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Besançon, FRANCE
aymeric.cretin@femto-st.fr

Alexandre Vernotte
FEMTO-ST Institute, UBFC, CNRS
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Abstract—The ADS-B — Automatic Dependent Surveillance
Broadcast — technology requires aircraft to broadcast their
position and velocity periodically. The protocol was not specified
with cyber security in mind and therefore provides no encryption
nor identification. These issues, coupled with the reliance on
aircraft to communicate on their status, expose air transport
to new cyber security threats, and especially to FDIAs — False
Data Injection Attacks — where an attacker modifies, blocks, or
emits fake ADS-B messages to dupe controllers and surveillance
systems. This paper is part of an ongoing research initiative
toward the generation of FDIA test scenarios and focuses on
the test generation activity, i.e. providing the mechanisms to
alter existing ADS-B recordings as if an attacker had tempered
with the communication flow, in order to improve the detection
capabilities of surveillance systems. We propose a set of alteration
algorithms covering the taxonomy of FDIA attacks for ADS-B
previously defined in the literature. We experiment this approach
by generating test data for an AI-based FDIA detection sys-
tem [9]. Experimental results show that the proposed approach is
straightforward to generate the initial situations used to validate
the detection system. Moreover, it provides a efficient way to
easily generate sophisticated alterations that were not picked up
by the detection system.

Keywords—AI testing, test data generation, false data injection
attacks, air surveillance.

I. INTRODUCTION

The world of air transport is facing new challenges as the
traffic load keeps growing steadily1. With an increasingly con-
gested airspace, Air Traffic Control (ATC) needs surveillance
technologies that can support the increasing constraints in
terms of simultaneously handled aircraft as well as positioning
accuracy. The Automatic Dependent Surveillance-Broadcast
(ADS-B) protocol is currently being rolled out in an effort
to reduce costs and improve aircraft position accuracy [22].
Communication via ADS-B consists of participants broadcast-
ing their current position and other information periodically
(a.k.a. a beacon) in an unencrypted message [15].

The fundamental technological changes in ATC needed
to support increasing traffic, which consist of a shift from

1http://www.boeing.com/commercial/market/current-market-outlook-2017/

independent and non-cooperative surveillance technologies
to dependent and cooperative ones, have rendered the ATC
community unable to foresee the new emerging threats related
to cyber security. The ADS-B protocol was not designed with
security in mind since securing ADS-B communication was
not a high priority during its specification. As a consequence,
anyone with the right equipment can listen and emit freely. For
instance, there is a market for equipping private aircraft with
ADS-B transponders using a smartphone and a dongle2. The
complete freedom of ADS-B both in emission and reception
makes it vulnerable to spoofing, and more precisely to a
class of attack called FDIA — False Data Injection Attack
— which purpose is to covertly emit meticulously-crafted
fake surveillance messages in order to dupe ATC controllers
into thinking, for instance, that some aircraft is dangerously
approaching a building, while in reality it is flying normally.

Although it is not the only means for Aircraft tracking
— other protocols are also used in conjunction of radar
technologies —, ADS-B plays a central role in the current
shift regarding aircraft position, collected from radar systems
to GNSS [4]. It is so central in fact that it has become a
mandatory brick of air traffic surveillance and any observed
problem will ground all aircraft in the area3. Hence there is
a strong need to improve its overall security. Nevertheless,
because of the inherent properties of the protocol, current
solutions for securing ADS-B communications are only partial
or involve an unbearable cost [24].

Instead, ATC should be made more secure by strengthening
its logic, but the ability to differentiate attacks from real
critical situations still remains a challenge to be tackled by
the ATC community. Indeed, multiple integrity checks or
detection approaches are rolled out or under study. Those
solutions are new and need to be deeply tested. To the best of
our knowledge, there is no direct previously published work
addressing the topic of assessing the efficiency of this kind

2https://www.uavionix.com/products/skybeacon/
3https://hackaday.com/2019/06/09/gps-and-ads-b-problems-cause-cancelled-flights/
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of security. The most related work is a framework proposed
by Barreto et. al. [3], which allows for the simulation of an
entire air traffic environment (aircraft, radio relay, network
infrastructure, etc.). They perform FDIAs in the simulated
environment to evaluate the attack impact on each compo-
nent. The approach provides substantial information on how
components react to an FDIA. Still, implementing all network
behaviours of a scenario requires a lot of effort and the
approach does not allow for the concretization of the simulated
attacks on actual ATC software.

The contribution presented in this paper is part of an
ongoing research initiative about FDIA testing that ultimately
led to the creation of a testing framework called FDI-T [6]
(False Data Injection Testing framework). This framework
allows ATC experts to simulate FDIAs by creating, modi-
fying and deleting recorded legitimate ADS-B messages in
a fruitful, scalable and productive manner. The generated test
scenarios can be executed on ATC systems in order to evaluate
their resilience against potential security and safety anomalies
related to FDIAs. They can also be used as test data to
evaluate machine learning based detection systems, as well
as improve their detection rate. The paper focuses on the
alteration mechanisms that take as input one or several air
traffic recordings and a list of alteration directives in order
to simulate the presence of FDIAs in air traffic surveillance
communications.

The paper is organized as follows: Section II briefly pro-
vides a basis for common concepts and current practices
regarding air traffic surveillance as well as the key aspects to
test such systems, especially regarding test scenarios based on
FDIAs. Afterwards, Sect. III introduces the proposed approach
to perform FDIAs on ADS-B messages and describes the
automated process supporting the method. Section IV details
the various algorithms used to apply alteration directives on
ADS-B messages and thus explains how the generation of
attack scenarios is automated. Section V demonstrates the
ability of the proposed approach to generate test data to assess
the detection capabilities of a machine learning technique
from the literature [9]. Finally, Sect. VI recaps the major
contributions of this paper, and suggests directions for future
work.

