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The surface properties between two non-miscible fluids are
key elements to understand mass transfer, chemistry and bio-
chemistry at interfaces. In this paper, surface properties are
investigated in evaporating and non-evaporating conditions.
A capillary bridge between two large plates (similar to a Hele-
Shaw cell) is considered. The temporal evolution of surface
forces and mass transfers due to evaporation of the liquid are
measured. The force depends on surface properties of the
substrate. It is adhesive in the wetting case and repulsive in
the non-wetting case. The force is also shown to depend
linearly on the volume of the capillary bridge F∝V0 and
inversely to the height of the bridge. Modelling is performed
to characterize both surface force and evaporation properties
of the capillary bridge. The evaporation is shown to be
diffusion driven and is decoupled from the bridge mechanics.
1. Introduction
Interface phenomena have been extensively studied since the
seminal works of Plateau [1] and Rayleigh [2]. The shape of a
liquid interface is easily described by the Young–Laplace
equation. However, this equation is not easy to solve even in
the case of an axi-symmetric liquid bridge between two parallel
plates, which is one of the simplest cases to study interfaces.
This classroom case has given birth to an abundant bibliography
mixing theoretical works as well as experimental ones [3].

Those studies were carried out to understand various
phenomena; from the most theoretical ones with the onduloid
shapes with null pressure [4], or the break-up of a liquid bridge
[5]; to the most applied ones such as the building of a sand
castle [6]. From a biological point of view, capillary bridges are
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Figure 1. Schematics of the experimental bench. The profile of the drying liquid bridge is recorded by a camera. The force of the
liquid bridge is measured by a precision scale. A pole gives vertical control on the upper plate and allows us to fix the height z1 of
the bridge.
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also present in the adhesion of insects [7] for instance. The complex cases of the evaporation of a capillary
bridge between one sphere and a surface [8] or between two spheres have been studied considering both
evaporation kinetics [9] and bridge break-up [10]. Recently, the evaporation of a capillary bridge between
two plates has been extensively explored in well-controlled conditions by Portuguez et al. [11,12] for
different wetting angles and air humidities. However, capillary forces of evaporating liquid bridges
were not directly measured with their set-up.

The capillary bridge is one of the most standard configurations in which interface effects may be
studied and characterized dynamically for liquids. It differs from the evaporation of a sessile drop in
three main aspects. First, the control of the height of the bridge z1 allows us to start the drying with
receding contact angles directly, whereas in the case of a sessile drop the contact angle may vary from
advancing to receding at the beginning of the drying. Second, the control of the height of the bridge
also allows us to control finely the evaporation kinetics of the liquid. Finally, the capillary force might
be measured which gives a direct insight on the evolution of the surface properties. This differs from
the case of a sessile drop for which this quantity is not easily accessible. Those three aspects make the
capillary bridge technique more robust than the sessile drop technique to characterize the surface
properties of fluids.

Bacteria and other microbes thrive at the liquid–gas interface, mainly thanks to the easy access
to oxygen from the gas and nutrients from the liquid. Some bacteria secrete biological molecules
(enzymes, proteins, etc.) that may change the bulk and interface properties of the liquid. Recent
studies have shown that both the evaporation rate [13] and the surface tension [14] of specific bacteria
solutions can be changed by one order of magnitude. Those bio-surfactants or bio-films may be
industrially used not only to produce pharmaceutical products [15] but also to process food (dairy
transformations [16], specific wine process [17], etc.). In this context several attempts have been made
to characterize the effect of bio-secretions on interface properties, such as the drop-collapse test [18].

We focus here on the dynamics of an evaporating capillary bridge between two large plates to finely
control the boundary conditions for evaporation. We aim at characterizing the evaporation rate and
the surface forces generated by the capillary bridge. We demonstrate that our experiment is efficient at
measuring the surface parameters (evaporation rate and surface forces) of any volatile liquid.

