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Introduction

A conveyor is a mechanical equipment that allows the transportation of objects within the production chain. In this study, we focus on the conveying of sub-millimeter components (1; 2). Using conveyors for micro-object is essential since human intervention is inconceivable. In (3), conveyance systems are classified according to the used transfer forces into [START_REF] Mabed | Multicriteria optimization in distributed micro-conveying platform[END_REF] different technologies, such as chain conveyor, wheel conveyor, flat belt conveyor, magnetic belt conveyor, bucket conveyor, vibrating conveyor, pneumatic conveyor, etc. Contact-less systems such as air-jet platform present a safer way to convey fragile objects (electrical or chemical products for example).

Smart surface (4) platform, shown in Figure 1, is a robotic system composed of a grid of numerous autonomous elements (MEMS) developed for the transportation of microscopic objects over short distances. Every MEMS block involves microsensors, microactuators and a control unit. The blocks work in a distributed manner (without central unit) in order to transfer the objects to given target locations 1 . On one hand, the distributed architecture of the smart surface platform provides a more robust (fault tolerance) framework than systems based on a single monolithic block where any failure leads to the system shutdown. Indeed, the smart surface presents a modular architecture that leads to self-reconfiguration features, i.e. search for alternative paths to convey an object by avoiding failed blocks. On the other hand, contact-based technologies are not appropriate for fragile and tiny micro-objects (medicines, micro-electronics parts, etc.), which can be easily damaged, contaminated or even scratched during conveyance. Thus, systems based on air-jet technology (5; 6; 7) such as smart surface system avoid contact with conveyed objects and provide safer manipulation.

The work presented in this paper, whose contributions will be presented in a dedicated section, is part of the smart surface project which aims to increase the efficiency of future production lines. The conveying principle consists in transporting micro-objects from a starting block to a final destination using controlled airflow coming from MEMS valves of the blocks. To do so, the degradation of all MEMS valves involved in micro-object transport has to be controlled. The reliability of MEMS components is of major concern [START_REF] Medjaher | Condition assessment and fault prognostics of microelectromechanical systems[END_REF]. MEMS components suffer from various failure mechanisms (9; 10) that impact on their performances, their lifespan and the availability of the entire system. This highlights the need to monitor their behavior, assess their health, or, even better, estimate their remaining time before failure (RUL, Remaining Useful Life). According to health estimation, it is essential to take appropriate decisions, such as reconfiguration control and maintenance [START_REF] Skima | Hybrid prognostic approach for Micro-Electro-Mechanical Systems[END_REF]. These tasks can be done by using Prognostics and Health Management (PHM) approaches (12; 13; 14).

For the clarity of the presentation, the PHM aspects are not discussed. We focus on the algorithmic solution that allows thousands of blocks to cooperate in order to optimally convey tiny objects. The work is still relevant no matter the degradation process used by the equip-ment. Consequently, the main contribution of this work is to propose an original distributed conveying algorithm that manages both the short-term performance of the conveying surface (transfer time of an object) and the long-term performance (material lifespan). This article is organized as follows. The next section presents an overview of some analogous problems and underlines the specificity of the conveying problem in a smart surface system. Section 3 outlines the contributions of this work. Section 4 introduces the distributed MEMS-based surface. Section 5 presents the proposed algorithms and various ways to evaluate the quality of a given conveying path. Section 6 describes the simulation and the testing environment.

Related works

The optimization of transportation system lifetime by the adoption of a smart routing strategy is a common problem in intelligent transportation systems. In multi-hop wireless networks (15; 16; 17), for instance, naive data routing protocols lead to the overuse of some nodes which can rapidly be discharged. Packets routing policy needs to spread the used paths over the network nodes. However, the problem discussed here presents a major novelty. The links features (latency, throughput, capacity, etc.) are generally considered static in telecommunication networks. Smart surface conveying problem assumes that the transfer time of a given block to its neighboring blocks varies over time according to the block use.

In Road Network [START_REF] Huang | Optimal paths in dynamic networks with dependent random link travel times[END_REF], the traffic optimization aims to avoid congestion. As for the smartsurface conveying problem, external events such as accidents and thunderstorms (in the road network) or clogging and dust risks (in the smart surface) affect the system. Furthermore, human behavior increases the uncertainty in road network unlike the smart surface system where the human intervention is nonexistent. However, in the road network the infrastructure lifespan is not immediately impacted by the traffic while the lifespan of the smart surface is partially determined by the use of blocks.

To conclude, despite some similarities with well-known problems in transportation and communication fields, our problem remains a particular case due to the millimeter scale of the system, inducing hardware and software constraints (memory storage, computing capab-ilities) and to the addressing of the degradation state of the MEMS modules. Degradation effects make that a path to convey an object could be good at a given moment and become bad later.