II. BACKGROUND AND RESEARCH OBJECTIVE

A. ADS-B

Communication via ADS-B consists of aircraft using a
Global Navigation Satellite System (GNSS) to determine their
position and broadcasting it periodically without solicitation
(a.k.a beacons or squitters), along with other information
obtained from on-board systems such as altitude, ground
speed, aircraft identity, heading, etc. Ground stations pick
up on the squitters, process them and send the information
out to the ATC system. The ADS-B data link is generally
carried on the 1090MHz Extended Squitter (1090ES), the same
frequency used by Mode S, although there is a new data
link standard (UAT – Universal Access Transceiver) dedicated
to protocols such as ADS-B, but it requires new hardware

and is not very common at the moment. ADS-B is therefore
a cooperative (aircraft need a transponder) and dependent
(on aircraft data) surveillance technology, which constitutes a
fundamental change in ATC. It means for instance that not
only ground stations with antennas positioned at the right
angle and direction can receive position information. Aircraft
can now receive squitters from other aircraft, which notably
improves cockpit situational awareness as well as collision
avoidance. For instance, the second generation of the Traffic
Alert and Collision Avoidance System (TCAS-II) is based on
ADS-B data.

Its introduction also provides controllers with improved
situational awareness of aircraft positions in En-Route and
TMA (Terminal Control Area) airspaces, and especially in
NRAs (Non Radar Areas). It theoretically gives the possibility
of applying much smaller separation minima than what is
presently used with current procedures (Procedural Separa-
tion) [1]. Indeed, ADS-B offers position accuracy of 0.05 NM
and velocity accuracy of 19.4 NM/h, with updates once to
twice second. Concretely, ADS-B performance requirements
were designed to allow an aircraft lateral separation from 90
to 20 NM and longitudinal separation from 80 to 5 NM in
NRAs, and 5 to 3 NM in covered areas [25]. ADS-B has
the advantage of being a much cheaper technology as it has
minimal infrastructure requirements. For instance, an ADS-B
receiver can easily be bought online for a few hundreds euros4.
As mentioned in the previous paragraph, ADS-B has a much
greater accuracy and update rate, with a smaller latency. The
major drawback of the technology lies in its lack of encryption
and authentication, which is discussed in the following section.

B. False Data Injection Attacks

Extensive research can be found in the literature discussing
the cyber security of surveillance communications [18], [24],
[25], [28]. The progressive shift from independent and non-
cooperative technologies (PSR) to dependent and cooperative
technologies (ADS-B) has created a strong reliance on ex-
ternal entities (aircraft, GNSS) to estimate aircraft state. This
reliance, along with the introduction of air-to-ground data links
via Modes A/C/S and the broadcast nature of ADS-B, has
brought alarming cyber security issues.

FDIAs were initially introduced in the domain of wireless
sensor networks [12]. A wireless sensor network is composed
of a set of nodes (i.e. sensors) that send data report to one
or several ground stations. Ground stations process the reports
to reach a consensus about the current state of the monitored
system. A typical scenario consists of an attacker who first
penetrates the sensor network, usually by compromising one
or several nodes, and thereafter injects false data reports to be
delivered to the base stations. This can lead to the production
of false alarms, the waste of valuable network resources, or
even physical damage. Active research regarding FDIAs has
been conducted in the power sector, mainly against smart
grid state estimators [7], [11]. It shows that these attacks

4https://flywithscout.com
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may lead to power blackouts but can also disrupt electricity
markets [26], despite several integrity checks.

FDIAs also exist in the domain of air traffic surveillance.
Because surveillance relies on the information provided by
aircraft’s transponders to ground stations, aircraft transponders
are equivalent to nodes from a wireless network, and ground
stations are equivalent to base stations. Although in the ATC
domain, there is no real effort to penetrate the sensor network,
as all communications are unauthenticated and in clear text.
Still, performing FDIAs on surveillance communications is no
simple task: it requires a deep understanding of the system,
its protocol(s) and its logic, to covertly alter (by injecting
falsified squitters and deleting genuine ones) the consensus
reached by the ground station regarding the air situation
picture. These attacks are much more complex to achieve than
e.g., jamming, because the logic of the communication flow
must be preserved and the falsified data must go unnoticed.

The means of the attacker to conduct FDIAs against ADS-
B communications have already been detailed in previous
work [14], [23]. Considering the attacker has the necessary
equipment, he can perform three malicious basic operations:

(i) Message injection which consists of emitting non-
legitimate but well-formed ADS-B messages.

(ii) Message deletion which consists of physically deleting
targeted legitimate messages using destructive or con-
structive interference. It should be noted that message
deletion may not be mistaken for jamming, as jamming
blocks all communications whereas message deletion
drops selected messages only.

(iii) Message modification which consists of modifying
targeted legitimate messages using overshadowing,
bit-flipping or combinations of message deletion and
message injection.

The above three techniques allow for the execution of several
attack scenarios [18] that can be categorized in a taxonomy:

• Ghost Aircraft Injection. The goal is to create a non-
existing aircraft by broadcasting fake ADS-B messages
on the communication channel.

• Ghost Aircraft Flooding. This attack is similar to the
first one but consists of injecting multiple aircraft simulta-
neously with the goal of saturating the air situation picture
and thus generates a denial of service of the controller’s
surveillance system.

• Virtual Trajectory Modification. Using either message
modification or a combination of message injection and
deletion, the goal of this attack is to modify the trajectory
of an aircraft.

• False Alarm Attack. Based on the same techniques as
the previous attack, the goal is to modify the messages
of an aircraft in order to indicate a fake alarm. A typical
example would be modifying the squawk code to 7500,
indicating the aircraft has been hijacked.

• Aircraft Disappearance. Deleting all messages emitted
by an aircraft can lead to the failure of collision avoidance

systems and ground sensors confusion. It could also force
the aircraft under attack to land for safety check.

• Aircraft Spoofing. This scenario consists of spoofing the
ICAO number of an aircraft through message deletion and
injection. This could allow an enemy aircraft to pass for
a friendly one and reduce causes for alarm when picked
up by PSR.

