
HAL Id: hal-03221879
https://hal.science/hal-03221879v1

Submitted on 10 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel sparse linear solver with GMRES method using
minimization techniques of communications for GPU

clusters
Lilia Ziane Khodja, Raphael Couturier, Arnaud Giersch, Jacques Bahi

To cite this version:
Lilia Ziane Khodja, Raphael Couturier, Arnaud Giersch, Jacques Bahi. Parallel sparse linear solver
with GMRES method using minimization techniques of communications for GPU clusters. Journal of
Supercomputing, 2014, 69 (1), pp.200 - 224. �hal-03221879�

https://hal.science/hal-03221879v1
https://hal.archives-ouvertes.fr


Parallel sparse linear solver with GMRES method using minimization
techniques of communications for GPU clusters

LILIA ZIANE KHODJA RAPHAËL COUTURIER∗ ARNAUD GIERSCH JACQUES M. BAHI

FEMTO-ST Institute, University of Franche-Comte
IUT Belfort-Montbéliard

19 Av. du Marchal Juin, BP 527, 90016 Belfort, France

{lilia.ziane khoja, raphael.couturier, arnaud.giersch, jacques.bahi}@univ-fcomte.fr

Abstract

In this paper, we aim at exploiting the power computing of a GPU cluster for solving large sparse linear systems.
We implement the parallel algorithm of the GMRES iterative method using the CUDA programming language and
the MPI parallel environment. The experiments show that a GPU cluster is more efficient than a CPU cluster.
In order to optimize the performances, we use a compressed storage format for the sparse vectors and the hyper-
graph partitioning. These solutions improve the spatial and temporal localization of the shared data between the
computing nodes of the GPU cluster.

1 Introduction

Large sparse linear systems arise in most numerical scientific or industrial simulations. They model numerous com-
plex problems in different areas of applications such as mathematics, engineering, biology or physics [6]. However,
solving these systems of equations is often an expensive operation in terms of execution time and memory space
consumption. Indeed, the linear systems arising in most applications are very large and have many zero coefficients,
and this sparse nature leads to irregular accesses to load the nonzero coefficients from the memory.

Parallel computing has become a key issue for solving sparse linear systems of large sizes. This is due to the com-
puting power and the storage capacity of the current parallel computers as well as the availability of different parallel
programming languages and environments such as the MPI communication standard. Nowadays, graphics processing
units (GPUs) are the most commonly used hardware accelerators in high performance computing. They are equipped
with a massively parallel architecture allowing them to compute faster than CPUs. However, the parallel computers
equipped with GPUs introduce new programming difficulties to adapt parallel algorithms to their architectures.

In this paper, we use the GMRES iterative method for solving large sparse linear systems on a cluster of GPUs.
The parallel algorithm of this method is implemented using the CUDA programming language for the GPUs and the
MPI parallel environment to distribute the computations between the different GPU nodes of the cluster. Particularly,
we focus on improving the performances of the parallel sparse matrix-vector multiplication. Indeed, this operation is
not only very time-consuming but it also requires communications between the GPU nodes. These communications
are needed to build the global vector involved in the parallel sparse matrix-vector multiplication. It should be noted
that a communication between two GPU nodes involves data transfers between the GPU and CPU memories in the
same node and the MPI communications between the CPUs of the GPU nodes. For performance purposes, we propose
to use a compressed storage format to reduce the size of the vectors to be exchanged between the GPU nodes and a
hypergraph partitioning of the sparse matrix to reduce the total communication volume.

The present paper is organized as follows. In Section 2 some previous works about solving sparse linear systems
on GPUs are presented. In Section 3 is given a general overview of the GPU architectures, followed by that the
GMRES method in Section 4. In Section 5 the main key points of the parallel implementation of the GMRES method
on a GPU cluster are described. Finally, in Section 6 is presented the performance improvements of the parallel
GMRES algorithm on a GPU cluster.

∗Contact author

1



2 Related work

Numerous works have shown the efficiency of GPUs for solving sparse linear systems compared to their CPUs coun-
terpart. Different iterative methods are implemented on one GPU, for example Jacobi and Gauss-Seidel in [27],
conjugate and biconjugate gradients in [23, 35, 10, 36] and GMRES in [34, 19, 29, 24]. In addition, some iterative
methods are implemented on shared memory multi-GPUs machines as [13, 4, 22, 26]. A limited set of studies are
devoted to the parallel implementation of the iterative methods on distributed memory GPU clusters as [25, 7, 30].

Traditionally, the parallel iterative algorithms do not often scale well on GPU clusters due to the significant cost
of the communications between the computing nodes. Some authors have already studied how to reduce these com-
munications. In [14], the authors used a hypergraph partitioning as a preprocessing to the parallel conjugate gradient
algorithm in order to reduce the inter-GPU communications over a GPU cluster. The sequential hypergraph parti-
tioning method provided by the PaToH tool [12] is used because of the small sizes of the sparse symmetric linear
systems to be solved. In [8], a compression and decompression technique is proposed to reduce the communication
overheads. This technique is performed on the shared vectors to be exchanged between the computing nodes. In [16],
the authors studied the impact of asynchronism on parallel iterative algorithms on local GPU clusters. Asynchronous
communication primitives suppress some synchronization barriers and allow overlap of communication and compu-
tation. In [15], a communication reduction method is used for implementing finite element methods (FEM) on GPU
clusters. This method firstly uses the Reverse Cuthill-McKee reordering to reduce the total communication volume.
In addition, the performances of the parallel FEM algorithm are improved by overlapping the communication with
computation.

Our main contribution in this work is to show the difficulties of implementing the GMRES method to solve sparse
linear systems on a cluster of GPUs. First, we show the main key points of the parallel GMRES algorithm on a GPU
cluster. Then, we discuss the improvements of the algorithm which are mainly performed on the sparse matrix-vector
multiplication when the matrix is distributed on several GPUs. In fact, on a cluster of GPUs the influence of the
communications is greater than on clusters of CPUs due to the CPU/GPU communications between two GPUs that
are not on the same machines. We propose to perform a hypergraph partitioning on the problem to be solved, then we
reorder the matrix columns according to the partitioning scheme, and we use a compressed format to store the vectors
in order to minimize the communication overheads between two GPUs.

3 GPU architectures

A GPU (Graphics processing unit) is a hardware accelerator for high performance computing. Its hardware archi-
tecture is composed of hundreds of cores organized in several blocks called streaming multiprocessors. It is also
equipped with a memory hierarchy. It has a set of registers and a private read-write local memory per core, a fast
shared memory, read-only constant and texture caches per multiprocessor and a read-write global memory shared by
all its multiprocessors. The new architectures (Fermi, Kepler, etc) have also L1 and L2 caches to improve the accesses
to the global memory.

NVIDIA has released the CUDA platform (Compute Unified Device Architecture) [31] which provides a high
level GPGPU-based programming language (General-Purpose computing on GPUs), allowing to program GPUs for
general purpose computations. In CUDA programming environment, all data-parallel and compute intensive portions
of an application running on the CPU are off-loaded onto the GPU. Indeed, an application developed in CUDA is
a program written in C language (or Fortran) with a minimal set of extensions to define the parallel functions to be
executed by the GPU, called kernels. We define kernels, as separate functions from those of the CPU, by assigning
them a function type qualifiers __global__ or __device__.

