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Abstract: Scheduling tasks is one of the most challenging problems in real-time systems. In
this paper, we assume that hard deadline periodic tasks are scheduled preemptively according
to the Earliest Deadline First algorithm on uniprocessor. This work presents a framework for
enhancing predictability in system behavior, when periodic task execution can be postponed.
Our analysis first determines a lower bound to the slack defined as the time which may be
stolen from hard deadline periodic tasks, without jeopardizing their timing constraints. Second,
we show how to implement an efficient method for estimating the slack at run-time. This can
be adopted to overcome practical situations where the slack has to be computed dynamically
with acceptable time overheads.
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1. INTRODUCTION

The great interest in real-time systems is motivated by the
growing diffusion they have in our society in many applica-
tion fields, including flight control, telecommunication and
robotics. Scheduling plays a crucial role in those systems
because performance depends not only on the correctness
of the single controller actions, but also on the time at
which actions are produced (1).
The most important property of a real-time system is not
high speed, but predictability. This means that we should
be able to determine in advance whether all the compu-
tational activities, called tasks, can be completed within
their timing constraints. Periodic tasks represent the ma-
jor computational load in a real-time control system. For
example, actuator regulation, signal acquisition, filtering,
sensory data processing, action planning, and monitoring,
need to be executed with a frequency derived from the
application requirements. Consequently, the computer is
required to execute preemptable periodic tasks with hard
deadlines associated to their request time when the task
must be finished. Missing it may have catastrophic conse-
quences and may injure people or cause serious damage to
the environment.

In this paper, we are interested in characterizing the slack
of a periodic task set defined at any time as the maximum
time all the tasks can be deferred without jeopardizing
their deadlines. Slack computation can be done either off-
line or on-line for a task set or for a subset of tasks.
With an off-line approach, the minimum slack, valid for
any release time scenario can be computed with a sensi-
tivity analysis (2)(3)(4). The sensitivity analysis aims at

defining the acceptable variations in the task configura-
tions (Worst Case Execution Times (WCETs), periods or
deadlines) such that the scheduling is still feasible. The
first solution proposed by Bini & al. in (5) determines
in the case of fixed priority scheduling, the maximum
possible scaling factor to expand or reduce the tasks pa-
rameters such that the resulting task set is schedulable.
The correction can either be applied to one task or to
the entire task set. A similar approach tries to determine
the maximum acceptable deviation on a task parameter
and has been formally defined by Bougueroua & al. in
(6) as the allowance on the task parameter for fixed and
dynamic priority scheduling. An extension of this approach
has been proposed in (5) with the notion of feasibility
region characterization. The problem results in finding the
equations characterizing a feasibility region. For any task
set configuration in the feasibility region, the task set can
be scheduled to meet all the deadlines of the tasks. The
complexity of the feasibility domains characterization is
nevertheless exponential in the worst case.

With an on-line approach, slack time computation has
been first considered in the context of fixed priority
scheduling to accept aperiodic tasks having soft real-time
constraints. In (7), Lehoczky & al. propose to compute at
any instant, the maximum amount of time that can be
taken from the periodic tasks with the Static Slack Stealer
algorithm. They prove the optimality of their algorithm in
terms of maximizing the slack of aperiodic tasks among
non clairvoyant algorithms. Although optimal, the com-
plexity of the algorithm makes it inappropriate to be used
on-line. In (8), Davis proposes a dynamic computation of
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the slack also too complex to be used on-line. He then
introduces a static slack approximation, namely SASS and
a dynamic one, namely DASS.

In this paper, we are interested in the dynamic evaluation
of the slack for a task set that is scheduled according to the
famous Earliest Deadline First algorithm (EDF). Due to
the complexity of computing the exact slack, we focus on
approximating the slack at run time. The approximated
value of the slack can be used to solve two problems:

• One is to authorize or forbid the execution of an
aperiodic task that requires to be run upon arrival
from start to completion without interruption (e.g.
detection of critical conditions or interrupt handling).
• Another one, in battery operated systems, is to either

propose a Dynamic Frequency Scaling (DFS) (9) or
stop the processor with a Dynamic Power Manage-
ment (DPM) mechanism, in order to reduce power
consumption depending on battery level (10).