One can sense the potential for disaster if one of these
attack scenarios was to be executed successfully. It is of the
utmost importance that none of the scenarios represent a real
threat to such a critical infrastructure with human lives on
the line. However, because of the inherent properties of the
ADS-B protocol, current solutions for securing ADS-B com-
munications are only partial or involve an unbearable cost [24].
Therefore, ATC systems must become robust against FDIAs,
i.e. being capable of automatically detecting any tempering
with the surveillance communication flow while being able to
maintain the infrastructure in a working state.

C. FDIA detection using Machine Learning

Detecting FDIAs among regular data is critical to avoid
the aforementioned risks. Machine Learning techniques have
contributed significantly to improving the detection of anoma-
lies in many domains. Detecting abnormal cells or markers on
medical imagery [17] [19], using logging information to detect
intruders on a network [27], or detecting traffic inconsistencies
in bus trajectory data [10] are few of many applications of
irregularity disclosure using Machine Learning techniques.

Regarding anomaly detection in ADS-B data, several exper-
iments are found in the literature. Using signal discrepancies
through different receiver sensors [13] show the ease of access
to physical data through personal antennas. On the other hand,
platforms like Opensky-Network [20] helped the training of
models using the logical aspects of ADS-B [21] [9].

Although, a major drawback of using Machine Learning
techniques for anomaly detection is the lack of pre-existing
altered data, whether to use it for training or testing. While
contributions exist using unsupervised models on unbalanced
dataset with good detection scores [16] [5], supervised learning
will often yield underperforming results. Hence, there is a need
of harmonizing dataset to explore new models and improve
existing ones. Alteration mechanisms as proposed in this paper
would enable such goals on ADS-B data.

D. Research Objective and Questions

It is critical to make sure that FDIA detection systems are
properly and thoroughly tested. Such a testing campaign needs
large sets of test data in the form of air traffic recordings,
where ideally half of the recordings present an anomaly, i.e.
an FDIA that should be detected. The creation of FDIA test
scenarios in the ATC domain can be very complex. This
requires at the same time altering or creating false data (e.g.,
creating ghost aircraft) while ensuring the consistency of
all data. It is also necessary to ensure the widest possible
coverage w.r.t. the taxonomy of attacks. The creation of a set
of algorithms capable of generating FDIA test scenarios thus



aims to considerably increase the feasibility of in-depth testing
of the efficiency and effectiveness of FDIA detection systems.
We have defined the following research objective based on
these observations:

Create a set of alteration algorithms to automate the
production of synthetic FDIA scenarios for the testing of
supervised learning-based detection models.

From the above research objective, we have identified 2
research questions that are expressed and developed below.
We refer to these questions in Section V, during the evaluation
of the approach.

RQ1 To what extent is it possible to automate the gener-
ation of FDIA scenarios that cover the ADS-B taxonomy
of attack?

Although they are all based on the same weakness – i.e.
the injection of false data – each scenario of the taxonomy
has its subtleties. For instance, it should be possible to
easily alter aircraft’s trajectory while ensuring realism of
the modified trajectory throughout time. In turn, if realism
(including computation of each latitude/longitude coordinates)
is abstracted from the user in exchange of design primitives
(e.g., by defining way-points and time of passage), then
realism and the computation of a new trajectory shall be
done algorithmically. Moreover, algorithms must integrate
what makes the protocol and its domain of application specific.

RQ2 To what extent is the approach relevant to generate
synthetic data for testing an AI model detecting abnormal-
ities in ADS-B data?

In other cyber security domains (typically, in IT), huge
historical databases of past attacks and demonstration of
vulnerability exploitation are available on the internet (e.g.,
the National Vulnerability Database of the NIST5). It is usually
straightforward to reproduce these attacks or simulate them on
a system under test, especially when there also exist databases
of exploits (e.g., exploit-db6). In the ATC domain however,
there is no history of False Data Injection Attacks. At least
none that was reported to the general public, and therefore
the only option to obtain test data is to generate synthetic
anomalies. Our approach aims to generate complex FDIA
scenarios that could contribute to more efficient ML-based
detection systems. We experimented the proposed approach
by generating test data sets and submitted them to Habler et
al.’ auto-encoder model [9], results are presented in Section V.

III. ALTERATION PROCESS OVERVIEW

The current approach aims to generate altered versions of
an original recording in order to feed FDIA detection systems
that shall be confronted to abnormal situations. A recording is
a set of messages emitted by real aircraft and stored in a file
through an antenna or created from data collected with online
providers such as OpenSky Network7.

5https://nvd.nist.gov/
6https://www.exploit-db.com/
7https://opensky-network.org/
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Fig. 1: Alteration process overview

Figure 1 depicts the alteration process. An altered recording
is produced as output from a set of original recordings and a
set of alteration directives. There are five items in this process
that shall be detailed:
1 A set of original recordings that contains recordings that

can be altered or used as a specific parameter of an alteration
directive (e.g., a replay attack needs one recording to perform
the alteration on, and one (source) recording to inject in the
first one. The source recording is specified in an alteration
directive).
2 A list of alteration directives that constitutes the spec-

ification of the test scenario. Indeed, the alteration process
relies on a list of alteration directives to be performed on
the original recording. An alteration directive, depending on
the type of alteration, has several parameters, such as a time
window (when the alteration takes place in the recording), a
list of targeted aircraft, a list of way-points in case of virtual
trajectory modification for instance, etc.
3 The switcher iterates the list of alteration directive, and

for each one calls the corresponding alteration engine based
on the type of the alteration specified in the current alteration
directive.
4 The alteration engines are used to generate an altered

recording from an original one. There is an alteration engine
for each type of alteration, the engines are following the same
structure of methods, as further explained in Section IV. All
the algorithms used by these engines are discussed
5 An altered recording is outputted from the process. Its

closeness to the original recording depends on the number
of targeted aircraft and on the scope defined in the alteration
directives.

A test scenario is formalized as S = (r,D) with r as the
targeted recording picked among the set of recordings, and D
as a list of alteration directives.