At the GPU level, the same kernel is executed by a large number of parallel CUDA threads grouped together as a
grid of thread blocks. Each multiprocessor of the GPU executes one or more thread blocks in SIMD fashion (Single
Instruction, Multiple Data) and in turn each core of a GPU multiprocessor runs one or more threads within a block
in SIMT fashion (Single Instruction, Multiple threads). In order to maximize the occupation of the GPU cores, the
number of CUDA threads to be involved in a kernel execution is computed according to the size of the problem to
be solved. In contrast, the block size is restricted by the limited memory resources of a core. On current GPUs, a
thread block may contain up-to 1, 024 concurrent threads. At any given clock cycle, the threads execute the same
instruction of a kernel, but each of them operates on different data. Moreover, threads within a block can cooperate
by sharing data through the fast shared memory and coordinate their execution through synchronization points. In
contrast, within a grid of thread blocks, there is no synchronization at all between blocks.

GPUs only work on data filled in their global memory and the final results of their kernel executions must be

2



communicated to their hosts (CPUs). Hence, the data must be transferred in and out of the GPU. However, the speed
of memory copy between the CPU and the GPU is slower than the memory copy speed of GPUs. Accordingly, it is
necessary to limit the transfer of data between the GPU and its host.

4 GMRES method

The generalized minimal residual method (GMRES) is an iterative method designed by Saad and Schultz in 1986 [33].
It is a generalization of the minimal residual method (MNRES) [32] to deal with asymmetric and non Hermitian
problems and indefinite symmetric problems.

Let us consider the following sparse linear system of n equations:

Ax = b, (1)

whereA ∈ Rn×n is a sparse square and nonsingular matrix, x ∈ Rn is the solution vector and b ∈ Rn is the right-hand
side vector. The main idea of the GMRES method is to find a sequence of solutions {xk}k∈N which minimizes at best
the residual rk = b−Axk. The solution xk is computed in a Krylov sub-space Kk(A, v1):

Kk(A, v1) ≡ span{v1, Av1, A2v1, ..., A
k−1v1}, v1 = r0

‖r0‖2 , (2)

such that the Petrov-Galerkin condition is satisfied:

rk ⊥ AKk(A, v1). (3)

Algorithm 1 illustrates the main key points of the GMRES method with restarts. The linear system to be solved
in this algorithm is left-preconditioned where M is the preconditioning matrix. The Arnoldi process [5] is used
(from line 7 to line 17 of algorithm 1) to construct an orthonormal basis Vm and a Hessenberg matrix H̄m of order
(m+ 1)×m such that m� n. Then, the least-squares problem is solved (line 18) to find the vector y ∈ Rm which
minimizes the residual. Finally, the solution xm is computed in the Krylov sub-space spanned by Vm (line 19). In
practice, the GMRES algorithm stops when the Euclidean norm of the residual is small enough and/or the maximum
number of iterations is reached.

5 Parallel GMRES method on GPU clusters

5.1 Parallel implementation on a GPU cluster

The implementation of the GMRES algorithm on a GPU cluster is performed by using a parallel heterogeneous
programming. We use the programming language CUDA for the GPUs and the parallel environment MPI for the
distribution of the computations between the GPU computing nodes. In this work, a GPU computing node is composed
of a GPU and a CPU core managed by a MPI process.

Let us consider a cluster composed of p GPU computing nodes. First, the sparse linear system (1) is split into
p sub-linear systems, each is attributed to a GPU computing node. We partition row-by-row the sparse matrix A
and both vectors x and b in p parts (see Figure 1). The data issued from the partitioning operation are off-loaded on
the GPU global memories to be proceeded by the GPUs. Then, all the computing nodes of the GPU cluster execute
the same GMRES iterative algorithm but on different data. Finally, the GPU computing nodes synchronize their
computations by using MPI communication routines to solve the global sparse linear system. In what follows, the
computing nodes sharing data are called the neighboring nodes.

In order to exploit the computing power of the GPUs, we have to execute maximum computations on GPUs to
avoid the data transfers between the GPU and its host (CPU), and to maximize the GPU cores utilization to hide
global memory access latency. The implementation of the GMRES algorithm is performed by executing the functions
operating on vectors and matrices as kernels on GPUs. These operations are often easy to parallelize and more
efficient on parallel architectures when they operate on large vectors. We use the fastest routines of the CUBLAS
library (CUDA Basic Linear Algebra Subroutines) to implement the dot product (cublasDdot()), the Euclidean
norm (cublasDnrm2()) and the AXPY operation (cublasDaxpy()). In addition, we have coded in CUDA a
kernel for the scalar-vector product (lines 7 and 15 of Algorithm 1), a kernel for solving the least-squares problem
(line 18) and a kernel for solution vector updates (line 19).

The solution of the least-squares problem in the GMRES algorithm is based on:

• a QR factorization of the Hessenberg matrix H̄ by using plane rotations and,

3



Algorithm 1: Left-preconditioned GMRES algorithm with restarts
Input: A (matrix), b (vector), M (preconditioning matrix), x0 (initial guess), ε (tolerance threshold), max

(maximum number of iterations), m (number of iterations of the Arnoldi process)
Output: x (solution vector)

1 r0 ←M−1(b−Ax0);
2 β ← ‖r0‖2;
3 α← ‖M−1b‖2;
4 convergence ← false;
5 k ← 1;

6 while (¬convergence) do
7 v1 ← r0/β;
8 for j = 1 to m do
9 wj ←M−1Avj ;

10 for i = 1 to j do
11 hi,j ← (wj , vi);
12 wj ← wj − hi,j × vi;
13 end
14 hj+1,j ← ‖wj‖2;
15 vj+1 ← wj/hj+1,j ;
16 end

17 Put Vm = {vj}1≤j≤m and H̄m = (hi,j) Hessenberg matrix of order (m+ 1)×m;
18 Solve the least-squares problem of size m: min

y∈Rm
‖βe1 − H̄my‖2;

19 xm ← x0 + Vmy;
20 rm ←M−1(b−Axm);
21 β ← ‖rm‖2;

22 if (βα < ε) or (k ≥ max ) then
23 convergence ← true;
24 else
25 x0 ← xm;
26 r0 ← rm;
27 k ← k + 1;
28 end
29 end

• backward-substitution method to compute the vector y minimizing the residual.

This operation is not easy to parallelize and it is not interesting to implement it on GPUs. However, the size m of the
linear least-squares problem to solve in the GMRES method with restarts is very small. So, this problem is solved in
sequential by one GPU thread.

The most important operation in the GMRES method is the sparse matrix-vector multiplication. It is quite expen-
sive for large size matrices in terms of execution time and memory space. In addition, it performs irregular memory
accesses to read the nonzero values of the sparse matrix, implying non coalescent accesses to the GPU global memory
which slow down the performances of the GPUs. So we use the HYB kernel developed and optimized by NVIDIA [1]
which gives on average the best performance in sparse matrix-vector multiplications on GPUs [9]. The HYB (Hybrid)
storage format is the combination of two sparse storage formats: Ellpack format (ELL) and Coordinate format (COO).
It stores a typical number of nonzero values per row in ELL format and remaining entries of exceptional rows in COO
format. It combines the efficiency of ELL, due to the regularity of its memory accessing and the flexibility of COO
which is insensitive to the matrix structure.

In the parallel GMRES algorithm, the GPU computing nodes must exchange between them their shared data in
order to construct the global vector necessary to compute the parallel sparse matrix-vector multiplication (SpMV). In
fact, each computing node has locally the vector elements corresponding to the rows of its sparse sub-matrix and, in
order to compute its part of the SpMV, it also requires the vector elements of its neighboring nodes corresponding to

4



XX X X X X X X X X X X X X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Shared x Shared x
offset 0

offset 1

offset 2

offset 3

Matrix bandwidth

local x

Vector x

Node 0

Node 1

Node 2

Node 3

Sparse matrix A Vector b

Figure 1: Data partitioning of the sparse matrix A, the solution vector x and the right-hand side b in 4 partitions

the column indices in which its local sub-matrix has nonzero values. Consequently, each computing node manages a
global vector composed of a local vector of size n

p and a shared vector of size S:

S = bw − n

p
, (4)

where n
p is the size of the local vector and bw is the bandwidth of the local sparse sub-matrix which represents the

number of columns between the minimum and the maximum column indices (see Figure 1). In order to improve
memory accesses, we use the texture memory to cache elements of the global vector.