At this point, one question arises: how to determine
the slack at run time with an acceptable computational
complexity ?

In section 2, we first recall classical concepts for the EDF
scheduling of periodic tasks. We report two variants of
EDF: EDS (Earliest Deadline as Soon ad possible) and
EDL (Earliest Deadline as Late as possible), exploited to
establish lower and upper bounds on the slack. We show in
section 3 how to quickly determine a lower bound on the
slack for the particular synchronous release time scenario
where all the tasks are first released at the same time. We
prove in section 4 that this lower bound remains valid for
any release time scenario. Furthermore, we point out how
the slack can be easily updated once partially consumed.
Finally, we summarize our contribution in section 5.

2. BACKGROUND MATERIALS

2.1 Classical concepts

A periodic task set can be denoted as follows: T =
{Ji(Ci, Di, Ti), i = 1 to n}. In this characterization, every
task Ji makes its initial request at time 0 (synchronous
scenario) and its subsequent requests at times kTi, k =
1, 2, ... called release times.

The worst case execution time required for each request of
Ji is Ci time units and a deadline for Ji occurs Di units
after each request by which task Ji must have completed
its execution. For a task Ji requested at time ti, ti + Di

is called the absolute deadline of Ji and Di its relative
deadline. We assume that 0 < Ci ≤ Di ≤ Ti for each
1 ≤ i ≤ n. We define the processor utilization denoted U
of the task set T as U =

∑n
i=1

Ci

Ti
.

A schedule Γ for T is said to be valid if the deadlines of all
tasks of T are met in Γ. A task set is said to be feasible on
one processor if there exists a valid schedule for T on one
processor. A scheduling algorithm is said to be optimal
if it produces a valid schedule for every task set which is
feasible.

The problem of scheduling periodic tasks on one processor
has been an active area of research for about fourty years
(see, e.g., (11)). In 1974, Dertouzos showed that Earliest
Deadline First (EDF) is optimal (12). EDF schedules at
each instant of time t, the ready task (i.e. the task that
may be processed and is not yet completed) whose abso-
lute deadline is closest to t. We consider that the EDF
algorithm is preemptive, in the sense that, a newly arrived
task can preempt the running task if its absolute deadline
is shorter. Furthermore, the author proved that EDF is
also optimal in the class of non-idling algorithms for the
so-called real-time energy harvesting model (13).

Condition U ≤ 1 is necessary and sufficient to guarantee a
valid schedule for T if the relative deadline Di of every task
Ji is equal to its period Ti (14). It means that, if it is not
satisfied, no algorithm is able to produce a valid schedule
for T . Under EDF, the schedulability analysis for periodic
task sets with deadlines less than or equal to periods is
based on the processor demand criterion (15). According
to this method, a task set is schedulable by EDF if and only
if, in the synchronous scenario, the overall computational
demand of tasks having their absolute deadlines in [O, t]
is not greater than the available processing time i.e. t.

Optimality of EDF permits to exploit the full processor,
reaching potentially up to 100% of the available processing
time. When the task set has a processor utilization factor
less than one, the residual fraction of time can be efficiently
exploited to handle additional tasks, generally activated
by external events or to shutdown the processor for en-
ergy saving motivations (16)(17)(18)(19)(20). In addition,
compared with static priority assignment, EDF generates
a lower number of context switches, thus causing less
runtime overhead (21).

Let denote by P (called the hyperperiod), the least com-
mon multiple of T1, T2, . . . , Tn. Since the processor does
exactly the same thing at time t (t ≥ 0) that it does
at times t + kP, k ∈ N ) in the synchronous scenario
(22), deciding if a task set T is feasible can be achieved
by constructing the EDF schedule and verifying that the
deadlines of all the requests are met from 0 to P.