Regarding the format of messages taken as input, our
prototype accepts surveillance data in the SBS format8. SBS
messages contain twenty two fields. The ten first fields contain
the reception time stamp and static properties about the emitter

8http://woodair.net/sbs/Article/Barebones42 Socket Data.htm

https://nvd.nist.gov/
https://www.exploit-db.com/
https://opensky-network.org/
http://woodair.net/sbs/Article/Barebones42_Socket_Data.htm


aircraft or the flight e.g., its ICAO 24-bit address9, its aircraft
ID10.

The last twelve fields contain dynamic properties of the
emitter aircraft, i.e. properties that evolve over time such as
altitude and ground speed. There are eight types of message,
depending on the types of property that are communicated.
For instance, type 3 messages contains position information:
altitude, latitude, longitude, while type 4 messages contain
velocity information: ground speed, vertical rate, and heading.
It should be noted that, for the alteration engines’ description,
we ignore the fact that there are various types of message,
and consider that messages contain all information. This
considerably reduces the complexity of the algorithms without
loosing essential information.

IV. ALTERATION ENGINES

The section present all type of alteration directives and their
corresponding algorithms. The figure 2 depicts step by step the
workflow shared between all algorithms.

APPLY ACTION

PROCESS ACTION

PREPROCESSING 
?

PREPROCESSING

Y
N

ORIGINAL
RECORDING

ALTERED
RECORDING

ENGINE 
SPECIFIC 

DATA

Fig. 2: Alteration process of the engines

The first step consists of determining if a preliminary
analyse is required by the current algorithm. Indeed, some
algorithms must extract information from the recording that
will be used later to produce altered messages. For example,
with the trajectory modification, the dedicated engine needs
to generate interpolation functions from the latitude, longitude
and altitude of the targeted aircraft. Then these functions will
be queried to produce altered values latitude, longitude and
altitude and therefore alter the initial trajectory of the aircraft.

The workflow is mainly based on the process action and
apply action steps. The process action method iterates the
recording, and checks if specific conditions are verified (e.g.,
the message is in the scope of the alteration and if the emitter
aircraft is targeted by the alteration). If it is the case, the
message is sent to the apply action method that applies the
supplied alteration directive to the message. Then the resulting

9https://www.iomaircraftregistry.com/flight-operations/flight-operations/
icao-24-bit-aircraft-address-mode-s-coding/

10https://www.faa.gov/licenses certificates/aircraft certification/aircraft
registry/releasable aircraft download/

message, if any, is returned to the process action step and
written into the altered recording.

Each alteration engine implements a specific version of the
pre-analyse, process action and apply action methods. We
detail each of them below.

A. Property modification

Although most alterations consist in some way of changing
the properties of received surveillance messages, this alteration
allows users to be quite precise in the message properties they
want to modify. It makes it possible to perform False Alarm
attacks and Aircraft spoofing, as both consists of changing the
value of a single property: squawk code and ICAO address,
respectively.

Property modification is represented as an alteration direc-
tive dirprop = (s, t, P ) where s is the duration of the attack
defined as a time interval relative to the recording, t is a list
of targeted aircraft, and P is a non-empty set of property
value changes. A property value change is represented as a
triplet p = (i, v, o) where i is the property identifier (e.g.,
altitude or ground speed), v v is a value , and o specifies how
v shall be employed to modify the property’s initial value.
p.o can be of for types: REPLACE, OFFSET, NOISE, and
DRIFT. If p.o = REPLACE, then v replaces the property’s
initial value. If p.o = OFFSET , then v is added to the
property’s initial value. If p.o = NOISE, then a random value
ranging 0 – v is added the property’s initial value. Finally, if
p.o = DRIFT , then v plus the sum of the previous drift is
added to v.

The process action method for the Property modification
alteration is described in Algorithm 1. It iterates the messages
of the initial recording and for each message, if it was sent by a
targeted aircraft within the alteration time frame (line 2), then
the message as well as the alteration directive are sent over to
the apply action method, which returns the altered version
of the message (line 3). Otherwise, the initial message is
preserved as is (line 4). Finally, the obtained message (altered
or preserved) is added to the resulting recording al rec (line
7), and once all messages have been processed, the resulting
recording is outputted (line 9).

The algorithm that implements the apply action method
for the Property Modification algorithm is presented in Al-
gorithm 2. It iterates the list of property value changes (line
2), and for each property, it checks in line 3 if the directive’s
property value change is an offset. If it is an offset type
of alteration, then the message resulting property value is
the addition of the initial value of the property and the
property value contained in the directive (line 4). Otherwise,
the message initial value is replaced by the directive’s property
value (line 6). Note that the dp variable represents the drift
progress and, as such, it is only used if dir.p.o = DRIFT .

B. Aircraft Disappearance

The objective of this alteration is to hide aircraft i.e. delete
messages of certain aircraft at a certain time. It is represented
as an alteration directive dirdel = (s, t, n) where s is the

https://www.iomaircraftregistry.com/flight-operations/flight-operations/icao-24-bit-aircraft-address-mode-s-coding/
https://www.iomaircraftregistry.com/flight-operations/flight-operations/icao-24-bit-aircraft-address-mode-s-coding/
https://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable_aircraft_download/
https://www.faa.gov/licenses_certificates/aircraft_certification/aircraft_registry/releasable_aircraft_download/


Algorithm 1: process action method for Property
Modification

Input: rec \ list of genuine surveillance messages
dir \ alteration directive

Result: al rec \ list of genuine and altered messages
1 dp← 1
2 foreach old msg ∈ rec do
3 if old msg.ts ∈ dir.s∧ old msg.icao ∈ dir.t then
4 new msg ← applyAction(old msg, dir, dp)
5 dp← dp+ 1
6 else
7 new msg ← old msg
8 end
9 al rec← al rec ∪ {new msg}

10 end
11 return al rec

Algorithm 2: apply action Method for Property Mod-
ification

Input: msg \ genuine surveillance message
dir \ alteration directive
dp \ drift progress