On a GPU cluster, the exchanges of the shared vectors elements between the neighboring nodes are performed as
follows:

• at the level of the sending node: data transfers of the shared data from the GPU global memory to the CPU
memory by using the CUBLAS communication routine cublasGetVector(),

• data exchanges between the CPUs by the MPI communication routine MPI_Alltoallv() and,

• at the level of the receiving node: data transfers of the received shared data from the CPU memory to the GPU
global memory by using CUBLAS communication routine cublasSetVector().

5.2 Experimentations

The experiments are done on a cluster composed of six machines interconnected by an Infiniband network of 20 GB/s.
Each machine is a Xeon E5530 Quad-Core running at 2.4 GHz. It provides 12 GB of RAM memory with a memory
bandwidth of 25.6 GB/s and it is equipped with two Tesla C1060 GPUs. Each GPU is composed of 240 cores running
at 1.3 GHz and has 4 GB of global memory with a memory bandwidth of 102 GB/s. The GPU is connected to the
CPU via a PCI-Express 16x Gen2.0 with a throughput of 8 GB/s. Figure 2 shows the general scheme of the GPU
cluster.

Scientific Linux 5.10, with Linux version 2.6.18, is installed on the six machines. The C programming language
is used for coding the GMRES algorithm on both the CPU and the GPU versions. CUDA version 4.0 [18] is used for
programming the GPUs, using CUBLAS library [17] to deal with the functions operating on vectors. Finally, MPI
routines of OpenMPI 1.3.3 are used to carry out the communication between the CPU cores.

The experiments are done on linear systems associated to sparse matrices chosen from the Davis collection of the
University of Florida [20]. They are matrices arising in real-world applications. Table 1 shows the main characteristics
of these sparse matrices and Figure 3 shows their sparse structures. For each matrix, we give the number of rows
(column 3 in Table 1), the number of nonzero values (column 4) and the bandwidth (column 5).

All the experiments are performed on double-precision data. The parameters of the parallel GMRES algorithm are
as follows: the tolerance threshold ε = 10−12, the maximum number of iterations max = 500, the Arnoldi process
is limited to m = 16 iterations, the elements of the guess solution x0 is initialized to 0 and those of the right-hand

5



RAM RAM RAM

RAM RAM RAM

Machine 0 Machine 1 Machine 2

Machine 3 Machine 4 Machine 5

8GB/s8GB/s

RAM

GPU 0

102GB/s

RAM

GPU 1

102GB/s

240 cores 240 cores

25,6GB/s

CPU Quad−Core

Core1 Core2 Core3Core0

8GB/s8GB/s

RAM

GPU 0

102GB/s

RAM

GPU 1

102GB/s

240 cores 240 cores

25,6Go/s

CPU Quad−Core

Core1 Core2 Core3Core0

8GB/s8GB/s

RAM

GPU 0

102GB/s

RAM

GPU 1

102GB/s

240 cores 240 cores

25,6GB/s

CPU Quad−Core

Core1 Core2 Core3Core0

8GB/s8GB/s

RAM

GPU 0

102GB/s

RAM

GPU 1

102GB/s

240 cores 240 cores

25,6GB/s

CPU Quad−Core

Core1 Core2 Core3Core0

8GB/s8GB/s

RAM

GPU 0

102GB/s

RAM

GPU 1

102GB/s

240 cores 240 cores

25,6GB/s

CPU Quad−Core

Core1 Core2 Core3Core0

8GB/s8GB/s

RAM

GPU 0

102GB/s

RAM

GPU 1

102GB/s

240 cores 240 cores

25,6GB/s

CPU Quad−Core

Core1 Core2 Core3Core0

Infiniband communication network 20GB/s

Figure 2: A cluster composed of six machines, each equipped with two Tesla C1060 GPUs

Matrix type Name # Rows # Nonzeros Bandwidth

Symmetric

2cubes sphere 101 492 1 647 264 100 464
ecology2 999 999 4 995 991 2 001
finan512 74 752 596 992 74 725

G3 circuit 1 585 478 7 660 826 1 219 059
shallow water2 81 920 327 680 58 710

thermal2 1 228 045 8 580 313 1 226 629

Asymmetric

cage13 445 315 7 479 343 318 788
crashbasis 160 000 1 750 416 120 202

FEM 3D thermal2 147 900 3 489 300 117 827
language 399 130 1 216 334 398 622
poli large 15 575 33 074 15 575

torso3 259 156 4 429 042 216 854

Table 1: Main characteristics of the sparse matrices chosen from the Davis collection

side vector are initialized to 1. For simplicity’s sake, we chose the matrix preconditioning M as the main diagonal of
the sparse matrix A. Indeed, it allows us to easily compute the required inverse matrix M−1 and it provides relatively
good preconditioning in most cases. Finally, we set the size of a thread-block in GPUs to 512 threads. It should be
noted that the same optimizations are performed on the CPU version and on the GPU version of the parallel GMRES
algorithm.

In Table 2, we give the performances of the parallel GMRES algorithm for solving the linear systems associated
to the sparse matrices shown in Table 1. The second and third columns show the execution times in seconds obtained
on a cluster of 24 CPU cores and on a cluster of 12 GPUs, respectively. The fourth column shows the ratio τ between
the CPU time Timecpu and the GPU time Timegpu that is computed as follows:

τ =
Timecpu

Timegpu
. (5)

From these ratios, we can notice that the use of many GPUs is not interesting to solve small sparse linear systems.
Solving these sparse linear systems on a cluster of 12 GPUs is as fast as on a cluster of 24 CPU cores. Indeed, the
small sizes of the sparse matrices do not allow to maximize the utilization of the GPU cores of the cluster. The fifth,
sixth and seventh columns show, respectively, the number of iterations performed by the parallel GMRES algorithm
to converge, the precision of the solution, prec, computed on the GPU cluster and the difference, ∆, between the
solutions computed on the GPU and the GPU clusters. The last two parameters are used to validate the results

6



thermal2

cage13 torso3poli_largelanguage

2cubes_sphere

crashbasis FEM_3D_thermal2

ecology2 finan512 G3_circuit shallow_water2

Figure 3: Structures of the sparse matrices chosen from the Davis collection

Matrix Timecpu Timegpu τ # iter prec ∆

2cubes sphere 0.234 s 0.124 s 1.88 21 2.10e-14 3.47e-18
ecology2 0.076 s 0.035 s 2.15 21 4.30e-13 4.38e-15
finan512 0.073 s 0.052 s 1.40 17 3.21e-12 5.00e-16