The paper is organized as follows. Section 2 is devoted to the description of the experimental set-up,
measurement techniques and experimental procedure. We then present the experimental results obtained
with our set-up in §3. Finally, those results are compared to analytical models presented in §4. Those
models are based on (i) the Young–Laplace equation for the force of the capillary bridge and (ii) mass
transfer equation for evaporation rate.
2. Material and methods
2.1. Experimental set-up
The experiment is depicted in figure 1. It is constituted of two horizontal flat plates in the centre of which
a liquid drop of a desired initial volume V0 is deposited. The two plates are flat cylinders of radius L = 2
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Figure 2. Schematics of the liquid bridge and definition of parameters used throughout the paper. (a) Schematics of the drying of a
liquid bridge: close to the liquid–air interface, air is saturated by water vapour, pv=pov ¼ 1. Away from the two substrate plates, air
has a constant water vapour saturation pv=pov ¼ w. (b) Schematics of a liquid bridge on a hydrophilic substrate having a critical
point in r0. The liquid bridge is described by the radius r(z) and by its contact angle θ. (c) Close-up on the liquid–gas and the

definition of angle α with cosa ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
.
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and 0.4 cm thick made of PVC (mass 7g). The upper plate is lowered, thanks to a vertical elevator, until
the drop bridges the two plates. By back-moving the upper plate, we simply fix the height z1 of the
capillary bridge.

To avoid any contamination of the surfaces, the PVC plates are cleaned with ethanol and dried before
each measurement. The lower plate is placed onto the precision scale and a distilled water drop of
volume V0 is deposited on its centre. The precision scale (Mettle Toledo xs205 with a precision
of ±1 μN) is balanced and set to 0. The upper plate is then approached to create the liquid bridge.
With such a procedure, the precision scale only weighs the effect of the capillary bridge. Indeed, as
soon as the liquid bridges the two plates, the scale shows a negative weight due to the capillary
adhesion for a wetting fluid. Conversely, the scale shows a positive weight corresponding to a
repulsion force for a non-wetting liquid. In order to investigate the effect of the surface properties of
the substrate, a thin layer of the considered material (glass, Teflon or aluminium) is stuck to the PVC
plate and the same procedure is applied. The experiments were carried out at an ambient temperature
(T = 27°C) and pressure (P = 1015 hPa). The room humidity (w∼ 0.65 ± 0.05) was measured for each
evaporation test.

Along with the force measurement, we record the shape of the liquid bridge using a camera placed on
the side. We check the image if the two plates are horizontal by measuring the distance between the two
plates edges. The images are automatically processed using image processing tools from Matlab. The
shape descriptors of the liquid bridge (r(z) and _r(z) ¼ @r=@z) are computed on each image. From those
measurements, we deduce the surface S and volume V by

S ¼
ðz1
0
2pr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
dz and V ¼

ðz1
0
pr2 dz: (2:1)

Finally, we obtain the simultaneous time evolution of the capillary force F(t), volume V(t) and surface S(t)
of the capillary bridge during the whole drying process until break-up.
2.2. Observables and notations
The parameters used in the paper are defined in figure 2. The profile of the liquid bridge r(z) ends with a
contact angle θ on the plate. For simplicity, we denote r0 as the radius of the liquid bridge at the neck of
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Figure 3. Variation of the force F of a liquid bridge of fixed volume as a function of bridge height z1. (a) For wetting surfaces glass
(green), PVC (blue) and aluminium (grey), the force is purely attractive and decreases with z1 (drop volume V0 = 20 μl). However,
in the case of Teflon (yellow), a non-wetting surface, the force is initially repulsive before getting almost null. (b) The log–log plot
of the variation of the force F of a water–PVC liquid bridge of different volume (filled circle) V0 = 10 μl, ( filled square) V0 = 20 μl
and (star) V0 = 40 μl. The force decreases following a power law F / z�3=2

1 . The coloured dashed lines correspond to fits using
equation (4.8) and θ = 80°.
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the bridge (or equivalently at the point of the largest radius of the bridge if the curvature along z is
negative) and r1 the radius of the liquid bridge in contact with the plate.
3. Experimental results
We start by performing tests on capillary bridges to study the effect of drying on the adhesion force. The
first step is to measure the effect of geometry and substrate properties on the force generated by a
capillary bridge in negligible evaporation conditions. The second step is to measure the force of a
capillary bridge when evaporation occurs. Finally, we characterize the evaporation regime.