Result: al msg \ altered message
1 al msg ← copy(msg)
2 foreach p ∈ dir.P do
3 if p.o = OFFSET then
4 al msg.getParam(p.i).value←

al msg.getParam(p.i).value+ p.v
5 else if p.o = REPLACE then
6 al msg.getParam(p.i).value← p.v
7 else if p.o = NOISE then
8 al msg.getParam(p.i).value←

al msg.getParam(p.i).value+ rand(0, p.v)
9 else if p.o = DRIFT then

10 al msg.getParam(p.i).value←
al msg.getParam(p.i).value+ p.v × dp

11 end
12 end
13 return al msg

duration of the attack defined as a time interval relative to the
recording, t is the targeted aircraft and n is the number of
deleted consecutive messages e.g. if n = 0 then all messages
are deleted, while if n = 3 for instance, then only three out
of four messages are deleted. This is certainly the simplest
form of alteration, as it solely about dismissing messages
originating from certain aircraft, during a certain time frame.
The algorithm for this alteration lies in the process action
method, where messages are written in the resulting altered
recording only if the sending aircraft is not targeted and the
message was not sent within the specified time frame, i.e.
¬(msg.icao ∈ dir.t ∧msg.ts ∈ dir.s).

C. Virtual Trajectory Modification

Altering the trajectory of aircraft is a much more complex
problem than simply modifying property values at a certain
time. This should be done realistically, i.e. with regards to
aircraft physical characteristics, as it would be easily detected
otherwise. Dynamic properties of aircraft can be formalized
as continuous functions of property values related to time,
which mimic real-life aircraft physical behaviour as closely
as possible. A good candidate for this is interpolation as it
“fills the gap” between each pair of consecutive values. We
opted for the Akima interpolation [2] as local interpolation
technique as local interpolation is not subjected to Runge’s
phenomenon, i.e. a problem of oscillation at the edges of an
interval that occurs over a set of equally spaced interpolation
points [8] (as opposed to global interpolation). Another benefit
of this technique is, because it only uses the neighbouring
points for its calculation, a faster computation of approxi-
mation functions. Because recordings can be substantial in
volume (a 30min recording from one sensor may contain
around 150000 squitters), a fast interpolation method certainly
contributes to the approach’s scalability. It should be noted that
interpolation is a form of approximation and as such there is a
certain share of uncertainty in the calculated property values,
i.e. interpolation divergence. While this level of uncertainty
would not be acceptable to gain sufficient confidence in the
efficiency of FDIA detection systems critical applications, this
is certainly a good fit to demonstrate the capabilities of our
approach to rely on a third party “aircraft simulation module”
to generate realistic aircraft trajectories.

Virtual Trajectory Modification is represented as an al-
teration directive dirvtm = (s, t,Ω), where Ω is a
nonempty set of way-points. A way-point is defined as ω =
(lat, lon, alt, ts), i.e. 3D coordinates and a time of passage.

The algorithm for trajectory modification is two-fold. First,
as a pre-analyse step, it must populate interpolation functions
that account for the whole aircraft trajectory, taking into
account the part of the trajectory that should be removed
and replaced by the supplied way-points. Second, during the
process action step, it iterates the recording, and for each
targeted message, it replaces its property values with the one
obtained by querying the interpolation functions. Note that this
implementation does not create additional messages, it only
edits existing messages. Therefore, if the altered trajectory is
longer that the initial one (i.e. more distance is traveled) then
the aircraft’s ground speed must be augmented accordingly
since travel time dir.t is not adjustable (as it is bound to the
messages). This can lead to erroneous situations where aircraft
fly at an impossible speed (either too high or too low) to travel
the altered distance within the fixed time dir.t.

Population of the interpolation function, as part of the
pre-analyse step, is presented in Algorithm 3. We consider
a data structure called Traj that contains three interpolation
functions (for latitude, longitude and altitude), and an identifier
(an ICAO). The algorithm iterates the recording, and for
each message emitted by targeted aircraft, if it was not sent



Algorithm 3: Pre-analyse method for Trajectory Cre-
ation

Input: recording \ list of genuine surveillance
messages
dir \ alteration directive

Result: trajs \ list of aircraft trajectories
1 updated← zeros(dir.t.size)
2 foreach msg ∈ recording do
3 if msg.icao ∈ dir.t then
4 if ¬(msg.ts ∈ dir.s) then
5 trajs(msg.icao)
6 .addPos(msg.lat,msg.lon,msg.alt,msg.ts)
7 else if updated(msg.icao) = 0 then
8 foreach ω ∈ dir.Ω do
9 trajs(msg.icao)

10 .addPos(ω.lat, ω.lon, ω.alt, ω.ts)
11 end
12 updated(msg.icao)← 1
13 end
14

15 end
16 end
17 return trajs

within dir.s, the received position is added to a Traj instance
associated to dir.t (lines 4–6). Internally, each value is added
to their corresponding interpolation functions. When the first
message (of a certain icao) that was sent within dir.s is
iterated (line 7), then the algorithm iterates dir.Ω and adds
each way point ω to the Traj instance (lines 9–10). Finally,
the trajectory is marked as altered (line 12), and all subsequent
messages within dir.s are ignored. In other words, all positions
of a given trajectory are added to a Traj instance, except the
positions that are within the alteration time window dir.s,
which are replaced by way-points supplied in dir.ω. The result
is a list of Traj instances, one for each targeted aircraft.

Once all targeted aircraft are associated with a Traj instance,
the process action method performs the alteration. It iterates
the recording, and for each message from targeted aircraft
sent within dir.s, it calls the apply action method. The latter
replaces property values of the supplied message according to
dir, as follows:

• For latitude, longitude, and altitude properties, the initial
values are replaced with interpolated values using the Traj
instance.

• For ground speed, track, and vertical rate properties, new
values are computed based on the interpolated position
values. To compute ground speed of a certain message m
for instance, the algorithm first computes the horizontal
distance (i.e. ignoring altitude) between two near points
of the trajectory, one taken 5 seconds before m and
another one 5 seconds after m. The obtained distance,
divided by the time it took to travel it (10 seconds), gives
the ground speed.