G3 circuit 1.016 s 0.649 s 1.56 22 1.04e-12 2.00e-15
shallow water2 0.061 s 0.044 s 1.38 17 5.42e-22 2.71e-25

thermal2 1.666 s 0.880 s 1.89 21 6.58e-12 2.77e-16
cage13 0.721 s 0.338 s 2.13 26 3.37e-11 2.66e-15

crashbasis 1.349 s 0.830 s 1.62 121 9.10e-12 6.90e-12
FEM 3D thermal2 0.797 s 0.419 s 1.90 64 3.87e-09 9.09e-13

language 2.252 s 1.204 s 1.87 90 1.18e-10 8.00e-11
poli large 0.097 s 0.095 s 1.02 69 4.98e-11 1.14e-12

torso3 4.242 s 2.030 s 2.09 175 2.69e-10 1.78e-14

Table 2: Performances of the parallel GMRES algorithm on a cluster of 24 CPU cores vs. a cluster of 12 GPUs

obtained on the GPU cluster and they are computed as follows:

prec = ‖M−1(b−Axgpu)‖∞,
∆ = ‖xcpu − xgpu‖∞,

(6)

where xcpu and xgpu are the solutions computed, respectively, on the CPU cluster and on the GPU cluster. We can see
that the precision of the solutions computed on the GPU cluster are sufficient, they are about 10−10, and the parallel
GMRES algorithm computes almost the same solutions in both CPU and GPU clusters, with ∆ varying from 10−11

to 10−25.
Afterwards, we evaluate the performances of the parallel GMRES algorithm for solving large linear systems. We

have developed in C programming language a generator of large sparse matrices having a band structure which arises
in most numerical problems. This generator uses the sparse matrices of the Davis collection as the initial matrices to
build the large band matrices. It is executed in parallel by all the MPI processes of the cluster so that each process
constructs its own sub-matrix as a rectangular block of the global sparse matrix. Each process i computes the size ni
and the offset offset i of its sub-matrix in the global sparse matrix according to the size n of the linear system to be
solved and the number of the GPU computing nodes p as follows:

ni =
n

p
, (7)

offset i =

{
0 if i = 0,
offset i−1 + ni−1 otherwise.

(8)

So each process i performs several copies of the same initial matrix chosen from the Davis collection and it puts all
these copies on the main diagonal of the global matrix in order to construct a band matrix. Moreover, it fulfills the
empty spaces between two successive copies by small copies, lower copy and upper copy, of the same initial matrix.
Figure 4 shows a generation of a sparse bended matrix by four computing nodes.

7



offset2

offset1

offset0

offset3

Node 0

Node 1

Node 2

Node 3

Initial sparse matrix

upper_copy

lo
w
er
_
co
p
y

upper_copy

lower_copy

Sparse banded global matrix

Figure 4: Example of the generation of a large sparse and band matrix by four computing nodes.

Table 3 shows the main characteristics (the number of nonzero values and the bandwidth) of the large sparse
matrices generated from those of the Davis collection. These matrices are associated to the linear systems of 25
million of unknown values (each generated sparse matrix has 25 million rows). In Table 4 we show the performances
of the parallel GMRES algorithm for solving large linear systems associated to the sparse band matrices of Table 3.
The fourth column gives the ratio between the execution time spent on a cluster of 24 CPU cores and that spent on a
cluster of 12 GPUs. We can notice from these ratios that for solving large sparse matrices the GPU cluster is more
efficient (about 5 times faster) than the CPU cluster. The computing power of the GPUs allows to accelerate the
computation of the functions operating on large vectors of the parallel GMRES algorithm.

Matrix type Name # nonzeros Bandwidth

Symmetric

2cubes sphere 413 703 602 198 836
ecology2 124 948 019 2 002
finan512 278 175 945 123 900

G3 circuit 125 262 292 1 891 887
shallow water2 100 235 292 62 806

thermal2 175 300 284 2 421 285

Asymmetric

cage13 435 770 480 352 566
crashbasis 409 291 236 200 203

FEM 3D thermal2 595 266 787 206 029
language 76 912 824 398 626
poli large 53 322 580 15 576

torso3 433 795 264 328 757

Table 3: Main characteristics of the sparse and band matrices generated from the sparse matrices of the Davis collec-
tion.

6 Minimization of communications

The parallel sparse matrix-vector multiplication requires data exchanges between the GPU computing nodes to con-
struct the global vector. However, a GPU cluster requires communications between the GPU nodes and the data
transfers between the GPUs and their hosts CPUs. In fact, a communication between two GPU nodes implies: a data
transfer from the GPU memory to the CPU memory at the sending node, a MPI communication between the CPUs
of two GPU nodes, and a data transfer from the CPU memory to the GPU memory at the receiving node. Moreover,
the data transfers between a GPU and a CPU are considered as the most expensive communications on a GPU cluster.
For example in our GPU cluster, the data throughput between a GPU and a CPU is of 8 GB/s which is about twice
lower than the data transfer rate between CPUs (20 GB/s) and 12 times lower than the memory bandwidth of the GPU
global memory (102 GB/s). In this section, we propose two solutions to improve the execution time of the parallel
GMRES algorithm on GPU clusters.

8



Matrix Timecpu Timegpu τ # iter prec ∆

2cubes sphere 3.683 s 0.870 s 4.23 21 2.11e-14 8.67e-18
ecology2 2.570 s 0.424 s 6.06 21 4.88e-13 2.08e-14
finan512 2.727 s 0.533 s 5.11 17 3.22e-12 8.82e-14

G3 circuit 4.656 s 1.024 s 4.54 22 1.04e-12 5.00e-15
shallow water2 2.268 s 0.384 s 5.91 17 5.54e-21 7.92e-24

thermal2 4.650 s 1.130 s 4.11 21 8.89e-12 3.33e-16
cage13 6.068 s 1.054 s 5.75 26 3.29e-11 1.59e-14

crashbasis 25.906 s 4.569 s 5.67 135 6.81e-11 4.61e-15
FEM 3D thermal2 13.555 s 2.654 s 5.11 64 3.88e-09 1.82e-12

language 13.538 s 2.621 s 5.16 89 2.11e-10 1.60e-10
poli large 8.619 s 1.474 s 5.85 69 5.05e-11 6.59e-12

torso3 35.213 s 6.763 s 5.21 175 2.69e-10 2.66e-14

Table 4: Performances of the parallel GMRES algorithm for solving large sparse linear systems associated to band
matrices on a cluster of 24 CPU cores vs. a cluster of 12 GPUs.

6.1 Compressed storage format of the sparse vectors

In Section 5.1, the SpMV multiplication uses a global vector having a size equivalent to the matrix bandwidth (see
Formula 4). However, we can notice that a SpMV multiplication does not often need all the vector elements of the
global vector composed of the local and shared sub-vectors. For example in Figure 1, node 1 only needs a single
vector element from node 0 (element 1), two elements from node 2 (elements 8 and 9) and two elements from node
3 (elements 13 and 14). Therefore to reduce the communication overheads of the unused vector elements, the GPU
computing nodes must exchange between them only the vector elements necessary to perform their local sparse
matrix-vector multiplications.

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

1 8 9 13 14
X X X X X

X

0 1 2 3

X XX X

8 9 10 11

X X X X

12 13 14 15

XX X X

0 987654321 1514131211

1 8 9 13 14

10

X X XX

X X X XX XX X X X XXX XXX

Local sparse matrix

Global vector

Local
sub−vector

Shared sub−vector

Sparse storage
format

Compressed storage
format

Send vector elements

to node 1

Local sub−vectors

elements by the node 1

Compute the required

Node 1

Neighboring nodes

0, 2 and 3

Node 0 Node 2 Node 3

Figure 5: Example of data exchanges between node 1 and its neighbors 0, 2 and 3.

We propose to use a compressed storage format of the sparse global vector. In Figure 5, we show an example of
the data exchanges between node 1 and its neighbors to construct the compressed global vector. First, the neighboring
nodes 0, 2 and 3 determine the vector elements needed by node 1 and, then, they send only these elements to it. Node
1 receives these shared elements in a compressed vector. However to compute the sparse matrix-vector multiplication,
it must first copy the received elements to the corresponding indices in the global vector. In order to avoid this process
at each iteration, we propose to reorder the columns of the local sub-matrices so as to use the shared vectors in their
compressed storage format (see Figure 6). For performance purposes, the computation of the shared data to send to the
neighboring nodes is performed by the GPU as a kernel. In addition, we use the MPI point-to-point communication
routines: a blocking send routine MPI_Send() and a nonblocking receive routine MPI_Irecv().