We define the slack of T at current time t, denoted by δ(t),
as the maximum time for deferring the execution of the
periodic requests from t without jeopardizing the timing
constaints.

Let h(t) =
∑n

i=1max(0, 1 + b t−Di

Ti
c)Ci denote the proces-

sor Demand Bound Function (DBF, (15)). h(t) refers to
the workload that results from the execution of all the jobs
with their absolute deadlines in the time interval [0, t], in
the synchronous scenario (the first jobs of the tasks are
released at time 0).

Let K be the set of absolute deadlines in the [0,P].

K =
⋃n

j=1

{
Dj + kj Tj , 0 ≤ kj ≤

⌈
P−Dj

Tj

⌉
− 1

}
.
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We use bxc respectively dxe to denote the largest integer
smaller than or equal to x respectively the smallest integer
larger than or equal to x.

2.2 EDS vs EDL scheduling

Two versions of EDF, namely EDS (Earliest Deadline as
Soon as possible) and EDL (Earliest Deadline as Late as
possible) have been proposed by the author (23). Under
EDS, the ready tasks are processed as soon as possible,
whereas under EDL they are processed as late as possible
while guaranteeing their deadlines. Let S be an aperiodic
task set defined as follows: S = {Si(ri, Ci, di), i = 1 to m}.
In this characterization, task Si becomes ready at time ri,
requires Ci units of time and an absolute deadline occurs
at time di. Let D = max{di;Si ∈ S}. In a given schedule,
if at some time t there is no ready task to be run, we refer
to the time span between the completion of the last task
to be processed before t and the first task to be processed
after t, as an idle time. For any instants t1 and t2, let
denote by ΩX

S (t1, t2) the total processor idle time available
in [t1, t2] when S is scheduled according to algorithm X.
We now recall fundamental properties of EDS and EDL
when applied to any set of aperiodic (or periodic) tasks.

Theorem 1. For any instant t such that t ≤ D,

ΩEDS
S (0, t) ≤ ΩX

S (0, t) ≤ ΩEDL
S (0, t) (1)

Proof: See (23)

Theorem 1 says that applying EDS (respectively EDL)
to a task set S guarantees the minimum (respectively
maximum) available idle time within any time interval
[0, t], 0 ≤ t ≤ D.

This result can be applied to a periodic task set in the
synchronous scenario since the set of periodic requests
available from t up to the end of the current hyperpe-
riod can be analyzed as a set of preemptive independent
aperiodic tasks. Theorem 1 gives us theoretical basis of an
algorithm for computing the slack at any time t i.e. the
length of processor idle time that can be made available
immediately from t.

In (24), we proved that the computational complexity of
this algorithm is O(K.n) where K is given by b R

Tmin
c. R

and Tmin are respectively the longest absolute deadline, re-
spectively the minimum period of current ready tasks. The
complexity highly depends on task parameters and may
vary from O(n) to O(N) in the worst case situation where
N represents the number of distinct periodic requests that
occur in the hyperperiod and can be a function of the
exponential of the number of tasks. As it is impractical to
support an arbitrary large number of on-line computations
for overhead considerations, we are interested in providing
properties on the variation in slack over time so as to avoid
unnecessary on-line computations of the exact value of the
slack.

2.3 Simple example

To illustrate the analysis presented, we provide a simple
example which consists of two periodic tasks J1(2, 6, 6) and
J2(2, 9, 9). We note that the hyperperiod equals 18 and the

Fig. 1. The EDS schedule

Fig. 2. The EDL schedule

processor utilization is 5
9 . If a uniprocessor system solely

supports these two periodic tasks, EDF produces a valid
schedule during the lifetime of the system and this schedule
repeats cyclically every 18 time units (see figures 1 and 2).
We observe that ΩEDS

T (0, 8) = 2 and ΩEDL
T (0, 8) = 5.