D. Ghost Aircraft Creation

In this attack, the attacker creates a fake track from scratch,
implying that in this case, fake messages must be created
and inserted into the target recording. Ghost Aircraft Creation
is represented as an alteration directive dirgac = (s, t, P,Ω)
where Ω is a nonempty set of way-points. Its implementation
relies on the trajectory modification engine. First, a pre-
analyse method is called to create Traj instances, where the
interpolation functions are solely populated by the directive’s
way-points dir.Ω, to be sent to the process action method,
shown in Algorithm 4. Knowing that ADS-B messages are
sent every 400 to 600ms, the process action method generates
empty messages, starting at dir.s.start (line 1), randomly
increasing their time of sending accordingly (line 6), and until
it has reached the end of the alteration time window dir.s.end
(line 2). Then, to populate each message, the method calls the
apply action method of the Virtual Trajectory modification
engine, using the list of Traj instances.

Algorithm 4: apply action Method for Ghost Aircraft
Creation
Input: rec \ list of genuine surveillance messages

dir \ alteration directive
Result: al rec \ resulting recording

1 mts← dir.s.start
2 while mts <= dir.s.end do
3 msg ← newMsg(dir.P )
4 msg.ts← mts
5 msg ← applyAction(msg)
6 mts← mts+ rand(0.4, 0.6)
7 end
8 return al rec

E. Ghost Aircraft Flooding

The initial definition of this attack consists of suddenly
creating a lot of ghost aircraft, thus supposedly saturating the
Recognized Aircraft Picture (RAP – i.e. what the controller
sees). However, this has proven to be quite straightforward
for detection systems to recover from this type denial of
service. We propose instead to slightly modify the definition
of the attack, to be virtual trajectory modification flooding.
The goal is to suddenly generate many different trajectories
for a targeted aircraft, as if the aircraft was being split in
multiple pieces, thus saturating the detection systems with
many conflicting messages.

Aircraft flooding is represented as an alteration directive
dirgaf = (s, t, z, k, α, v, d) where:

• s is a time window, where s.end is necessarily the end
of the recording.

• z is the number of fake trajectories to create;
• k is the maximum offset value in terms of distance

between the fake trajectories and the original trajectory;



• α is a probability distribution ranging 0.1 – 1 that
determines, for each fake trajectory, how close to k its
divergence will be;

• v is the speed of divergence, i.e. how fast the fake
trajectories are offset from the original trajectory. it is
expressed as a duration and specifies how much time it
should take for the fake trajectory to reach its divergence
bound, i.e. k × α;

• d is the direction of divergence of a given fake trajectory;
it is a probability distribution that takes its value from a
horizontal 90deg cone originating from the aircraft nose
and centered on the aircraft track line.

Each fake trajectory is thus created by slowly drifting
horizontally from the original trajectory toward direction dir.d,
up to dir.k ∗α, at speed dir.v. Once the maximum offset has
been reached, then the trajectory mimics the original, while
preserving its horizontal position offset.

Algorithm 5: Trajectory creation Algorithm for flood-
ing

Input: initraj \ original Traj instance (up to
dir.s.start)
dir \ alteration directive

Result: trajs \ set of rogue trajectories
1 for i← 1 to dir.z do
2 αi ← sample(dir.α) ; ts← dir.s.start
3 di ← sample(dir.d) ; traji ← initraj
4 while ts ≤ dir.s.end do
5 pCoef ← min((ts− dir.s.start)/dir.v), 1)
6 step← pCoef ∗ αi ∗ dir.k
7 lat← fulltraj.interp(”lat”, ts) + step+
8 cos(fake ac.d)
9 lon← fulltraj.interp(”lon”, ts) + step+

10 sin(fake ac.d)
11 traji.addPos(lat, lon,
12 fulltraj.interp(”alt”, ts),msg.ts)
13 ts← ts+ dir.
14 end
15 trajs← trajs ∪ {traji}
16 end
17 return trajs

A fake trajectory is represented as a Traj instance, built
during the pre-analyse phase, and shown in Algorithm 5. We
first assume that a Traj instance initraj has been created,
containing all positions of the targeted aircraft (i.e., one
position per message) up until dir.s.start. Then, for each
fake trajectory, the method samples dir.α to determine the
divergence magnitude of the trajectory (line 2), and creates
the trajectory by duplicating initraj (line 3).Next, it creates at
regular intervals the way-points that draw the fake trajectory,
starting from dir.s.start until the end of the recording. At
each interval ts, the algorithm computes the divergence pro-
gression percentage pCoef (line 5), which consists of dividing
the time distance from the beginning of the alteration to the

current interval, by the specified duration of the progression
dir.v. If dir.v is greater than the current time distance, then it
means the trajectory is not done diverging from the initial one,
and pCoef is under 100%. If dir.v is lower, then divergence
has reached its maximum and pCoef is at 100%. Then the
euclidean distance from the initial position step is computed
by multiplying pCoef to the sampled value of α and the maxi-
mum offset k (line 6). Finally, the actual latitude and longitude
values are obtained using step, trigonometric functions sin and
cos, and the sampled direction of divergence ki (lines 7–8).
The algorithm eventually returns all fake trajectories trajs.

The last step is to convert the fake trajectories into ADS-
B messages to be injected to the initial recording. For each
message sent by the targeted aircraft within dir.s, and for each
fake trajectory, the message is duplicated, and its dynamic
properties are replaced by values obtained from sampling the
interpolation functions of the corresponding Traj instance, in
a similar fashion as the process action of Virtual Trajectory
Modification.

F. Replay

Although this type of attack is not part of the taxonomy,
we take it from recent discussions with experts that replay
attacks represent a very serious threat as it abstracts itself from
realism issues. A typical example of such an attack would be
terrorists who collected ADS-B messages of a regular flight
on a certain day, then a few days later, hop in on the plane,
hijack it and physically temper with the ADS-B transponders
to make them send out the messages they previously recorded.
This could allow terrorists to change course of flight without
being noticed immediately. In this scenario, there is no need to
compute realistic altered values to dupe detection mechanisms,
since the fake ADS-B messages that are emitted come from a
genuine source. Therefore, replay attacks can certainly bypass
FDIA detection systems that rely on realism analysis.

