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This article presents a discrete-time identification method able to characterize multiscale systems. It belongs to the pseudo-linear regression class, and uses a model parameterization established on generalized bases of orthonormal transfer functions. An analysis of the estimated parameters accuracy is provided, and in order to tend towards statistical efficiency, an iterative procedure of the basis poles selection is proposed. Simulation examples show the interest of the approach.

INTRODUCTION

Most of discrete-time identification algorithms delivering transfer functions fail to characterize properly multiscale systems whose modes frequencies are spanned over several decades (Pinnamarajou-Tangirala (2017)). However, such systems are commonly encountered especially in mechatronics (as an example, see the system displayed in section 6.1 of (Van Herpen et al. (2014))). Prediction Error (PE) methods [START_REF] Ljung | System Identification, Theory for the User[END_REF]) are among those schemes that are not very reliable in this situation. This may be sometimes explained by numerical issues linked to the finite precision of computation tools, and in order to get around this problem, the delta operator was introduced several decades ago (see [START_REF] Middleton | Digital Control and estimation: a unified approach[END_REF]). Nevertheless, most of the time this weakness of PE methods is imputed to an inappropriate initialization of the estimated parameters [START_REF] Tohme | Initialization of output error identification methods. Comparison between ARX and RPM models[END_REF]). Independently of PE methods, recent contributions have proposed some schemes able to cope with discrete-time identification of multiscale systems (Pinnamarajou-Tangirala ( 2018)) where a Steiglitz-Mc Bride procedure using wavelets is proposed), and [START_REF] Vau | Closed-loop output error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF]). This latter reference presents some algorithms for output error and ARMAX models belonging to the Pseudo Linear Regression class (PLR), and use a reparametrization of the predictors established on generalized bases of orthonormal transfer functions (GBOF) (see [START_REF] Heuberger | Modelling and identification with rational orthogonal basis functions[END_REF]). The proposed schemes address the closed-loop case, but they can be employed for openloop identification, by a direct simplification. They can be considered as improved versions of the original recursive PLR schemes that can be found in [START_REF] Landau | Adaptive Control[END_REF]). In [START_REF] Vau | Closed-loop output error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF]), the convergence conditions and bias distribution of these novel algorithms are analysed, but their accuracy aspects have not been treated. The present article proposes to shed light on this matter. It is well known that PE methods are statistically optimal, since they correspond to maximum Likelihood estimators for full order models, provided that the disturbing noise is asymptotically gaussian distributed [START_REF] Ljung | System Identification, Theory for the User[END_REF]). It is also shown in [START_REF] Young | Refined instrumental variable estimation: maximum Likelihood optimization of a unified Box-Jenkins model[END_REF]) that refined instrumental variable algorithm ensure a maximum likelihood optimization. By comparison, the native PLR algorithms [START_REF] Landau | Adaptive Control[END_REF] have not this attractive property [START_REF] Stoica | On the asymptotic accuracy of pseudo-linear regression algorithms[END_REF]). The present paper shows through an example that the models obtained with the schemes of [START_REF] Vau | Closed-loop output error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF]) have an accuracy depending on the basis poles of the GBOF employed in the predictor. That leads to propose an iterative procedure, for the basis poles selection of this novel PLR algorithm, in order that the basis poles tend towards the ones minimizing the model uncertainty. This example concerns an open-loop output error algorithm, derived from a closed-loop algorithm of the latter reference. The first identification schemes using GBOF introduced in [START_REF] Heuberger | Modelling and identification with rational orthogonal basis functions[END_REF]), where the basis functions are fed only by the system input, have also a parameters accuracy dependant on the basis poles. However, this is more astonishing here in a PLR context. By comparison, the accuracy of models obtained with classical PE methods [START_REF] Ljung | System Identification, Theory for the User[END_REF]) are insensitive to the predictor parameterization.

The paper is structured as follows: GBOF are briefly reviewed in Section 2, then the improved PLR output error algorithm in open-loop (H-OLOE) is presented, and an analysis of the asymptotic accuracy of estimated parameters is discussed, showing its dependence with respect to the basis poles employed in the predictor parametrization. Section 3 presents an iterative method to drive the basis poles towards the optimal ones (I-H-OLOE), and the initial step of the procedure is described. A comparison with other iterative discrete-time methods is made. At last, Section 4 displays some simulations addressing the identification of multiscale systems: they show that the proposed algorithm performs far better than the equivalent PE output error method.