3.1. Force of a capillary bridge
We first varied the height z1 of the liquid bridge and recorded the force Fwith a fixed volume V0 (figure 3).
The time scale of this experiment is less than 200 s. As shown in figure 4a, the loss of liquid due to
evaporation within this time scale is negligible. For each test the experiment has been repeated three
times and the experimental points of figure 3a,b correspond to the average of the three experiments. The
coloured shadow corresponds to the envelope of the uncertainties.

The capillary force is attractive in the case of wetting substrates (glass, aluminium and PVC) and
repulsive in the case of a non-wetting substrate (Teflon) (figure 3a). We observe that the force is
maximal in magnitude when the two plates are the closest. The force generated by the capillary
bridge of a fixed volume decreases in magnitude with the height of the capillary bridge. For the
wetting substrates, the capillary force decreases smoothly until the bridge breaks up. In the case of the
non-wetting substrate, the story is a bit more complex as the force, initially repulsive, may smoothly
become positive as the plates are moved apart.

The same experiment has been performed on the PVC substrate but now with three different
initial volumes V0 (figure 3b). In each case the force follows the same trend: it decreases following a
well-defined power law, F/ z�3=2

1 .

3.2. Force of a drying capillary bridge
We now fix the height z1 of the capillary bridge and wait for the bridge to dry. The drying of the liquid bridge
reduces slowly the volume until the bridge breaks up. As the drying is on a very large time scale, larger than
thousands of seconds, the surface retraction does not create noticeable flow in the early phases of
evaporation. However, some flows may exist during the drying because of the Marangoni effect. Only
prior to bridge break-up, rather intense flows occur in the liquid bridge [19]. This simple experiment
allows us to investigate the effect of evaporation that varies the volume without an external operation.
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The force generated by a drying capillary bridge is recorded in time as the bridge thins due to
evaporation (figure 4b). The volume is also recorded temporally (figure 4a). The force, as well as the
volume, decreases linearly with time except for the first time in the aluminium substrate experiment.
Those outlier points are due to an effect of contact angle hysteresis. The triple line stick–slip
behaviour in the early stages of the evaporation process is present both on the temporal evolution of
the profile of the liquid bridge, figure 5a and in the temporal evolution of the lower wetting angle
which fluctuates in the early stages of drying before decreasing more smoothly (figure 5b).

Again, in the case of aluminium, the temporal evolution of the volume is irregular because of some
stick–slip behaviour of the contact line and some detection errors. The drying time (time at break-up)
varies with the initial volume V0 of the bridge and bridge height z1.

Finally, the relationship between force and volume is reported in figure 6a. The force increases
steadily and somehow linearly with the bridge volume F∝V except in the case of the aluminium for
the largest volume considered. Those points correspond to the initial times where contact angle
hysteresis may exist. The slope depends on the liquid height and the substrate interface properties.
4. Models
In this section, we rationalize the experimental results presented before (i) by developing a model of the
adhesion force depending on substrate properties and geometrical parameters and (ii) by analysing
the decrease of volume of the capillary bridge as a diffusion-driven evaporation. The simplicity of the
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geometry of the system chosen here allows one to derive analytical expressions for the two desired
quantities, the force and the evaporation rate.

4.1. Effects of the mass transfer on the capillary bridge
The mass transfer of volatile liquid to gas creates an additional recoil pressure Pr through the differential
vapour recoil mechanism [20–22]. Considering the effect on mass transfer, the interface jump condition
differs from the usual Young–Laplace equation by considering the recoil pressure

DP ¼ Pr þ gC with Pr ¼ dm
Sdt

� �2 1
rl
� 1
rg

 !
, (4:1)

where C is the total curvature of an interface, dm/Sdt the evaporation per unit surface and ρl and ρg the
density of the liquid and the gas.