Table 5 shows the performances of the parallel GMRES algorithm using the compressed storage format of the
sparse global vector. The results are obtained from solving large linear systems associated to the sparse band matrices

9



X

X

X

X

X

X

X

X X

X

X

X

X

X X

0 1 2 43 8 976 105 11 14 151312

X X X X X XX X X X X X X X XX

X X X X X

4 5 6 7 1

X X X X

8 9 13 14

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

sub−vector sub−vector
Local Shared

Sparse global vector

Local sparse sub−matrix

Compressed global vector

Reordering of the

local sparse matrix

Reordered local sparse sub−matrix

Figure 6: Reordering of the columns of a local sparse matrix.

presented in Table 3. We can see from Table 5 that the execution times of the parallel GMRES algorithm on a cluster
of 12 GPUs are improved by about 38% compared to those presented in Table 4. In addition, the ratios between
the execution times spent on the cluster of 24 CPU cores and those spent on the cluster of 12 GPUs have increased.
Indeed, the reordering of the sparse sub-matrices and the use of a compressed storage format for the sparse vectors
minimize the communication overheads between the GPU computing nodes.

Matrix Timecpu Timegpu τ # iter prec ∆

2cubes sphere 3.597 s 0.514 s 6.99 21 2.11e-14 8.67e-18
ecology2 2.549 s 0.288 s 8.83 21 4.88e-13 2.08e-14
finan512 2.660 s 0.377 s 7.05 17 3.22e-12 8.82e-14

G3 circuit 3.139 s 0.480 s 6.53 22 1.04e-12 5.00e-15
shallow water2 2.195 s 0.253 s 8.68 17 5.54e-21 7.92e-24

thermal2 3.206 s 0.463 s 6.93 21 8.89e-12 3.33e-16
cage13 5.560 s 0.663 s 8.39 26 3.29e-11 1.59e-14

crashbasis 25.802 s 3.511 s 7.35 135 6.81e-11 4.61e-15
FEM 3D thermal2 13.281 s 1.572 s 8.45 64 3.88e-09 1.82e-12

language 12.553 s 1.760 s 7.13 89 2.11e-10 1.60e-10
poli large 8.515 s 1.053 s 8.09 69 5.05e-11 6.59e-12

torso3 31.463 s 3.681 s 8.55 175 2.69e-10 2.66e-14

Table 5: Performances of the parallel GMRES algorithm using a compressed storage format of the sparse vectors for
solving large sparse linear systems associated to band matrices on a cluster of 24 CPU cores vs. a cluster of 12 GPUs.

6.2 Hypergraph partitioning

In this section, we use another structure of the sparse matrices. We are interested in sparse matrices whose nonzero
values are distributed along their large bandwidths. We developed in C programming language a generator of sparse
matrices having five bands (see Figure 7). The principle of this generator is the same as the one presented in Sec-
tion 5.2. However, the copies made from the initial sparse matrix, chosen from the Davis collection, are placed on the
main diagonal and on two off-diagonals on the left and right of the main diagonal. Table 6 shows the main character-
istics of sparse matrices of size 25 million of rows and generated from those of the Davis collection. We can see in
the fourth column that the bandwidths of these matrices are as large as their sizes.

In Table 7 we give the performances of the parallel GMRES algorithm on the CPU and GPU clusters for solving
large linear systems associated to the sparse matrices shown in Table 6. We can notice from the ratios given in the
fourth column that solving sparse linear systems associated to matrices having large bandwidth on the GPU cluster
is as fast as on the CPU cluster. This is due to the large total communication volume necessary to synchronize

10



Upper_copy
offset1

offset2

offset3

offset0

Initial sparse matrix

L
o
w
e
r_
c
o
p
y

Upper_copy

L
o
w
e
r_
c
o
p
y

Large sparse matrix

Node 0

Node 1

Node 2

Node 3

Figure 7: Example of the generation of a large sparse matrix having five bands by four computing nodes.

Matrix type Name # nonzeros Bandwidth

Symmetric

2cubes sphere 829 082 728 24 999 999
ecology2 254 892 056 25 000 000
finan512 556 982 339 24 999 973

G3 circuit 257 982 646 25 000 000
shallow water2 200 798 268 25 000 000

thermal2 359 340 179 24 999 998

Asymmetric

cage13 879 063 379 24 999 998
crashbasis 820 373 286 24 999 803

FEM 3D thermal2 1 194 012 703 24 999 998
language 155 261 826 24 999 492
poli large 106 680 819 25 000 000

torso3 872 029 998 25 000 000

Table 6: Main characteristics of the sparse matrices having five band and generated from the sparse matrices of the
Davis collection.

the computations over the cluster. In fact, the naive partitioning row-by-row or column-by-column of this type of
sparse matrices links a GPU node to many neighboring nodes and produces a significant number of data dependencies
between the different GPU nodes.

Matrix Timecpu Timegpu τ # iter prec ∆

2cubes sphere 15.963 s 7.250 s 2.20 58 6.23e-16 3.25e-19
ecology2 3.549 s 2.176 s 1.63 21 4.78e-15 1.06e-15
finan512 3.862 s 1.934 s 1.99 17 3.21e-14 8.43e-17

G3 circuit 4.636 s 2.811 s 1.65 22 1.08e-14 1.77e-16
shallow water2 2.738 s 1.539 s 1.78 17 5.54e-23 3.82e-26

thermal2 5.017 s 2.587 s 1.94 21 8.25e-14 4.34e-18
cage13 9.315 s 3.227 s 2.89 26 3.38e-13 2.08e-16

crashbasis 35.980 s 14.770 s 2.43 127 1.17e-12 1.56e-17
FEM 3D thermal2 24.611 s 7.749 s 3.17 64 3.87e-11 2.84e-14

language 16.859 s 9.697 s 1.74 89 2.17e-12 1.70e-12
poli large 10.200 s 6.534 s 1.56 69 5.14e-13 1.63e-13

torso3 49.074 s 19.397 s 2.53 175 2.69e-12 2.77e-16

Table 7: Performances of the parallel GMRES algorithm using a compressed storage format of the sparse vectors for
solving large sparse linear systems associated to matrices having five bands on a cluster of 24 CPU cores vs. a cluster
of 12 GPUs.

11



v4

v6 v5

v3

v1

v8

v7

v9v2

e9

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

e1 e3e2 e4 e5 e6 e7 e8 e9

v3

v1

v2

v4

v6

v5

v7

v8

v9

Part 3

2

2

2

2

2

3

3

34

Part 2

e2

e7

e4

e3

e8

e1

e5

e6

Part 1

node 1

node 2

node 3

Figure 8: A hypergraph partitioning of a sparse matrix between three computing nodes.

We propose to use a hypergraph partitioning method which is well adapted to numerous structures of sparse matri-
ces [11]. Indeed, it can well model the communications between the computing nodes especially for the asymmetric
and rectangular matrices. It gives in most cases good reductions of the total communication volume. Nevertheless, it
is more expensive in terms of execution time and memory space consumption than the partitioning method based on
graphs.

The sparse matrix A of the linear system to be solved is modelled as a hypergraphH = (V, E) as follows:

• each matrix row i (0 ≤ i < n) corresponds to a vertex vi ∈ V ,

• each matrix column j (0 ≤ j < n) corresponds to a hyperedge ej ∈ E , such that: ∀aij is a nonzero value of the
matrix A, vi ∈ pins[ej ],

• wi is the weight of vertex vi,

• cj is the cost of hyperedge ej .