THE H-OLOE ALGORITHM

Generalized bases of orthonormal transfer functions

At first, it is necessary to recall briefly basic notions about generalized bases of orthonormal transfer functions (see [START_REF] Heuberger | Modelling and identification with rational orthogonal basis functions[END_REF]). They stem from a balanced realization of an all-pass function G

b (z) = np-1 j=0 -z.pj +1 z-pj
where p j are the basis poles (strictly inside the unit circle) and n p the number of basis poles. There exists a balanced state space realization such that

G b (z) = D b + C b (zI -A b )
-1 B b (for the construction of the state space matrices see chap. 2 of [START_REF] Heuberger | Modelling and identification with rational orthogonal basis functions[END_REF]). The orthonormal transfer function vectors V k (z) with k = 1, 2, • • • and of size (n p , 1) are given by the relation

V k (z) = (zI -A b ) -1 B b G k-1 b
Orthonormality between these functions holds, because of the orthonormal state space realization of G b (z). Particular configurations of n p and p k correspond to well known cases: n p = 1, p 0 = 0 is the classical z -1 , z -2 , • • • basis, and n p = 1, |p 0 | < 1 corresponds to the Laguerre basis. A specific transform is associated to GBOF: The Hambo transform. The Hambo operator λ is defined according to λ -1 = G b (z), and if n p > 1, the mapping λ → z is multivalued (if λ belongs to the unit circle this mapping is n p -valued). The Hambo operator transform of the transfer function H, denoted as H :

λ → H(λ) is H(λ) = ∞ τ =0 h(τ )N T (λ), with N (λ) = A b + B b (λ -D b ) -1 C T b
, where h is the impulse response of H.

Predictor parameterization and parameters estimation

The open-loop H-OLOE algorithm 1 is derived directly from [START_REF] Vau | Closed-loop output error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF]) where an output error predictor for closed-loop identification is proposed. The corresponding predictor in open-loop is inferred directly. Let {u(t)}, {y(t)} {v(t)} be respectively the input, output and output additive disturbance (centered, gaussian colored noise, independent of {u(t)}), N being the sample data number. The classical output error structure is given by

y(t) = G 0 (q)u(t) + v(t) = B 0 (q) A 0 (q) u(t) + v(t) (1) 
Throughout this paper, the following assumptions hold:

• H1: The system G 0 is stable,

• H2: The disturbing noise is centered and gaussian.

the true system G 0 can be written

G 0 (q) = B 0 (q) A 0 (q) = b 1 q -1 + b 2 q -2 + • • • + b na q -na 1 + a 1 q -1 + a 2 q -2 + • • • + a na q -na
(2) The identified model is denoted as G(q). In the sequel, G 0 (q) and G(q) are represented by means on a generalized 1 OLOE is the acronym of open-loop output error and H stands for Hambo orthonormal basis where the number of poles is equal to the system order n p = n a . Set

A p (q) = np k=1 (1 -p k q -1 ) (3)
One can reparameterize the true system by using GBOF, where the function V 1 depends on a prior choice of the basis poles

G 0 (q) = B 0 (q)/A p (q) A 0 (q)/A p (q) = B 0 (q) A 0 (q) = ν T 0 V 1 (q) 1 + µ T 0 V 1 (q) (4)
and similarly (the identified model order is assumed to be equal to the true system one)

G(q) = B(q)/A p (q) A(q)/A p (q) = B(q) A(q) = ν T V 1 (q) 1 + µ T V 1 (q) (5)
where ν 0 , µ 0 and ν, µ are the parameters vectors (with size (n p , 1)) of respectively the true system and the identified model. For an output error algorithm in open-loop, the predicted output ŷ(t) is classically defined as (see [START_REF] Landau | Adaptive Control[END_REF])

ŷ(t + 1) = - na k=1 a k ŷ(t + 1 -k) + na k=1 b k u(t + 1 -k) (6)
and from ( 5) one has directly (causality is respected since the function V 1 (q) is strictly proper)

ŷ(t + 1) = -µ T V 1 (q)ŷ(t + 1) + ν T V 1 (q)u(t + 1) (7) let θ T 0 = µ T 0 ν T 0
and θ T = µ T ν T be respectively the true and estimated parameters. The (a-posteriori) prediction error is given by ε(t+1) = y(t+1)-ŷ(t+1) (see [START_REF] Landau | Adaptive Control[END_REF]), and by a simplification of equation 36 in [START_REF] Vau | Closed-loop output error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF]) one gets for H-OLOE

