the amplitude of the torsional mode peak.
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5. Discussion

This article presents a numerically efficient algorithm for solving the equations of motion of structural systems
subjected to pounding, herein referred to the NSCD method. The algorithm is an implicit Moreau-Jean integration
scheme combined with Newton’s law of impacts, which relies on the coefficient of restitution e and accounts for
energy dissipation upon contact. To illustrate the accuracy and robustness of the NSCD approach, two application
examples are presented: (i) a bouncing ball test, and a (ii) building collision test, where NSCD-based solutions are
compared with shaking table test results. From this study, the following conclusions can be drawn:

• The NSCD solution to the bouncing ball problem yields the exact analytical solutions, even with larger time
steps. On the other, the Penalty Method (PM) yields similar results at the expense of shorter time step and larger
computational effort.

• The NSCD method matched reasonably well the experimental results of 2 two-story buildings in terms of ampli-
tude and phase of the displacement histories, as well as pounding occurrences. The response spectra (e.g., PSD,
PSV, PSA) around the fundamental frequency of each buildings is captured accurately by the numerical scheme;
however, some differences are apparent in higher frequencies. Among several factors, these differences can be
attributed to small accidental slab misalignments observed in the experiments, and the inferred modal damping
values. These numerical simulations relied on a constant e value, which is also a source of uncertainties.

• A sensitivity analysis was performed and an e value of 0.6 resulted in very good agreement between the numer-
ical and experimental response. With high quality experimental data and under the assumption of a constant
value for e, this calibration process is straightforward as the number of empirical parameters is reduced to a
minimum. In contrast, finding the correct stiffness coefficient, damping ratio, and integration time step on a PM
implementation is cumbersome.

Overall, the NSCD method is a very useful tool for building pounding analyses and a good complement to tradi-
tional penalty method approaches. Work is underway to evaluate the effect of pounding in the context of performance-
based design and risk analysis.
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