Replay is represented as an alteration directive dirreplay =
(s, t, r) where r is a source recording from which to extract
the targeted aircraft in t.

The first step is to extract messages from the source
recording. This is done as a first pre-analyse phase by iterating
the recording’s messages and checking whether the emitting
aircraft is present in dir.t and if the current message was sent
within the directive’s time frame. If that is the case, then the
message is marked to be replayed. The list of all the messages
that were marked is eventually returned.

The second step is about adjusting the timestamp of the
extracted messages so that they can be correctly inserted in
the target recording. For each message msg to be replayed,
the algorithm assigns a new time stamp that relates to the
target recording, as follows:
msg.ts← first ts+msg.ts− first rep ts+ offset
where first ts is the time stamp of the first message of

the target recording, first reo ts is the time stamp of the
first message extracted for replay, and offset is a value in
second expressing where in the target recording the previously
extracted messages should be inserted.



Algorithm 6: process action Method for Replay attack
Input: reps \ list of messages picked up for replay

rec \ source recording
Result: al rec \ resulting recording

1 cur ← rec.first
2 rp← reps.first
3 while cur 6= ∅ do
4 while reps 6= ∅ ∧ cur.ts > rp.ts do
5 al rec← al rec ∪ {rp}
6 reps← reps− {rp}
7 rp← reps.next
8 end
9 al rec← al rec ∪ {cur}

10 cur ← rec.next
11 end
12 while reps 6= ∅ do
13 al rec← al rec ∪ {rp}
14 reps← reps− {rp}
15 end
16 return al rec

The last step is the actual merging between the target
recording and the list of extracted messages, as perform by the
process action method detailed in Algorithm 6. The method
iterates the target recording’s messages (lines 3–11), and if
the timestamp of the first of the extracted messages cur is
smaller than the timestamp of the current message rp, then
rp is put in the resulting recording al rec (line 5) while
being removed from the list of extracted messages (line 6).
Otherwise, cur is added to the resulting recording. If the target
recording has been iterated and the list of extracted messages
is not empty, the remaining extracted messages are appended
to al rec (lines 12–14).

Looking back at the first research question defined in
Section II-D:

RQ1 To what extent is it possible to automate the
generation of FDIA scenarios that cover the taxonomy of
attack?

We believe this question can be answered positively, as we
were able to provide a dedicated algorithm for each type of
attack from the taxonomy. Moreover, we introduced a new
type of attack, Replay, and we improved on the definition
of an existing attack, Ghost Aircraft Flooding, to become
Trajectory Modification Flooding as it is an FDIA much more
complicated to detect.

V. EXPERIMENTATION

ATC constitutes one of the most critical infrastructures on
the planet and as such, it is not possible to demonstrate the
use of FDI-T in real situation by feeding falsified data to a
deployed FDIA detection system and reporting results in a
publicly available paper.

Therefore, we opted instead to confront our tool to a
detection approach from the literature [9]. First, we elaborate

on the constituents of the model and their characteristics. Then
we present the dataset that were used to train and test the
model, and especially how the proposed approach can allow
to generate the anomalies presented in [9] as well as a more
complex anomaly of our own making. Finally we discuss the
experimentation results and propose an answer to the two
research questions

A. The model

The authors propose a Machine Learning method to dis-
criminate malicious messages from regular ones. They use an
LSTM-based encoder-decoder, a deep learning architecture.
The model is decomposed in two different sub-models:
1 The encoder which learn to create a representation of

its input. In this experimentation, it is based on LSTM cells
that have been proven relevant in time series analysis. [cite] It
cannot learn alone as it has no way to check if its output are
correct by itself. That is the reason why it is always coupled
with a decoder for its training.
2 The decoder will take the encoder’s output, namely the

vectorized representation of the original data and will decode
it to fit the expected output. In the case of Habler et. al’ model,
the output is actually the input. That is why, this kind of
encoder-decoder is called an auto-encoder. The decoder will
have a similar architecture, if not identical, to the one used in
the encoder.

In this experiment, several complete, isolated flights (from
take off to landing) are taken and sliced in windows of 15
messages with a stride of 1. The encoder with these windows
and checked the cosine similarity between the input and the
output, which are supposed to be as similar as possible. Once
the model has been trained with normal data, an anomaly
threshold is set based on the reconstruction score of our
architecture. If trained properly, the model will have trouble
to auto-encode malicious data as they differ from regular ones
and the threshold set previously will be exceeded, resulting on
a detected anomaly.

B. Dataset

To train the data and test it, we used several flights collected
from the OpenSky database [20] using our fork from the
Traffic library [citation et footnote] to use raw messages. These
were all European flights as it was easier to get full flight
thanks to the ADS-B cover Europe benefits. We tried to get as
many flights morphologies as possible, e.g., Madrid-Moscow
which comes with significantly different routes depending on
the weather due to its long journey.

After training the model on legitimate data, we created
with our approach alteration scenarios based on the anomalies
defined in Habler’s paper used to validate their approach. For
each anomaly, we present below the corresponding alteration
scenario and its associated directives using the notation given
in Section III, completed with the following notation:

• Rorigin: a recording containing one flight from one
European city to another.



• Rsource: a recording containing one flight from one
European city to another. Where Rsource 6= Rorigin

• a1: the aircraft contained into Rorigin.
• a2: the aircraft contained into Rsource.
• tn: a time duration in seconds that cannot exceed
Rorigin’s duration, i.e. tn < tn+1.