Now, suppose that the periodic tasks are scheduled accord-
ing to EDS from 0 to 10. To compute the slack at time 10,
the EDL schedule is mapped out from 10 up to the end of
the hyperperiod at time 18. And this enables us to deduce
that δ(10) = 5 (see figure 3).

3. SLACK OF A PERIODIC TASK SET

In this section, we address the problem of determining
the slack time of a periodic task set at time t, denoted
as δ(t) and defined as the maximal continuous time the
processor could be let idle or process additional tasks
without jeopardizing the timing constraints of the periodic
task set. First, let us compute the length of the slack at
time 0, δ(0), obtained by applying EDL to T at time 0.
Let xj = Tj −Dj for j=1 to n. Proposition 1 provides us
a formula to compute δ(0).

Proposition 1.

δ(0) = min
k∈K
{k − h(k)} (2)

Proof: Consider the schedule produced by EDL for T
from 0 to P. Let k be the first instant between 0 and
P such that there is no idle time within [0 + δ(0), k] and
all the tasks with a deadline greater than k are entirely
processed within [k,P]. It follows that δ(0) is equal to the
length of the time interval [0, k] minus the total quantity of
processor time assigned to the requests with a deadline less
than or equal to k. All the requests of every task Jj whose
ready time is greater than k+xj must then be rejected. It
follows that δ(0) = k−h(k). Let t be any time instant in K
and α(t) = t− h(t). Let us prove that ∀t 6= k, α(t) ≥ δ(0).

Case 1: t < k. From definition of k, we know that some
requests with a deadline posterior to t can be processed
within [0, t]. Let Q(t) be the processor time reserved to
these tasks. It follows that δ(0) = α(t) − Q(t) and conse-
quently δ(0) < α(t).

Case 2: t > k and there may exist some requests with
a deadline posterior to t which are processed within [0 +
δ(0), t]. Then, δ(0) = α(t)−Q(t)−ϕ(t) where ϕ(t) denotes
the total idle time within [0+δ(0), t]. Consequently, δ(0) <
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Fig. 3. Slack at time 10

α(t). Finally, it follows that δ(0) = min{α(t); t ∈ K} which
corresponds to (2). 2

Example:
Consider the previous periodic task set. For every task Jj
in the set, we have xj = 0. Through formula 2, we obtain
δ(0) = min(4, 5, 6, 8) i.e. 4, which represents the length of
the first idle time interval in the EDL schedule produced
at time 0 (see figure 2).

We now show a lemma which will serve to derive a lower
bound to the slack at any time.

lemma 1. For any release time e that coincides with the
end of an idle time interval, δ(e) ≥ δ(0)

Proof: At time e, all the available tasks released before e
have been processed since the processor is idle just before e
by hypothesis. Consider the set of requests available from
time e to time P and form the associated set of aperiodic
tasks. Let S be this set and consider time e as a new
time zero. From theorem 1, applying EDL to S from e will
produce a schedule where the total idle time that follows
e is maximized and corresponds to the slack, δ(e) .
Now, we show that δ(0) provides a lower bound to the
length of this idle time. For this purpose, let t be the
first deadline after e such that t is followed by an idle
time interval and the processor is fully utilized between
e + δ(e) and t. Assume that time t coincides with the
deadline of a request, for every task in T . In particular, t
coincides with the deadline of the request that is released
at time e. Let Jl be this task. Then, ∃k, k′ ∈ N such that
e = kTl and t = k′Tl − xl. This assumption takes care of
the worst possible case in the sense that the processor is
required to provide maximum service in the time interval
[kTl, k

′Tl − xl]. Let ζ = (k′ − k)Tl − xl.It follows that
δ(e) ≥ ζ − h(ζ). Since ζ ∈ K, proposition 1 enables us to
conclude that δ(e) ≥ δ(0). 2

We are now prepared to provide a safe lower bound on the
available slack at any time instant.