A K-way partitioning of a hypergraph H = (V, E) is defined as a set of K pairwise disjoint non-empty subsets (or
parts) of the vertex set V: P = {V1, . . . ,Vk}, such that V = ∪Kk=1Vk. Each computing node is in charge of a vertex
subset. Figure 8 shows an example of a hypergraph partitioning of a sparse matrix of size (9 × 9) into three parts.
The circles and squares correspond, respectively, to the vertices and hyperedges of the hypergraph. The solid squares
define the cut hyperedges connecting at least two different parts. The connectivity λj denotes the number of different
parts spanned by the cut hyperedge ej .

The cut hyperedges model the communications between the different GPU computing nodes in the cluster,
necessary to perform the SpMV multiplication. Indeed, each hyperedge ej defines a set of atomic computations
bi ← bi + aijxj of the SpMV multiplication which needs the jth element of vector x. Therefore pins of hyperedge ej
(pins[ej ]) denote the set of matrix rows requiring the same vector element xj . For example in Figure 8, hyperedge e9
whose pins are: pins[e9] = {v2, v5, v9} represents matrix rows 2, 5 and 9 requiring the vector element x9 to compute
in parallel the atomic operations: b2 ← b2 + a29x9, b5 ← b5 + a59x9 and b9 ← b9 + a99x9. However, x9 is a vector
element of the computing node 3 and it must be sent to the neighboring nodes 1 and 2.

The hypergraph partitioning allows to reduce the total communication volume while maintaining the computa-
tional load balance between the computing nodes. Indeed, it minimizes at best the following sum:

X (P) =
∑
ej∈EC

cj(λj − 1), (9)

where EC is the set of the cut hyperedges issued from the partitioning P , cj and λj are, respectively, the cost and
the connectivity of the cut hyperedge ej . In addition, the hypergraph partitioning is constrained to maintain the load
balance between the K parts:

Wk ≤ (1 + ε)Wavg , (1 ≤ k ≤ K) and (0 < ε < 1), (10)

where Wk is the sum of the vertex weights in the subset Vk, Wavg is the average part’s weight and ε is the maximum
allowed imbalanced ratio.

12



The hypergraph partitioning is a NP-complete problem but software tools using heuristics are developed, for
example: hMETIS [28], PaToH [12] and Zoltan [21]. Due to the large sizes of the linear systems to be solved, we use
a parallel hypergraph partitioning which must be performed by at least two MPI processes. The hypergraph modelH
of the sparse matrix is split into p (number of computing nodes) sub-hypergraphsHk = (Vk, Ek), 0 ≤ k < p, then the
parallel partitioning is applied by using the MPI communication routines.

Table 8 shows the performances of the parallel GMRES algorithm for solving the linear systems associated to the
sparse matrices presented in Table 6. In the experiments, we have used the compressed storage format of the sparse
vectors and the parallel hypergraph partitioning developed in the Zoltan tool [2, 3]. The parameters of the hypergraph
partitioning are initialized as follows:

• The weight wi of each vertex vi is set to the number of the nonzero values on the matrix row i,

• For simplicity’s sake, the cost cj of each hyperedge ej is set to 1,

• The maximum imbalanced ratio ε is limited to 10%.

We can notice from Table 8 that the execution times on the cluster of 12 GPUs are significantly improved compared to
those presented in Table 7. The hypergraph partitioning applied on the large sparse matrices having large bandwidths
have improved the execution times on the GPU cluster by about 65%.

Matrix Timecpu Timegpu τ # iter prec ∆

2cubes sphere 16.430 s 2.840 s 5.78 58 6.23e-16 3.25e-19
ecology2 3.152 s 0.367 s 8.59 21 4.78e-15 1.06e-15
finan512 3.672 s 0.723 s 5.08 17 3.21e-14 8.43e-17

G3 circuit 4.468 s 0.971 s 4.60 22 1.08e-14 1.77e-16
shallow water2 2.647 s 0.312 s 8.48 17 5.54e-23 3.82e-26

thermal2 4.190 s 0.666 s 6.29 21 8.25e-14 4.34e-18
cage13 8.077 s 1.584 s 5.10 26 3.38e-13 2.08e-16

crashbasis 35.173 s 5.546 s 6.34 127 1.17e-12 1.56e-17
FEM 3D thermal2 24.825 s 3.113 s 7.97 64 3.87e-11 2.84e-14

language 16.706 s 2.522 s 6.62 89 2.17e-12 1.70e-12
poli large 12.715 s 3.989 s 3.19 69 5.14e-13 1.63e-13

torso3 48.459 s 6.234 s 7.77 175 2.69e-12 2.77e-16

Table 8: Performances of the parallel GMRES algorithm using a compressed storage format of the sparse vectors and
a hypergraph partitioning method for solving large sparse linear systems associated to matrices having five bands on
a cluster of 24 CPU cores vs. a cluster of 12 GPUs.

Table 9 shows in the second, third and fourth columns the total communication volume on a cluster of 12 GPUs by
using row-by-row partitioning or hypergraph partitioning and compressed format. The total communication volume
defines the total number of the vector elements exchanged between the 12 GPUs. From these columns we can see that
the two heuristics, compressed format for the vectors and the hypergraph partitioning, minimize the number of vector
elements to be exchanged over the GPU cluster. The compressed format allows the GPUs to exchange the needed
vector elements without any communication overheads. The hypergraph partitioning allows to split the large sparse
matrices so as to minimize data dependencies between the GPU computing nodes. However, we can notice in the
fifth column that the hypergraph partitioning takes longer than the computation times. As we have mentioned before,
the hypergraph partitioning method is less efficient in terms of memory consumption and partitioning time than its
graph counterpart. So for the applications which often use the same sparse matrices, we can perform the hypergraph
partitioning only once and, then, we save the traces in files to be reused several times. Therefore, this allows us to
avoid the partitioning of the sparse matrices at each resolution of the linear systems.

Hereafter, we show the influence of the communications on a GPU cluster compared to a CPU cluster. In Ta-
bles 10, 11 and 12, we compute the ratios between the computation time over the communication time of three
versions of the parallel GMRES algorithm to solve sparse linear systems associated to matrices of Table 6. These
tables show that the hypergraph partitioning and the compressed format of the vectors increase the ratios either on
the GPU cluster or on the CPU cluster. That means that the two optimization techniques allow the minimization
of the total communication volume between the computing nodes. However, we can notice that the ratios obtained
on the GPU cluster are lower than those obtained on the CPU cluster. Indeed, GPUs compute faster than CPUs but

13



Matrix
Total comm. vol. Total comm. vol. Total comm. vol. Time of hypergraph
using row-by row using compressed using hypergraph partitioning partitioning

partitioning format and compressed format in minutes
2cubes sphere 182 061 791 25 360 543 240 679 68.98

ecology2 181 267 000 26 044 002 73 021 4.92
finan512 182 090 692 26 087 431 900 729 33.72

G3 circuit 192 244 835 31 912 003 5 366 774 11.63
shallow water2 181 729 606 25 105 108 60 899 5.06

thermal2 191 350 306 30 012 846 1 077 921 17.88
cage13 183 970 606 28 254 282 3 845 440 196.45

crashbasis 182 931 818 29 020 060 2 401 876 33.39
FEM 3D thermal2 182 503 894 25 263 767 250 105 49.89

language 183 055 017 27 291 486 1 537 835 9.07
poli large 181 381 470 25 053 554 7 388 883 5.92

torso3 183 863 292 25 682 514 613 250 61.51

Table 9: Total communication volume on a cluster of 12 GPUs using row-by-row or hypergraph partitioning methods
and compressed vectors. The total communication volume is defined as the total number of vector elements exchanged
between all GPUs of the cluster.

with GPUs there are more communications due to CPU/GPU communications, so communications are more time-
consuming while the computation time remains unchanged. Furthermore, we can notice that the GPU computation
times on Tables 11 and 12 are about 10% lower than those on Table 10. Indeed, the compression of the vectors and
the reordering of matrix columns allow to perform coalesced accesses to the GPU memory and thus accelerate the
sparse matrix-vector multiplication.