• Random noise (RND) - anomalies are generated by
adding random noise to messages. To do so, values from
original messages are multiplied with a random number
between zero and two. RND requires a scenario using a
Property Modification. According to the Section IV-A it
is possible to formalize the scenario SRND as following:

SRND = (Rorigin, {dir1})
With
dir1 instance of dirprop

dir1.s = [t0, t1]
dir1.t = {a1}
dir1.P = {p1}

p1 = (ALTITUDE, 2, NOISE)

• Different Route (Route) - anomalies replace a whole
segment of the ADS-B messages with a different route
taken from OpenSky. Route requires a scenario that com-
bines a Replay and an Aircraft Disappearance directive.
According to Sections IV-F and IV-B it is possible to
formalize the scenario SRoute as following:

SRoute = (Rorigin, {dir2, dir3})
With
dir2 instance of dirreplay

dir2.s = [t0, t1]
dir2.t = {a2}
dir2.r = Rsource

dir3 instance of dirdel
dir3.s = [t0, t1]
dir3.t = {a1}
dir3.n = 1

• Gradual Drift (DRIFT) - anomalies simulate an altitude
drift. The altitude messages on the attacked time window
are all raised/lowered by an increasing/lowering multiple
of n feet. So if the first message is lowered by a hundred
feet, the second will be lowered by two hundreds, etc.
DRIFT requires a scenario using a Property Modification.
It is possible to formalize the scenario SDRIFT as
following:

SDRIFT = (Rorigin, {dir4})
With
dir4 instance of dirprop

dir4.s = [t0, t1]
dir4.t = {a1}
dir4.P = {p2}

p2 = (ALTITUDE, 25, DRIFT )

• Velocity Drift (VEL) - anomalies are gradual drift
applied to the velocity feature in knot. VEL requires a
scenario using a Property Modification. It is possible to
formalize the scenario SV EL as following:

SV EL = (Rorigin, {dir5})
With
dir5 instance of dirprop

dir5.s = [t0, t1]
dir5.t = {a1}
dir5.P = {p3}

p3 = (SPEED, 1.0, DRIFT )

• Message blocking (BLK) - only the first message out of
every five consecutive messages is preserved, to simulate
a denial-of-service attack or a network delay mode.
BLK requires a scenario using an Aircraft Disappearance
directive. It is possible to formalize the scenario SBLK

as following:

SBLK = (Rorigin, {dir6})
With
dir6 instance of dirdel

dir6.s = [t0, t1]
dir6.t = {a1}
dir6.n = 4

It was possible to generate all the anomalies as presented in
the publication associated to the detection model. In addition,
to demonstrate the added value of the presented approach,
we introduce an anomaly that was not part of the model’s
validation data set. It consists of a trajectory modification
(TRJ) of a hundred kilometers throughout a long period of
time e.g., at least for 60% of the flight.

Fig. 3: Example of a drift down anomaly score with a false
data injection. The line refers to the threshold above which an
alert is raised.

C. Results

Out of the five anomalies we recreated, we obtained similar
results to Habler’s on four of them. Figure 3 is a graphical vi-
sualization of the drift down anomaly on a flight from Moscow
to Madrid. We can clearly see the pike between the message
180 and 250 going above the anomaly threshold, defined in
a similar fashion as the reference experimentation. Similar



results can be observed on the 3 other detected anomalies.
However, we did not manage to obtain a comparable pike on
the BLK anomaly, thus not triggering any anomaly flag. One
assumption for this result would be the difference between
our data and the ones used in the original experiment. For
instance, results can differ depending on the time gap between
messages. If this gap is bigger, then deleting 4 messages out
of 5 means that the aircraft goes dark for a longer period of
time, easing the detection. Overall, the false data injections
we recreated using FDI-T seems to be detected the same way
as handcrafted ones.

As for our generated anomaly TRJ on a flight between
Oslo and Paris, results are presented on Figure 4. We find that
the anomaly score goes way below the detection threshold set
for the other five anomalies. It results to an unnoticed attack.
However, we can also observe that the use of FDI-T to modify
trajectories has the side effect of smoothing the curve, hence
making it detectable for a human eye. One workaround would
be to add a certain amount of noise to simulate more realistic
data.

We show with TRJ that our tool is capable to create
alterations that would be too cumbersome to create by hand
as we are close to 5000 messages modified from the original.
In addition, these crafted attacks are smart enough to not be
detected by a model taken from the litterature, which exposes
its limits on real contexts.

Fig. 4: The anomaly score for TRJ is way below than the drift
down anomaly. One can observe the curve being smoothed out
by the alteration

Base on the experimentation results, it is possible to provide
an answer to the second research question:

RQ2 To what extent is the approach relevant to generate
synthetic data for AI Testing?

Not only it was possible to generate the anomalies that were
used to evaluate Habler et. al.’s model, but the presented ap-
proach made it possible to generate a more complex anomaly
that was not picked up by the model, hence demonstrating
that it is suitable for providing better synthetic test data sets
for ML based detection systems and therefore contributing to
their overall improvement.

VI. CONCLUSION

In the context of improving the cybersecurity in air surveil-
lance communications, and especially with regards to the

ADS-B protocol, this paper describes a novel test data genera-
tion approach to be part of an existing FDIA testing framework
dedicated to ATC systems, called FDI-T. More precisely, the
contribution concerns the various generation algorithms that
were developed, referred to as called alteration engines, of
which the specificities are extensively presented in this paper.
The two objectives of the proposed approach is, first, to
cover the taxonomy of ADS-B attack scenarios that has been
described in the literature on multiple occasions, and second,
to use the approach to create synthetic test data sets for the
evaluation of machine learning based detection systems. We
show how both objectives have been reached by successfully
designing all classes of scenarios from the taxonomy using the
various algorithms, and by using the approach to reproduce
the test data for a detection system from the literature as
well as generating new test data that helped unveil previously
unknown weaknesses of the model. Among future work, we
have started experimenting with our approach in the context
of maritime surveillance, which is based on a communication
protocol - AIS - similar to the ADS-B protocol. Among
the ongoing work, we have started to experiment with our
approach in the context of maritime surveillance, which is
based on a communication protocol - AIS - similar to the
ADS-B protocol.
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