Theorem 2. For any time t, δ(t) ≥ δ(0)

Proof: Without loss of generality, we assume that t ∈
{0, 1, 2, ...,P} since the schedule is periodic, and conse-
quently δ(t) = δ(t + kP), k = 1, 2, . . . The theorem is
proved by induction on the units of time t. The basis of
induction corresponds to t = 0.

To carry out the induction step, we assume that the
theorem is true at t i.e δ(t) ≥ δ(0) and prove that δ(t +
1) ≥ δ(0). Introduce Γ(t) to be the schedule produced by
EDS from 0 to t and by EDL from t to P on T . δ(t) is
then given by the length of the idle time that follows time
t in Γ(t). Now, consider the schedule Γ(t+1) and examine
three cases.

Case 1: The processor is not occupied in [t, t + 1]. The
processor will remain idle until the next release time. Let ei
be this time instant. It follows that δ(t+1) = ei−t+δ(ei).
Since δ(ei) ≥ δ(0) from lemma 1, we have δ(t+ 1) ≥ δ(0).

Case 2: The processor is processing, in [t, t+ 1], a task J
with deadline d and there is no task with a deadline less
than or equal to d that is not yet completed at t.

As tasks are scheduled according to Earliest Deadline, J
has the earliest deadline among the ready tasks at t. This
implies that J is the first one to be scheduled after t in
Γ(t).

We have to examine two subcases:
Subcase 2.1: Task J completes at t+ 1 and there is an idle
time starting at d in Γ(t) with a length equal to ∆, ∆ > 0.
Consequently, J is scheduled between d− 1 and d in Γ(t).
It follows that δ(t + 1) = δ(t) + ∆. Then, δ(t + 1) > δ(t)
and consequently δ(t+ 1) ≥ δ(0).
Subcase 2.2: Else. Γ(t + 1) is obtained from Γ(t) by a
permutation of the idle time between t and t + 1 and the
busy time for J between t + δ(t) and t + δ(t) + 1. Then,
δ(t) = δ(t+ 1) and consequently δ(t+ 1) ≥ δ(0).

Case 3: The processor is processing, in [t, t + 1], a task
J with deadline d and there is at least one task with a
deadline less than d that is not yet completed at t. Let Ji
be the first released task that verifies this condition.

Let ei and di be the release time and the deadline of Ji
that necessarily verifies ei > t since tasks are scheduled
according to Earliest Deadline first. We have to examine
two subcases:
Subcase 3.1: J is totally scheduled after di in Γ(t). Conse-
quently, J is not scheduled between ei and di in Γ(ei). As
there is no ready task with a deadline less than d which
is uncompleted at t, there is no task scheduled within
[t+1, ei] and so, δ(t+1) = δ(ei)+(ei−(t+1)) which implies
that δ(t + 1) ≥ δ(ei). Since δ(ei) ≥ δ(0) from Lemma 1,
then δ(t+ 1) ≥ δ(0).
Subcase 3.2: J is partially scheduled before di in Γ(t). As
J is scheduled after Ji in [ei, di] since d ≥ di, Γ(t + 1)
is obtained from Γ(t) by a permutation of the idle time
between t and t + 1 and the busy time for Ji between
t+ δ(t) and t+ δ(t) + 1. It follows that δ(t+ 1) = δ(t) and
consequently δ(t+ 1) ≥ δ(0). 2

Theorem 2 says that the slack of a periodic task set
is never less than its slack at time 0. Furthermore, the
demonstration enables us to state that the slack has local
maximum at the beginning of every idle time interval, is
linear decreasing within any idle time interval, and is non
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Fig. 4. Fluctuations in slack over time

increasing in any busy time interval.

Example:
Figure 4 depicts variations in the slack within the first
hyperperiod [0, 18] for the periodic task set of the previous
example. It illustrates both results of lemma 1 and theorem
2, i.e the slack is never less than δ(0), here equal to 4.