With typical values γ = 72 mN, V≃ 10 μl, z1≃ 11 mm, ρl = 1000 kg m−3, ρg = 1 kg m−3 and an
evaporation time te ≃ 7000 s, we can evaluate the ratio of the recoil pressure to the Laplace pressure
Pr=gC. Using the following approximations, C ≃ 2=z1 ¼ and dm=Sdt ≃ rl

ffiffiffiffi
V

p
=2p

ffiffiffiffiffi
z1

p
te, we obtain

Pr

gC
����
���� ¼ r2l V

8p2rvt2eg
� 3� 10�11 � 1: (4:2)

We can thus safely neglect the effect of mass transfer on the bridge mechanics.

4.2. Effects of temperature on the capillary bridge
The evaporation of the liquid bridge induces temperature gradients at the liquid–air interface. Ait Saada
et al. [23], for instance, showed that temperature differences at the interface of the order of 0.1°C occur
during the evaporation of sessile drops of characteristic lengths 1mm at room temperature with 40%
humidity. They also showed that this result holds for conductive or insulating thick substrates. In our
experiment, the effect of temperature variations is even more reduced because of two reasons: first,
the evaporation flux is reduced as it occurs in a Hele-Shaw (two-dimensional flux), and experiments
were performed with a humidity of 0.65, larger than 0.4 in Ait Saada et al. [23] conditions. Second,
the liquid is exchanging heat on two thick substrates.

The importance of those flows can be estimated by the Marangoni Ma number [24],

Ma ¼ (@g=@T)DTh
maT

, (4:3)

where γ is the surface tension, ΔT the temperature difference, h the characteristic length, μ
the dynamic viscosity of the liquid and αT the thermal diffusivity of the liquid. For pure water,
∂γ/∂T = 1.56 × 10−4 kg s−2 K−1 [25], ΔT ≃ 0.1 K, μ = 1.0 × 10−3 kg−1 m−1 s−1 and αT = 1.43 × 10−7 m2 s−1
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and a bridge in contact between two walls, h = z1/2 ≃ 0.75 10−3 m, the Marangoni number is Ma ≃ 80.

It is in the order of the critical Marangoni number above which the convective Marangoni flows
occur. We thus do not expect strong Marangoni flow in our experiment. This was also pointed out
by Xiao et al. [26] and Bouchenna et al. [24], who found the influence of the thermo-capillary effect
on the evaporation of a sessile droplet negligible at ambient temperatures.

In the following, we will fully decouple the thermal problem from the mechanics of the
capillary bridge.
ing.org/journal/rsos
R.Soc.open

sci.6:191608
4.3. Force of a capillary bridge
We consider here a fixed amount of liquid bridging two plates. The Bond number Bo ¼ rgz21=g, where
ρ is the water density, compares the effect of gravity g to the effect of surface tension γ. In our
experiment, Bo∼ 0.3 means that gravitational effects, although present, could be neglected at the
first order.

We will thus only take into account capillary effects in the modelling of the liquid bridge. We consider
a static experiment where the fluid inside the capillary bridge is not in motion. This means that the
pressure inside the liquid is constant. We model the shape of the capillary bridge in an axi-symmetric
fashion with the Young–Laplace equation [27]

g

r(1þ _r2)1=2
� g€r

(1þ _r2)3=2
¼ DP, (4:4)

where r(z) is the radius of the capillary bridge at height z, _r ¼ @r=@z and ΔP is the pressure jump across
the liquid–gas interface. This equation is accompanied by the Young–Dupré relation at the contact line
that joins the three interfaces [27]

_rffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
�����
z1

¼ cos u, (4:5)

where θ is the contact angle. The Young–Dupré expression is valid if the contact line is not anchored
to a defect on the solid surface. For an energetic derivation of these expressions (4.4) and (4.5), see
appendix A.