Figure 9 presents the weak scaling of four versions of the parallel GMRES algorithm on a GPU cluster. We fixed
the size of a sub-matrix to 5 million of rows per GPU computing node. We used matrices having five bands generated
from the symmetric matrix thermal2. This figure shows that the parallel GMRES algorithm, in its naive version or
using either the compression format for vectors or the hypergraph partitioning, is not scalable on a GPU cluster due to
the large amount of communications between GPUs. In contrast, we can see that the algorithm using both optimiza-
tion techniques is fairly scalable. That means that in this version the cost of communications is relatively constant
regardless the number of computing nodes in the cluster.

Finally, as far as we are concerned, the parallel solving of a linear system can be easy to optimize when the
associated matrix is regular. This is unfortunately not the case for many real-world applications. When the matrix
has an irregular structure, the amount of communications between processors is not the same. Another important
parameter is the size of the matrix bandwidth which has a huge influence on the amount of communications. In this
work, we have generated different kinds of matrices in order to analyze several difficulties. With a bandwidth as large
as possible, involving communications between all processors, which is the most difficult situation, we proposed to
use two heuristics. Unfortunately, there is no fast method that optimizes the communications in any situation. For
systems of non linear equations, there are different algorithms but most of them consist in linearizing the system of
equations. In this case, a linear system needs to be solved. The big interest is that the matrix is the same at each step
of the non linear system solving, so the partitioning method which is a time consuming step is performed only once.

Another very important issue, which might be ignored by too many people, is that the communications have a
greater influence on a cluster of GPUs than on a cluster of CPUs. There are two reasons for that. The first one comes
from the fact that with a cluster of GPUs, the CPU/GPU data transfers slow down communications between two GPUs
that are not on the same machines. The second one is due to the fact that with GPUs the ratio of the computation time
over the communication time decreases since the computation time is reduced. So the impact of the communications
between GPUs might be a very important issue that can limit the scalability of parallel algorithms.

7 Conclusion and perspectives

In this paper, we have aimed at harnessing the computing power of a GPU cluster for solving large sparse linear
systems. We have implemented the parallel algorithm of the GMRES iterative method. We have used a heteroge-

14



Matrix
GPU version CPU version

Timecomput Timecomm Ratio Timecomput Timecomm Ratio

2cubes sphere 37.067 s 1434.512 s 0.026 312.061 s 3453.931 s 0.090
ecology2 4.116 s 501.327 s 0.008 60.776 s 1216.607 s 0.050
finan512 7.170 s 386.742 s 0.019 72.464 s 932.538 s 0.078

G3 circuit 4.797 s 537.343 s 0.009 66.011 s 1407.378 s 0.047
shallow water2 3.620 s 411.208 s 0.009 51.294 s 973.446 s 0.053

thermal2 6.902 s 511.618 s 0.013 77.255 s 1281.979 s 0.060
cage13 12.837 s 625.175 s 0.021 139.178 s 1518.349 s 0.092

crashbasis 48.532 s 3195.183 s 0.015 623.686 s 7741.777 s 0.081
FEM 3D thermal2 37.211 s 1584.650 s 0.023 370.297 s 3810.255 s 0.097

language 22.912 s 2242.897 s 0.010 286.682 s 5348.733 s 0.054
poli large 13.618 s 1722.304 s 0.008 190.302 s 4059.642 s 0.047

torso3 74.194 s 4454.936 s 0.017 897.440 s 10800.787 s 0.083

Table 10: Ratios of the computation time over the communication time obtained from the parallel GMRES algorithm
using row-by-row partitioning on 12 GPUs and 24 CPUs.

Matrix
GPU version CPU version

Timecomput Timecomm Ratio Timecomput Timecomm Ratio

2cubes sphere 27.386 s 154.861 s 0.177 342.255 s 42.100 s 8.130
ecology2 3.822 s 53.131 s 0.072 69.956 s 15.019 s 4.658
finan512 6.366 s 41.155 s 0.155 79.592 s 8.604 s 9.251

G3 circuit 4.543 s 63.132 s 0.072 76.540 s 27.371 s 2.796
shallow water2 3.282 s 43.080 s 0.076 58.348 s 8.088 s 7.214

thermal2 5.986 s 57.100 s 0.105 87.682 s 28.544 s 3.072
cage13 10.227 s 70.388 s 0.145 152.718 s 30.785 s 4.961

crashbasis 41.527 s 369.071 s 0.113 701.040 s 158.916 s 4.411
FEM 3D thermal2 28.691 s 167.140 s 0.172 403.510 s 50.935 s 7.922

language 22.408 s 242.589 s 0.092 333.119 s 64.409 s 5.172
poli large 13.710 s 179.208 s 0.077 215.934 s 30.903 s 6.987

torso3 58.455 s 480.315 s 0.122 993.609 s 152.173 s 6.529

Table 11: Ratios of the computation time over the communication time obtained from the parallel GMRES algorithm
using row-by-row partitioning and compressed format for vectors on 12 GPUs and 24 CPUs.

Matrix
GPU version CPU version

Timecomput Timecomm Ratio Timecomput Timecomm Ratio

2cubes sphere 28.440 s 7.768 s 3.661 327.109 s 63.788 s 5.128
ecology2 3.652 s 0.757 s 4.823 63.632 s 13.520 s 4.707
finan512 7.579 s 4.569 s 1.659 74.120 s 22.505 s 3.294

G3 circuit 4.876 s 8.745 s 0.558 72.280 s 28.395 s 2.546
shallow water2 3.146 s 0.606 s 5.191 52.903 s 11.177 s 4.733

thermal2 6.473 s 4.325 s 1.497 81.171 s 20.907 s 3.882
cage13 11.676 s 7.723 s 1.512 145.755 s 46.547 s 3.131

crashbasis 42.799 s 29.399 s 1.456 650.386 s 203.918 s 3.189
FEM 3D thermal2 29.875 s 8.915 s 3.351 382.887 s 93.252 s 4.106

language 20.991 s 11.197 s 1.875 310.679 s 82.480 s 3.767
poli large 13.817 s 102.760 s 0.134 197.508 s 151.672 s 1.302

torso3 57.469 s 16.828 s 3.415 926.588 s 242.721 s 3.817

Table 12: Ratios of the computation time over the communication time obtained from the parallel GMRES algorithm
using hypergraph partitioning and compressed format for vectors on 12 GPUs and 24 CPUs.

15



 0

 20

 40

 60

 80

 100

 120

1 2 4 6 8 10 12

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
e
s
)

Number of GPUs

Naive
with compression

with hypergraph
with compression and hypergraph

Figure 9: Weak scaling of the parallel GMRES algorithm on a GPU cluster.

neous parallel programming based on the CUDA language to program the GPUs and the MPI parallel environment to
distribute the computations between the GPU nodes on the cluster.