ε(t + 1) = A p (q) A 0 (q) [θ 0 -θ(t + 1)] T φ(t) + v(t + 1) (8) 
where φ(t) T = -V T 1 (q)ŷ(t + 1) V T 1 (q)u(t + 1) is the regressor. The H-OLOE algorithm makes use of the predictor (7), combined with a recursive estimation of θ performed with the parameter adaptation algorithm (PAA) (see [START_REF] Landau | Adaptive Control[END_REF])

θ(t + 1) = θ(t) + F (t)φ(t)ε(t + 1) (9a) F -1 (t + 1) = λ 1 F -1 (t) + λ 2 φ(t)φ T (t) (9b)
where θ(t) is the estimation of the parameters vector at time t, F is the adaptation (matrix) gain, such that F (0) > 0 and 0 < λ 1 ≤ 1, 0 ≤ λ 2 < 2 the forgetting factors. The a-posteriori prediction error ε(t + 1) is computed from the a-priori prediction error

ε o (t + 1) = y(t + 1) -θT (t)φ(t), with ε(t + 1) = ε o (t+1) 1+φ T F (t)φ(t)
. Moreover, according to the same reference (chap.3 and 4), and from (8), a (global) sufficient convergence condition is

A p (z -1 ) A 0 (z -1 ) - λ 2 2 is strictly real positive (10)
It has been shown in [START_REF] Vau | Some remarks on the bias distribution analysis of pseudo-linear regression discrete-time identification algorithms[END_REF]) that for a full order model, the stationary condition of PLR schemes

(which is E[ε(t + 1, θ)φ(t, θ)] = 0) entails the minimization of the convex function θ → E[ε 2 E (t, θ)] (11) 
where ε E (t) is a non measurable signal called the equivalent prediction error. From [START_REF] Vau | Closed-loop output error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF]), one can infer that for the H-OLOE scheme one has

ε E (t) = A(q) A p (q) [G 0 (q) -G(q)] u(t) + v(t) (12) 
By comparison, the PE method for an output error model aims at minimizing the function θ → E[ε 2 (t, θ)]. The prediction error being given by ε

(t) = [G 0 (q) -G(q)] u(t) + v(t) (13) Lemma 1. If {u(t)
} is a persistent excitation sequence, and {v(t)} is independent of {u(t)} (necessarily white), any selection of the basis poles satisfying the convergence condition (10) leads asymptotically to a consistent model estimation by the H-OLOE algorithm.

Proof. : The proof follows from the expression of the prediction error (8), the convergence condition (10) and Theorem 4.1 in Landau et al. (2011)2

Accuracy aspects

It is well known that a major advantage of prediction error algorithms is their efficiency from a statistical point of view (see [START_REF] Ljung | System Identification, Theory for the User[END_REF] and [START_REF] Söderström | System Identification[END_REF]), since they reach the Cramer-Rao bound, in case of a full order model, provided the disturbance noise sequence v(t) is white and gaussian distributed. One has

√ N (θ P EM -θ 0 ) dist --→ N (0, σ 2 P -1 P EM ) ( 14 
)
where

P P EM = E ∂ε(t,θ) ∂θ θ=θ0 T ∂ε(t,θ) ∂θ θ=θ0
and

σ 2 = E v 2 (t) .
This statistical optimality no longer exists for classical PLR algorithms (as shown in an example in [START_REF] Ljung | System Identification, Theory for the User[END_REF], p.299), and this argument has been widely put forward by specialists of PEM, to justify the use of these schemes. However, when one uses the reparametrized version of PLR as proposed in the H-OLOE scheme, the accuracy of the estimated model depends on the basis pole selection, and a specific basis poles choice can lead to statistical efficiency. In order to prove this, let us analyse the estimated parameters accuracy of the H-OLOE scheme, by using some results relying on [START_REF] Solo | Some aspects of recursive parameter estimation[END_REF]) (for non recursive PLR algorithms see [START_REF] Stoica | On the asymptotic accuracy of pseudo-linear regression algorithms[END_REF]).