The force of a capillary bridge is the sum of the effects of the normal stresses (i.e. pressure) and
the triple line force. One may directly derive this expression by integration of the Young–Laplace
equation (4.4), see appendix B. The force of the capillary bridge reads [28]

F ¼ 2pgra cosaa 1� 1� rb cosab=(ra cosaa)

1� (rb=ra)
2

 !
, (4:6)

where a and b are two different elevations, ra = r(a) and cosaa ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p ���
a
and, respectively, for b. This

equation has a simple form when (a, b) are taken, respectively, at the critical point (in z0) and at the
substrate–liquid junction in z1. We obtain

F ¼ 2pgr0 1� 1� r1 sin u=r0
1� (r1=r0)

2

 !
, (4:7)

where r0 = r(z0) and r1 = r(z1). This simple expression of the force of a capillary bridge eases the measure
of the force created by most of the liquid bridges by means of an optical device. In addition to the contact
angle, one has only to measure two radii, the first at the contact with the substrate and the second at the
critical point where the radius is minimal (hydrophilic substrate) or maximal (hydrophobic substrate).
For more complex bridge shapes, where no critical point exists for instance, or when only a part of
the bridge is visible, one may use the full expression of the force, equation (4.6), to compute the force
generated by the liquid bridge.

The contact angle is deduced from the profile of the bridge r(z) with equation (4.5) either at elevation
z = z1 for the upper contact angle or at elevation z = 0 for the lower contact angle. The contact angle and
the radius at the top and at the neck are measured from the image (figure 5a,b). Those measurements are
used to compute the capillary force thanks to (4.7) with air–water surface tension equal to γ = 72 mN m−1.
Those results are compared to the direct measurements of the capillary force made with the precision
scale (aluminium substrate; figure 6b). As one can observe from the figure, the two measurements
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follow the same trend. The deviation is of the order of the uncertainties of the optical measurements. One

may note that the uncertainties of the optical measurements are much larger than the uncertainties of the
measurements made with the precision scale. The limitations of such an optical measurement are
threefold: (i) it is difficult to measure precisely the contact angle, (ii) the axi-symmetry may break if
the triple line is anchored and (iii) the presence of gravity may affect the shape of the liquid bridge
when the Bond number is larger than 0.1. Despite those limitations, the results obtained by the two
approaches are in good agreement.

To rationalize the dependency of the capillary force F with the height of the bridge z1, we carried out
a theoretical analysis by solving the Young–Laplace equation for slightly curved capillary bridges (with
identical contact angles close to 90°, see appendix C). In this framework, we derived an analytical
solution of the capillary force as a function of experimental parameters, bridge volume V, bridge
height z1 and contact angle θ,

F ¼ g

ffiffiffiffiffiffiffi
pV
z1

r
þ 2gV

z21
� pgz1

12

� �
cot uþ o( cot2 u): (4:8)

The comparison between the experimental results and the theoretical ones for the three bridge
volumes shows the right trend and a pretty good agreement (figure 3b). The contact angle has been
fitted to θpvc = 80° for the three cases which is larger than the observed value θpvc≃ 60°. The scaling
law highlighted experimentally of the capillary force proportional to F/ z�3=2

1 corresponds in fact to a
transition zone between two regimes where F/ z�2

1 and F/ z�1=2
1 .

This expression of the capillary force, equation (4.8), has also been compared to experimental
measurements of the force in figure 6. The contact angles have been fitted using θpvc = 80°, θglass = 55°
and θaluminium = 75°, which are overestimating the real contact angles. The model gives good trend,
but does not match completely the experimental data. This discrepancy is due to the assumptions
considered here to solve the Young–Laplace equation which only consider slightly curved bridges and
do not take into account either the stick–slip phenomenon [29] or the drift in contact angle during
evaporation.
4.4. Drying and break-up of a capillary bridge
The liquid bridge is placed between two plates whose horizontal dimensions are much larger than
the height of the liquid bridge, similar to a Hele-Shaw cell. The drying of the capillary bridge is
supposed to be stationary and axi-symmetric, so that the evaporation debit Q = −∂V/∂t is
constant. The evaporation of the liquid bridge was made at room temperature between two thick
plates and the slow evaporation process ensures that no strong thermal gradient existed in this
experiment. In those conditions, no air convection was expected. Under this hypothesis, the
water vapour is simply diffused from the liquid edge to the bulk air outside the Hele-Shaw cell
(x > L) following a two-dimensional Laplace problem ∂x(x∂x(w))/x = 0, where x is the radial
coordinate. The diffusion is driven by a gradient of water vapour concentration from a water-
saturated air at the bridge surface (the partial vapour pressure equals the saturation pressure
pv=pov ¼ 1), to a fixed partial pressure in the bulk air outside the Hele-Shaw cell (pv=pov ¼ w). Since
the liquid bridge is not a regular cylinder, we will use its equivalent radius re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V=p z1

p
to

describe the position of the liquid interface. Similar to the original model of Langmuir [30], the
evaporation rate reads as