The experiments have shown that solving large sparse linear systems is more efficient on a cluster of GPUs than on
a cluster of CPUs. However, the efficiency of a GPU cluster is ensured as long as the spatial and temporal localization
of the data is well managed. The data dependency scheme on a GPU cluster is related to the sparse structures of
the matrices (positions of the nonzero values) and the number of the computing nodes. We have shown that a large
number of communications between the GPU computing nodes affects considerably the performances of the parallel
GMRES algorithm on the GPU cluster. Therefore, we have proposed to reorder the columns of the sparse local sub-
matrices on each GPU node and to use a compressed storage format for the sparse vector involved in the parallel
sparse matrix-vector multiplication. This solution allows to minimize the communication overheads. In addition, we
have shown that it is interesting to choose a partitioning method according to the structure of the sparse matrix. This
reduces the total communication volume between the GPU computing nodes.

In future works, it would be interesting to implement and study the scalability of the parallel GMRES algorithm on
large GPU clusters (hundreds or thousands of GPUs) or on geographically distant GPU clusters. In this context, other
methods might be used to reduce communication and to improve the performances of the parallel GMRES algorithm
as the multisplitting methods. The recent GPU hardware and software architectures provide the GPU-Direct system
which allows two GPUs, placed in the same machine or in two remote machines, to exchange data without using
CPUs. This improves the data transfers between GPUs. Finally, it would be interesting to implement other iterative
methods on GPU clusters for solving large sparse linear or non linear systems.

Acknowledgments This paper is based upon work supported by the Région de Franche-Comté.

References

[1] CUSP library. http://code.google.com/p/cusp-library/.

[2] PHG - Parallel hypergraph and graph partitioning with Zoltan. http://www.cs.sandia.gov/Zoltan/
ug_html/ug_alg_phg.html.

[3] Zoltan : Parallel partitioning, load balancing and data-management services. user’s guide. http://www.cs.
sandia.gov/Zoltan/ug_html/ug.html.

[4] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser. A parallel preconditioned conjugate gradient solver for the
poisson problem on a multi-GPU platform. Proceedings of the 2010 18th Euromicro Conference on Parallel,
Distributed and Network-based Processing, pages 583–592, 2010.

16



[5] W. Arnoldi. The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart,
Appl.Math., 9:17–29, 1951.

[6] J. Bahi, S. Contassot-Vivier, and R. Couturier. Parallel iterative algorithms: from sequential to grid computing.
Chapman & Hall/CRC Numerical Analysis and Scientific Computing, 2008.

[7] J. Bahi, R. Couturier, and L. Ziane Khodja. Parallel GMRES implementation for solving sparse linear systems
on GPU clusters. pages 12–19, 2011.

[8] J. Bahi, R. Couturier, and L. Ziane Khodja. Parallel sparse linear solver gmres for gpu clusters with compression
of exchanged data. Euro-Par 2011: Parallel Processing Workshops, 7155:471–480, 2012.

[9] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on throughput-oriented processors.
pages 1–11, 2009.

[10] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Trans. Graph., 22(3):917–924, 2003.

[11] U. Catalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector
multiplication. IEEE Trans. Parallel Distrib. Syst., 10(7):673–693, 1999.

[12] U. Catalyürek and C. Aykanat. PaToH: Partitioning tool for hypergraphs. 1999.

[13] A. Cevahir, A. Nukada, and S. Matsuoka. Fast conjugate gradients with multiple GPUs. Computational Science
ICCS 2009, 5544:893–903, 2009. .

[14] A. Cevahir, A. Nukada, and S. Matsuoka. High performance conjugate gradient solver on multi-GPU clusters
using hypergraph partitioning. Computer Science - Research and Development, 25:83–91, 2010.

[15] C. Chen and T. Taha. A communication reduction approach to iteratively solve large sparse linear systems on a
GPGPU cluster. Cluster Computing, pages 1–11, 2013.

[16] S. Contassot-Vivier, T. Jost, and S. Vialle. Impact of asynchronism on GPU accelerated parallel iterative com-
putations. 7133:43–53, 2012.

[17] N. Corporation. CUDA Toolkit 4.2 CUBLAS Library. 2012. http://developer.download.nvidia.
com/compute/DevZone/docs/html/CUDALibraries/doc/CUBLAS_Library.pdf.

[18] N. Corporation. NVIDIA CUDA C Programming Guide. Version 4.2, 2012. http://developer.
download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_
Guide.pdf.

[19] R. Couturier and S. Domas. Sparse systems solving on GPUs with GMRES. The journal of Supercomputing,
59(3):1504–1516, 2012.

[20] T. Davis and Y. Hu. The university of florida sparse matrix collection. 1997. Digest,
http://www.cise.ufl.edu/research/sparse/matrices/.

[21] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek. Parallel hypergraph partitioning for sci-
entific computing. In Proceedings of the 20th international conference on Parallel and distributed processing,
IPDPS’06, pages 124–124. IEEE Computer Society, 2006.

[22] B. DeVries, J. Iannelli, C. Trefftz, K. O’Hearn, and G. Wolffe. Parallel implementations of {FGMRES} for
solving large, sparse non-symmetric linear systems. Procedia Computer Science, 18(0):491–500, 2013.

[23] A. Gaikwad and I. Toke. Parallel iterative linear solvers on GPU: a financial engineering case. 2010 18th
Euromicro Conference on Parallel, Distributed and Network-based Processing, pages 607–614, 2010.

[24] N. Ghaemian, A. Abdollahzadeh, Z. Heinemann, A. Harrer, M. Sharifi, and G. Heinemann. Accelerating the
GMRES iterative linear solver of an oil reservoir simulator using the multi-processing power of compute unified
device architecture of graphics cards. 2010. .

17



[25] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. Buijssen, M. Grajewski, and S. Turek. Exploring
weak scalability for FEM calculations on a GPU-enhanced cluster. Parallel Computing, Special issue: High-
performance computing using accelerators, 33(10–11):685–699, 2007.

[26] G. Haase, M. Liebmann, C. Douglas, and G. Plank. A parallel algebraic multigrid solver on graphics processing
units. High Performance Computing and Applications, 5938:38–47, 2010. .

[27] T. Jost, S. Contassot-Vivier, and S. Vialle. An efficient multi-algorithms sparse linear solver for GPUs. Interna-
tional conference on parallel computing, ParCo2009, 2009. .

[28] G. Karypis and V. Kumar. hMETIS: A hypergraph partitioning package. 1998.

[29] R. Li and Y. Saad. GPU-accelerated preconditioned iterative linear solvers. The Journal of Supercomputing,
63(2):443–466, 2013. .

[30] A. Neic, M. Liebmann, G. Haase, and G. Plank. Algebraic multigrid solver on clusters of CPUs and GPUs.
Applied Parallel and Scientific Computing, 7134:389–398, 2012. .

[31] Nvidia. NVIDIA CUDA C programming guide. 2010. Version 4.0.

[32] C. Paige and M. Saunders. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical
Analysis, 12(4):617–629, 1975.

[33] Y. Saad and M. Schultz. GMRES : a generalized minimal residual algorithm for solving nonsymmetric linear
systems. SIAM J. Sci. Stat. Comput., 7(3):856–869, 1986.

[34] M. Wang, H. Klie, M. Parashar, and H. Sudan. Solving sparse linear systems on NVIDIA Tesla GPUs. Compu-
tational Science ICCS 2009, 5544:864–873, 2009.

[35] D. Weber, J. Bender, M. Schnoes, A. Stork, and D. Fellner. Efficient GPU data structures and methods to solve
sparse linear systems in dynamics applications. Computer Graphics Forum, 32:16–26, 2013. .

[36] N. Zhao and X. Wang. A parallel preconditioned Bi-Conjugate Gradient stabilized solver for the Poisson prob-
lem. Journal of Computers, 7(12), 2012.

18