As N → ∞ one has √ N (θ P LR -θ 0 ) dist --→ N (0, σ 2 P P LR -1 ) (15) where P P LR satisfies the Lyapunov equation (S -I/2) P P LR + P P LR (S -I/2)

T = σ 2 P (16) with P = E φ(t, θ 0 )φ T (t, θ 0 ) (17a) Q = -E φ(t, θ 0 ) ∂ε(t + 1, θ) ∂θ θ=θ0 (17b) 
S = P -1 Q (17c)
On the other hand, it is clear that

∂ε(t + 1) ∂µ = ν T V 1 (q) (1 + µ T V 1 (q)) 2 V 1 (q)u(t) (18a) ∂ε(t + 1) ∂ν = - 1 (1 + µ T V k (q)) V k (q)u(t) (18b) Therefore ∂ε(t + 1) ∂θ = - A(q -1 ) A p (q -1 ) φ T (t) (19) 
Lemma 2. Under a persistent excitation assumption, if the basis poles are chosen such that A p (q) = A 0 (q), the H-OLOE scheme becomes (asymptotically) statistically efficient, in case of a full order model, and if {v(t)} is white and asymptotically gaussian distributed.

Proof. If A p (q) = A 0 (q), ∂ε(t+1,θ) ∂θ θ=θ0

= -φ T (t, θ 0 ), and putting this in (17) one obtains S = I and P P LR = P = E φ(t, θ 0 )φ T (t, θ 0 ) . Since ∂ε(t+1,θ) ∂θ θ=θ0

= -φ T (t, θ 0 ), the Cramer-Rao bound is reached. 2

Therefore, if by an initial guess the basis poles were chosen such that A p (q) = A 0 (q), H-OLOE would become statistically efficient (maximum likelihood estimator) if {v(t)} is white and gaussian. And this property occurs only for this specific basis poles selection. Of course A 0 (q) is not known beforehand, since the purpose of identification is precisely to estimate it.

AN ITERATIVE PROCEDURE TO REACH STATISTICAL EFFICIENCY

This section proposes an iterative method to drive the H-OLOE scheme towards statistical efficiency. This algorithm is called I-H-OLOE (I stands for iterative).

The iterative procedure

The steps of the procedure are (the subscript indexes correspond to the iteration number)

• Initial step (l = 0): Get an initial estimation of the system G (0) (q) = B (0) (q) A (0) (q) = ν (0)T V1(q) 1+µ (0)T V1(q) , by any simple identification algorithm. An example for this initializing step is provided in subsection 3.2 below.

• For l = 1 to l max (until convergence) a) Compute the zeros of A (l-1) (q) = 1+µ (l-1)T V 1 (q). This step requires the use of the Hambo transform and is detailed in Appendix A. b) At iteration l, select the n a basis poles as to be equal to the zeros of A (l-1) (q) c) Perform an identification with H-OLOE on this basis, in order to obtain an identified model G (l) (q) = ν (l)T V1(q) 1+µ (l)T V1(q) . d) Change l to l + 1.

The purpose of the initial step is to obtain an approximative estimation of the true system poles, so that the convergence condition (10) be satisfied at iteration l = 1 for H-OLOE. Note that for λ 2 = 1 the condition (10) is equivalent to A0(e -iω )

Ap(e -iω ) -1 < 1 ∀ω (see Ljung-Söderström (1983)), meaning that if A p is sufficiently "close" to A 0 , the convergence of H-OLOE is guaranteed. The aim of steps l = 1 to l = l max is to drive A p towards A 0 (or in other words to drive the basis poles to the poles of the true system), in order to achieve the minimization of E[ε 2 (t)], which is the condition of statistical efficiency as shown in section 2.3. In general, two or three iterations (l max = 2) are sufficient.

The initialization step

Several simple algorithms are possible to carry out the initial step (l = 0). A good option consists in a high order ARX identification followed by a model reduction (performed again by the ARX scheme) as proposed in [START_REF] Hsia | Identification least squares methods[END_REF]. However, as our purpose here is to identify multiscale systems, it is proposed to generalize this method, by using again GBOF with n pI basis poles, and by using "generalized ARX models" for high and reduced order estimation (the corresponding model order being equal to n pI .n I ). The generalized ARX model is given by

y(t) = B(q) A(q) u(t) + 1 A(q) e(t) (20) 
with

B(q) = n I k=1 β T k V k (q -1 ) (21a) A(q) = 1 + n I k=1 α T k V k (q -1 ) (21b)
and where β k , α k are the parameters vectors of size (n pI , 1). The generalized ARX-predictor being ŷ(t+1) = -

n I k=1 α T k V k (q -1 )y(t+1)+ n I k=1 β T k V k (q -1 )u(t+1) (22)
The parameter estimation is performed by the classical least-squares algorithm. The interest of this parameterization for the initialization step is essentially computational (however one can show that the variance of the estimated model in the frequency domain is affected by it). By using this algorithm, the only initial parameters are the (few) basis poles of the generalized ARX model, which can be selected in function of a basic knowledge of the frequency of interest of the system. This initial estimation is generally sufficient to satisfy the convergence condition at the first step l = 1) of H-OLOE.