V � V0

z1(1� w)
¼ 2pDMwPo

v

rRT ln (L=re)
t, (4:9)

where D is the diffusion coefficient of water vapour in air, Mw the molar mass of water, R the
perfect gas constant and T the temperature. This relation is obtained by integration assuming
that the logarithm does not change much during the drying process. The evaporation debit is
simply proportional to the height of the bridge z1, but depends logarithmically on the dimension
of the Hele-Shaw cell L. The experiments were carried out with relative humidity w of 0.65 ± 0.05.
All the experiments collapse on a master curve when drawing the quantity (V(t) −V0)/z1(1 − w)
(figure 7). This collapse shows that the evaporation rate is constant all through the process until
break-up and proportional to the height of the liquid bridge. Finally, we compare the prediction,
equation (4.9), to the experimental data with a reasonable agreement. The discrepancies come
from the uncertainties on the relative humidity w and on the volume measurement.



–20

–15

–10

–5

0

20 4
time (103 s)

(V
 –

 V
0)

/z
1 

(1
–

j)
 (

m
m

2 )

6 8

Figure 7. Diffusion-controlled evaporation of a liquid bridge. Direct comparison of the experimental evaporation debit with the
diffusion-controlled evaporation model, equation (4.9).

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191608
9

In a more accurate integration of the evaporation process, evaporation rate changes the radius re by
the relation Q =−∂V/∂t =−2πz1re∂re/∂t. One may get through the integration of equation (4.9) the
relation between re and t as

pr2ez1
2V0

� �
1� ln

r2e
L2

� �� �
¼ 1

2
1� ln

V0

pz1L2

� �� �
� 2pz1DMwPo

v(1� w)
V0rRT

t, (4:10)

where ri is the initial equivalent radius. The rupture of the capillary bridge occurs when re→ 0. This
simply leads to the typical evaporation time te,

te ¼ V0rRT
4pz1DMwPo

v(1� w)
1� ln

V0

pz1L2

� �� �
: (4:11)

The typical evaporation time is slightly larger than the break-up time, since at break-up, the equivalent
radius is not exactly null. It is worth noting that the break-up may depend on the nature of the substrate
on which the liquid bridge has been deposited [3]. Indeed, the break-up occurs when the bridge cannot
meet both Young–Laplace and Young–Dupré equations (contact angle) for a given volume. We then do
expect that the equivalent radius at break-up may slightly depend on the substrate nature through the
contact angle.
5. Conclusion and perspectives
We have built a set-up to study both surface and evaporation properties of liquids. This set-up allows one
to measure several time-dependent properties of a drying liquid bridge, such as volume, surface and
force. The adhesive force generated by a liquid bridge has been observed to vary proportionally with
the liquid bridge volume F∝V and inversely with the height of the bridge according to equation
(4.8). The ageing of contact angles must be taken into account for more precise modelling. The force
generated by a liquid bridge may be fairly estimated by optical measurement of the liquid bridge
shape and equation (4.7). The evaporation of the liquid bridge is mainly diffusion-driven when it
is confined in two dimensions; convection in the vicinity of the capillary bridge is negligible due
to the confinement. The two support plates act as a Hele-Shaw cell in which water vapour only
diffuses. This set-up well defines the evaporation framework. We showed from this analysis that the
diffusion-driven evaporation has no influence on the capillary forces.