4. SLACK UNDER DELAYED-SCHEDULE
CONSIDERATIONS

Consider once again a periodic task set T scheduled ac-
cording to EDS up to current time τ . Assume that the
slack was consumed partialy while preserving the deadlines
and the periodic tasks have been held up between 0 and τ .
For example, this can be due to the on-line admission of
aperiodic tasks or processor shutdowns. We are interested
to assess the impact of periodic task postponement upon
slack variations. We establish the following theorem:

Theorem 3. For any time t ≥ τ , δ(t+ 1) ≥ min(δ(t), δ(0)).

Proof: Let us denote by Ψ(t) the schedule produced by
EDS from 0 to t, t ≥ τ and by EDL from t to P. And let
Γ(t) be defined as previously, i.e without no periodic task
postponement. We pick up the three cases of theorem 2.

Case 1: The processor is not occupied between t and t+1
in Ψ(t+1). Ψ(t+1) from time t+1 is necessarily identical
to Γ(t + 1) because all the tasks which are completed at
t + 1 in Ψ(t + 1) are also completed in Γ(t + 1). From
theorem 2, we deduce that δ(t+ 1) ≥ δ(0).

Case 2: The processor is processing, in [t, t + 1], a task
J with deadline d and there is no task with a deadline
less than or equal to d that is not yet completed at t. As
tasks are scheduled according to Earliest Deadline First, J
has the earliest deadline among the ready tasks at t. This
implies that J is the first one to be scheduled after t in
Ψ(t).
We have to examine two subcases:
Subcase 2.1: Task J completes at t+ 1 and there is an idle
time starting at d in Ψ(t) with a length equal to ∆, ∆ > 0.
Consequently, J is scheduled between d− 1 and d in Ψ(t).
It follows that δ(t + 1) = δ(t) + ∆. Then, δ(t + 1) > δ(t)
which implies that δ(t+ 1) ≥ δ(t).
Subcase 2.2: Else. Ψ(t + 1) is obtained from Ψ(t) by a
permutation of the idle time between t and t + 1 and the
busy time for J between t + δ(t) and t + δ(t) + 1. Then,
δ(t) = δ(t+ 1) which implies that δ(t+ 1) ≥ δ(t).

Case 3: The processor is processing, in [t, t + 1], a task
J with deadline d and there is at least one task with a
deadline less than d that is not yet completed at t. Let Ji
be the first released task that verifies this condition. Let
ei and di be the release time and the deadline of Ji that
necessarily verifies ei ≥ t + 1 since tasks are scheduled
according to Earliest Deadline first. We have to examine
two subcases:
Subcase 3.1: J is totally scheduled after di in Ψ(t). Let us
prove that such a situation may occur only if δ(t) > δ(0).
Ψ(t+1) is obtained from Ψ(t) by a permutation of the idle
time between t and t+1 and the busy time for J at a time
instant greater than di. Consequently, δ(t+ 1) = δ(t)− 1.
There is no ready task with a deadline less than d and
uncompleted execution at time t. Consequently all the
schedules Ψ(t′) and Γ(t′) with t ≤ t′ ≤ di restricted
to [t′, di] are identical. It follows from theorem 2, that
δ(t′) ≥ ∆(0) and in particular δ(t + 1) ≥ ∆(0). As δ(t +
1) = δ(t) − 1, it results that neccessarily, δ(t) > δ(0) and
δ(t+ 1) ≥ δ(0).
Subcase 3.2: J is partially scheduled before di in Ψ(t). As
J is scheduled after Ji in [ei, di] since d ≥ di, Ψ(t + 1)
is obtained from Ψ(t) by a permutation of the idle time
between t and t + 1 and the busy time for Ji between
t+ δ(t) and t+ δ(t) + 1. It follows that δ(t+ 1) = δ(t) and
then δ(t+ 1 ≥ δ(t). 2

Theorem 3 says that, if at a given time instant, the slack is
greater than or equal to δ(0), even though periodic tasks
have been postponed, the slack will never decrease below
δ(0). Furthermore, if at a given time instant, the slack
is less than δ(0), then it will grow up δ(0) without any
decreasing phase.
Such results allow us to reduce the computational com-
plexity of the on-line guarantee routine to 0(1) when
deadling with the problem of the on-line acceptance of
aperiodic tasks or temporary processor shutdown. This
is done by keeping trace of a lower bound to the slack,
then avoiding to compute the exact value, as seen in the
following example.