Comparison with other methods

By its very nature, the algorithm proposed here bears some similarity with two other iterative discrete-time algorithms:

• The Steiglitz-Mc Bride algorithm, where least squares regression is performed at first, and then a filtering of data is made in function of the model denominator obtained at the previous iteration. As shown in [START_REF] Stoica | The Steiglitz-Mc Bride identification algorithm revisited: Convergence analysis and accuracy aspects[END_REF]), this method is biased if {v(t)} is not white, and even in case of whiteness of this sequence, the algorithm is not statistically efficient.

• The simplified refined instrumental variable (SRIV) [START_REF] Young | Refined instrumental variable estimation: maximum Likelihood optimization of a unified Box-Jenkins model[END_REF]), where the data and instruments are filtered in function of the denominator of the model obtained at each previous iteration, before carrying out another estimation using an instrumental variable. This algorithm is consistent (even if v(t) is not white) and statistically efficient in case of whiteness of {v(t)} . The difference with I-H-OLOE are: 1) The algorithm employed at each iteration belongs to the instrumental variable class, whereas H-OLOE is an output error scheme belonging to the pseudo-linear regression class. For H-OLOE the stability of the identified model is guaranteed, if the condition ( 10) is satisfied, see [START_REF] Landau | Adaptive Control[END_REF], chap. 3 and 4), 2) the parametrization of the model differs (operator q -1 or δ for SRIV (see [START_REF] Young | Refined instrumental variable estimation: maximum Likelihood optimization of a unified Box-Jenkins model[END_REF]), and GBOF here).

The filtered predictors of Steiglitz-Mc Bride, and SRIV could be reparameterized with GBOF: This shows incidentally that for the three algorithms, the iterative procedure consists in fact in a search for a suitable poles basis on which various optimization problems are solved.

SIMULATION RESULTS: IDENTIFICATION OF MULTISCALE SYSTEMS

The two simulations proposed in this section concern the identification of multiscale systems, for which classical identification algorithms in discrete-time fail to provide satisfactory models.

Comparison of the PEM output error algorithm and HI-OLOE

The system to be identified has an order equal to 5, with some modes separated from two decades and a half. The sample frequency is 1, the frequencies and damping of each modes are represented in Table 1. The system is disturbed by an output white noise (signal/noise variance ratio= 10 dB). The system is excited by a PRBS (without decimation) of 2 12 -1 = 4095 samples. This system has a low damped anti-resonating mode, which is weakly identifiable (owing to the low gain at the corresponding frequency). Firstly, an identification is carried out with the PEM output error algorithm, and the routine employed is the one of the toolbox associated with the book [START_REF] Ljung | System Identification, Theory for the User[END_REF]). The identification results (50 realizations) are displayed in Fig. 1: for most of the tests, the identified model is far from the true system, and not surprisingly the low frequency modes are not captured correctly in a majority of cases.

Fig. 1. Identification of the system with the PEM output error algorithm (50 realizations). True system: blue, identified models: red. Now, the same system is identified with the I-H-OLOE algorithm proposed above, where the initial basis poles are chosen to encompass a wide frequency band (three decades) [0.5; 0.5; 0.95; 0.95; 0.995]. One can verify in Fig. 2 that over 50 realizations (no failure has been observed), the identified models are significantly closer to the true system, and that a dispersion occurs around the frequency of the anti-resonating mode only (because of its low gain, making it weakly identifiable), which concerns essentially its damping. Fig. 2. Identification of the system with the I-H-OLOE (50 realizations). True system: blue, identified models: red.

Discrete-time identification of a challenging system

This second simulation addresses the identification of a challenging system: it is the discrete-time version of the system proposed in [START_REF] Young | Refined instrumental variable estimation: maximum Likelihood optimization of a unified Box-Jenkins model[END_REF], section 6.2). The sample time is set to T e = 0.005s, and the poles/zeros frequencies and damping are given in table 2. Remark that the zero with a frequency equal to 628rad/s is in fact a sampling zero (see [START_REF] Yuz | Sampled data Models for Linear and Non-Linear Systems[END_REF]): This is due to the relative degree of the original continuoustime system, equal to 2: For such a degree, as the sampling frequency tends towards infinity, this sampling zero tends asymptotically towards -1 (here it is equal to -0.971).