This work opens two research areas: (i) the first is to model the dependency of the force of a capillary
bridge on the liquid height, liquid volume, surface tension and contact angles as easily usable quantities;
(ii) the second is to use the set-up for analysing active fluids. The surface properties of active fluids are a
key element to understand the spreading and the survival of microbes. This standard set-up allows
one to characterize the evolution in time of the surface tension and the evaporation rate of a active-
liquid bridge. We aim at applying our automated set-up to characterize the effects of bio-films and
bio-secretions to the interface properties of fluids.
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Appendix A. Description of an axi-symmetric capillary bridge
The Young–Dupré and Young–Laplace equations may be computed from an energy minimization
problem with a fixed liquid volume. If the triple line is not anchored to any defects of the substrate,
the liquid bridge can be described as a cylinder defined by its radius r(z). The surface S and the
volume V of the liquid bridge in the coordinates given in the figure 2 read

S[r] ¼
ðz1
0
2pr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
dz and V[r] ¼

ðz1
0
pr2 dz: (A 1)

For the sake of simplicity, we consider a case where gravity does not play any role, corresponding to small
Bond numbers Bo→ 0. In those conditions, if the upper and lower substrates are identical, the capillary
bridge should be symmetric r(z+ z1/2) = r(−z+ z1/2). The surface energy of the bridge is the functional
E[r] ¼ gS[r]þ 2p (gSL � gSG) r21, where γ is the surface energy of the liquid–gas interface, γSL and γSG, and
r1 = r(z1) is the radius of the liquid bridge in contact with the solid. The surface energy of the bridge is
simply the energy of the liquid–gas interface plus the energy of the liquid–solid interface diminished by
the energy of the solid–gas interface replaced by the liquid–solid interface. In order to apply the Lagrange
multiplier method, we add the constant λV to the functional E[r] where λ is the Lagrange multiplier. This
will have no influence on the results since energy is defined through a constant. This trick allows one to
fix directly the volume in the expressions. Finally, we aim at minimizing the functional

E[r] ¼
ðz1
0
2pgr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
� lpr2 dzþ 2p (gSL � gSG) r

2
1: (A 2)

We now vary E[r] around r(z) by a small function around eδr(z), where e is the amplitude of
the variation.

E[rþ edr] ¼ p

ðz1
0
2g(rþ edr)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ( _rþ edr)

2
q

� l(rþ edr)
2 dzþ 2p(gSL � gSG)(rþ edr)

2

þ p (gSL � gSG) (rþ dr)2z1

¼ E[r]þ pe

ðz1
0
A(x) dzþ 2(gSL � gSG)r1dr1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

First-order term: G

þO(e2):

At this point, we have the first-order variation as

G ¼
ðz1
0
2g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
dr þ 2gr_rffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _r2
p _dr � 2lrdr dzþ 2(gSL � gSG)r1dr1

¼ 2gr_rffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p dr

" #z1
0

þ
ðz1
0

2g
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
dr � 2g_r2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _r2
p � 2gr€rffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _r2
p

(

þ 2gr_r2€r

(1þ _r2)3=2
� 2lr

)
dr dzþ 2(gSL � gSG)r1dr1

¼ 2
ðz1
0

g

(1þ _r2)1=2
� gr€r

(1þ _r2)3=2
� lr

	 

dr dzþ 2 gSL � gSGð Þ þ g

_rffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
�����
z1

0
@

1
Ar1dr1 :

Extrema of functional E are found when for any δr,

pG ¼ E[rþ edr]� E[r]
e

¼
e!0

0: (A 3)
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This is realized when

g

(1þ _r2)1=2
� gr€r

(1þ _r2)3=2
� lr ¼ 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Young�Laplace

and gSL � gSG þ g
_rffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _r2
p

�����
z1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Young�Dupr�e

¼ 0: (A 4)

The first equation is also known as the Young–Laplace equation where λ is interpreted as the pressure
jump ΔP through the interface. The second equation is simply the Young–Dupré equation where you
just remark that cos u ¼ (_r=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
)z1 . We have considered here a symmetric capillary bridge. One

would have studied with almost the same calculation, a non-symmetric liquid bridge where the upper
substrate and the lower substrate are different. This would have brought two Young–Dupré equations
instead of only one.