Example:
Consider the previous periodic task set and assume that
one nonpreemptable aperiodic task arrives at time 5 and
another one at time 8, both with execution time equal
to 2 (see figure 5). From theorem 2, the slack at time 5 is
surely no less than δ(0), i.e. 4 which guarantees the feasible
immediate execution of the first aperiodic task together
with the periodic tasks without requiring computation of
the exact value of the slack, here equal to 5. Consequently,
a lower bound on the slack at the finishing time of the first
aperiodic task is clearly 3.
Theorem 3 guarantees that the slack will never be less
than 3 after time 5 (see figure 6). At time 8, the second
aperiodic task may be executed without needing exact
slack computation since its execution time is less than
the lower bound on the slack. When the aperiodic task
terminates at time 10, a new lower bound is consequently
1.
Figure 6 enables us to show the non decreasing variation
of the slack until it will become greater than or equal to
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Fig. 5. Scheduling periodic and nonpreemptable aperiodic
tasks

Fig. 6. Fluctuations in slack over time

4.

Now, we prove that the slack at time 0 of a given syn-
chronous periodic task set gives a lower bound on the slack
of this periodic task set for any release time scenario.

Theorem 4. The slack δ(0) obtained at time 0 is valid for
any release time scenario.

Proof: Let hAsyn(t) be the demand bound function ob-
tained for any asynchronous release time scenario. From
its definition, we have: hAsyn(t) ≤ h(t). It follows that
∀t ≥ 0, t − hAsyn(t) ≥ t − h(t) ≥ δ(0). It follows that
mint≥0(t− hAsyn(t)) ≥ δ(0). Hence, δ(0) is the minimum
slack valid for any release time scenario. 2

5. SUMMARY

The most important property of a hard real-time system
is not high speed, but predictability. The deterministic
behavior of a system typically depends on the scheduler.
Although interrupts handling and processor shutdown may
improve the performance in terms of energy saving or
quality of service, they have major influence on periodic
task execution. A trustworthy timing guarantee of system
behavior is then needed at every moment for avoiding over-
load situations which result in deadline misses. These ones
are mainly due to unpredictable aperiodic tasks as well
as processor shutdown for dynamic power management
with insertion of sleeping modes. Timing guarantee has to
be achieved with appropriate and efficient on-line kernel
mechanisms which lead to compute the slack at run-time.
In this paper, we described theoretical results from the
analysis of the Earliest Deadline schedule for a set of
periodic tasks. First, theorem 2 expresses us that a safe
lower bound on the available slack in the absence of task
postponement is the slack at time zero than can be ob-
tained by an off-line computation in pseudo-polynomial
time.
In previous studies, the author showed that the overhead

in computing the exact value of slack at run-time becomes
serious as the number of tasks increases. Consequently, we
were interested in providing a way to significantly reduce
the overhead. Then theorem 3 gives us properties on the
Earliest Deadline schedule when authorizing periodic task
postponement. Predictability on the schedule is attained
by a precise knowledge on slack variations over time.
Through an example, we illustrated how such theoreti-
cal results can be useful. We can develop either an on-
line sufficient schedulability condition based on slack ap-
proximation in O(1) or an exact schedulability test that
prevents from unecessary and costly computations. This
permits to reduce the overhead incurred by the scheduler
in terms of both time and energy consumption which is
highly desirable in battery powered computers.
The work presented in this paper assumed that all the
tasks were independent with no energy limitation. It will
be challenging to develop a similar scheduling analysis to
handle other cases such as when tasks experience blocking
due to resource sharing or when the ED-H algorithm serves
to schedule the tasks with energy harvesting constraints
(25).
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