The stochastic output disturbance {d(t)} is given by d(t) = q+0.5 q 2 -1.41q+0.7 e(t) ({e(t)} being a white noise sequence) and the poles of this model have a frequency of 121 rad/s (only twice the frequency of the deterministic system highest mode). The experiment conditions are the same as those proposed in (Young ( 2015)): The system is excited with a PRBS (6138 samples, here with a decimation equal to 1), and the ratio (standard deviation) noise/signal is equal to 0.8. This identification is difficult for several reasons: The modes of the system are separated from more than one decade and a half, the noise model has a mode close to the system highest mode, the noise/signal ratio is high and the amount of data reduced. In [START_REF] Young | Refined instrumental variable estimation: maximum Likelihood optimization of a unified Box-Jenkins model[END_REF]) the number of identified parameters is chosen taking into account the value of the system relative degree. In the present simulation, this prior knowledge is employed to force one zero of the identified model to the asymptotic value of the sampling zero (-1) resulting from the discretization of a continuous-time system with a relative degree equal to 2. This is achieved by imposing the constraint ν T V 1 (z o ) = 0, with z o = -1. This requires to use the Parameter Adaptation Algorithm (9) with projection, as described in [START_REF] Landau | Adaptive Control[END_REF] chap. 10). Fig. 3 compares the identified models to the true system (50 realizations). The basis poles of the initial step in I-H-OLOE are (0.8, 0.98), but there is no severe constraint, provided this selection reflects the multiscale aspect of the true system. No failure of the algorithm has been observed. As recommended in [START_REF] Landau | Adaptive Control[END_REF] p.68-69) a variable forgetting factor λ 1 tending progressively towards 1 is employed in H-OLOE, so as to increase the algorithm convergence. Even if this output error algorithm is not statistically efficient (a scheme dedicated to Box-Jenkins models would be necessary), the two modes of the system are identified properly. Nevertheless, a very small systematic discrepancy between the true system and the models can be observed for frequencies very close to the Nyquist one (visible on the phase diagram), owing to the forcing of a zero to -1 (asymptotic value of the sampling zero), whereas its true value is -0.97, because of the finite sample frequency. 

Fig. 3 .

 3 Fig. 3. Identification of the system with the I-H-OLOE (50 realizations). True system: blue, identified models: red. 5. CONCLUDING REMARKS This paper has proposed an iterative procedure for the discret-time identification of multiscale systems. Each step of the procedure (except the initial one) makes use of an improved version of a recursive algorithm belonging to the pseudo-linear class, where the predictor is parameterized on generalized bases of orthonormal transfer functions. A similar iterative algorithm could be designed for identifying ARMAX models. The simulation examples show the interest of this method. Furthermore, in Vau-Bourlès (2021) the theoretical foundation for solving a Bezout (diophantine) equation with the Hambo operator has been provided: this paves the way to an RST controller synthesis.

  

  

Table 1 .

 1 Poles and zeros of the true system

	Poles		Zeros	
	Frequency	Damping	Frequency	Damping
	(rad/s)		(rad/s)	
	6.10 -4	1		
	1.57.10 -2	1	1.14.10 -2	1
	1.82.10 -1	0.0413	4.63.10 -2	0.018
	1.82.10 -1	0.0413	4.63.10 -2	0.018
	4.85.10 -1	1	4.14.10 0	-0.651

Table 2 .

 2 Poles and zeros of the true system

	Poles		Zeros	
	Frequency	Damping	Frequency	Damping
	(rad/s)		(rad/s)	
	1	0.1		
	1	0.1	2	-1
	60	0.25	15	1
	60	0.25	628	0.0092

Appendix A. ZEROS COMPUTATION USING THE HAMBO TRANSFORM

In order to find the zeros of A l (q), one uses the Hambo transform of 

Therefore, the Hambo transform of A l (q) denoted Ãl (q) has the form of the 2-Markov Parameters mentioned in [START_REF] Heuberger | Modelling and identification with rational orthogonal basis functions[END_REF], p. 347:

being the i th entry of µ. In order to find the n a zeros λ i of Ãl (λ), one computes the n a zeros of Ãl (q) by using the procedure described in [START_REF] Emami-Naemi | Computation of zeros of linear multivariable systems[END_REF]). Now define

If n p > 1, as said in Subsection 2.1,the mapping λ → z is multivalued. Thus for each zeros of λ i of Ãl (λ), there exists a number of corresponding values z ij . And finally, among all these values it is possible find the unique one satisfying A l (z ij ) = 0, by an a-posteriori checking.