We proved that the Young–Laplace equation corresponds to an extremum of the functional E[r]. This
extremum goes from a stable equilibrium to an unstable one which will cause the liquid bridge to break
up when the liquid bridge gets stretched.
.open
sci.6:191608
Appendix B. Normal force of a liquid bridge
In the quasi-static regime, the capillary force F is constant along the liquid bridge. The force is simply the
indefinite integral of the Young–Laplace equation (4.4). One finds

F ¼ �pr2DPþ 2pg
rffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ _r2
p : (B 1)

This force has an extremely simple interpretation, the first part being the action of the pressure forces and
the second part being the effect of the line tension. Those two forces, the pressure force and the line
tension force, both originate from the surface phenomena. One may note that the line tension part of
the liquid bridge force, 2pgr=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
, is always positive and always tends to gather the two parts

of the plates. Less obvious are the pressure forces that can be either positive or negative depending on
the sign of the mean curvature of the surface. Quite surprisingly, just before break-up, the pressure
inside the liquid is larger than in the surrounding air: the pressure forces tend to mitigate the effect of
the line tension forces.

The force of the capillary bridge, as well as the pressure inside the liquid, are two constants that
do not depend on the elevation z. One may evaluate the expression (B 1) at two different elevations,
let us say a and b,

F ¼ �pr2aDPþ 2pgra=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2a

q
and F ¼ �pr2bDPþ 2pgrb=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2b

q
9>=
>; (B 2)

To simplify the expressions, we will use in the following the angle α(z) defined in figure 2, with
cosa ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _r2

p
. The linear system of equations (B 2) can be solved to obtain both the expression of

the capillary force of the liquid bridge as well as the pressure jump across the surface, they read

DP ¼ 2g
ra cosaa � rb cosab

r2a � r2b

 !
and F ¼ 2pgra cosaa 1� 1� rb cosab=ra cosaa

1� r2b=r
2
a

 !
: (B 3)

This expression might be used to measure with optical means the pressure and the force of any axi-
symmetric capillary bridge. However, from an experimental point of view, it requires to obtain a very
accurate measurement of the radius since its derivative is involved to compute the angle α. An even
more useful expression of the force might be used through considering b = z1 being the contact point
between the liquid bridge and the substrate and a = z0 being the critical point where _r ¼ 0. At these
locations, only the radii are required to obtain the capillary force

F ¼ 2pgr0 1� 1� r1 sin u=r0
1� (r1=r0)

2

 !
: (B 4)
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Appendix C. Solution for slightly curved axi-symmetric bridges

For slightly curved bridges, we can restrict the solution to the Young–Laplace equation at the second
order, r(x) = r(x) + o(x3) with r(x) = a0 + a1 x + a2 x

2. The coefficients a1 and a2 have simple expressions as
a function of the neck radius a0, the force F and the pressure jump ΔP

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2pg)2a0h� (Fþ pDPa20)

2
q

Fþ pDPa20
and a2 ¼ 2(pg)2a0

F� pDPa20
(Fþ pDPa20)

3 : (C 1)

This choice of coefficients solve equation (B 1) in series at the order 3. With the limit condition
_r(h=2) ¼ cot u, the symmetry condition r(x) = r(−x) and the volume conservation V ¼ p

Ð h=2
�h=2 r

2dx, we
find the expression of the force and pressure inside the bridge

F
2pgh

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V
h3p

� cot2 u
180

r
� cot u

24
þ cot u

V
h3p

� cot u
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V
p
� cot2 u

180

r
þ 1
720

cot2 u

 !
(C 2)

and

DPh
2g

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V
h3p

� cot2 u
180

r
� cot u

6

 !�1

� cot u, (C 3)

which may be simplified in the limit of slightly curved bridges, j cot uj � 1,

F ¼ g

ffiffiffiffiffiffiffi
pV
h

r
þ 2gV

h2
� pgh

12

� �
cot uþ o( cot2 u) (C 4)

and

DP ¼ g

ffiffiffiffiffiffi
ph
V

r
þ g cot u

ph2

12V
� 1
h

� �
þ o(cot2 u): (C 5)
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