Regarding the authors' previous research, an initial study can be found in [START_REF] Mabed | Multicriteria optimization in distributed micro-conveying platform[END_REF]. The work presented here presents a more realistic modeling and a significant extension of the precedent study. The first major original addition of the current article is the introduction of the effect of orientation changes on the object transfer time. We also propose an incremental distributed algorithm that reduces the amount of computational effort and exchanged messages between blocks. The study is enriched with a new optimization criterion (squares sum) that leads to a better exploitation of the smart surface. In addition, a short state of the art on the shortest path problems is given. Also, a related study can be found in [START_REF] Skima | Post-prognostics decision making in distributed MEMS-based systems[END_REF], which uses a non-scalable algorithm and uses only one function for path quality assessment, both of them being the main points addressed in this article.

Contributions

The distributed architecture of the platform and the conveying algorithm aim to guarantee, among others, the modularity and maintainability of the conveying system. The modularity means that no block is compulsory for the system to work. The maintainability concerns the ability of the system to fix some problems by replacing only a subset of the system (some blocks), leading to smaller maintenance costs.

The smart surface conveying problem is an original Multi-Objective Shortest Path (MOSP) problem. The work presented here focuses on a sequential conveying system where a new object is introduced once the previous object is removed from the surface. This assumption allows us to ignore, at this stage of the work, physical collisions between objects. The paper presents an original study about how to manage the trade-off between the short-term performance of the surface (transfer time of an object) and the long-term performance (surface lifespan).

In this context, the distributed optimization of the conveying paths is a complex task. The computational and memory limits of each block make necessary to provide algorithmic solutions with low and constant spatial complexity (memory storage requirement). Proposed procedures guarantee a computational complexity of less than O(m) on every block, where m is the number of blocks. We are showing that the algorithm convergence is reached with a time complexity of O(m).

The distributed MEMS-based conveyor

As already shown in Fig. 1, the conveying surface is described by a 2D grid of decentralized micro-blocks. Each block presents a square surface with a sensor that can detect when an object is above the block, an actuator formed by MEMS valves, a micro-controller executing code, a power supplier, and a network module allowing communication with its four neighboring blocks. The valves allow air to flow and push the object above the block to one of the neighboring blocks. When an object reaches its destination, it gets out of the surface, and a new object enters the system.

There are a lot of challenging issues to be tackled from a technological perspective, such as the fabrication of these micro-devices (sensor, actuator, controller, communication module) and their integration inside the block, and controlling the object above the surface (air levitation is always unstable, the direction depends on object shape and size, so the object can be correctly conveyed only through the cooperation of several blocks). Solving the whole problem requires solving the different parts of it. In the current article we abstract down the problem to a planar conveying problem, presented in the following, and focus on it.

Let's assume a smart surface of m blocks. We notice by C(b), initially 0, the number of objects that crossed the block b. A block is then associated with two dynamic values that describe its state: the RUL and the transfer time.

Block characteristics

The RUL of a block designates the number of times that the block can again be used before the start of revision procedure. When the RUL of a block reaches 0, the smart surface is stopped and overused blocks are fixed or replaced. We consider that the initial RUL, corresponding to the maximum number of uses of a block, is specified by the manufacturer as part of the device's technical characteristics. A block, b, is also associated to T (b) value that refers to the time needed to move an object from the block to an adjacent one. T (b) depends on the state of the valve, i.e. the more the valve is used, the more the valve becomes inefficient. The transfer time is subject to variations over time due to a variety of causes. To forecast the next transfer time on a given block, the degradation model may include criteria such as transfer time of the last object(s), number of uses, frequency of uses and last use date. Section 6 describes the two degradation models we used in tests to simulate the variation of the transfer time of blocks.

The transfer time on a given block depends also on the need of object re-orientations, i.e. the precedent and the next blocks are not aligned. Every time the object changes its motion orientation, the smart system stops its progression then pushes it toward the new direction.

The re-orientation of an object requires additional time corresponding to the stop-restart procedure.

In the absence of PHM mechanisms, each block estimates its own transfer time as the experienced transfer time during the last use of the block. Consequently, the effective transfer time of the object following the optimal found path could be different from the estimated value (see section 6). After every use of the block b, the transfer time value T (b) is updated.

The initial value of transfer time corresponds to the manufacturing value specified by the constructor. 

Path characteristics

The distributed protocol aims to compute in real time, the best path from the initial position of an object to its final position. When an object is detected and the final position known, the blocks determine the best path that increases the surface lifetime and reduce the transfer time. The transfer time of a given path is calculated as follow:

T (p = [b 1 ..b n ]) = b i ∈p T (b) + T o(b i-1 , b i , b i+1 ) (1) Where T o(b i-1 , b i , b i+1
) refers to the re-orientation time needed to push an object coming

from b i-1 ∈ p toward b i+1 ∈ p when b i-1 , b i and b i+1 are not aligned. T o(b i-1 , b i , b i+1 ) =    0 if b i-1 , b i , b i+1 are aligned 1 otherwise    (2) 
However, whereas the evaluation of a path transfer time is simply computed by the sum of the transfer times of the traversed blocks (eq. 1), the evaluation of the system lifespan on the basis of the RU L(b) values is a complex question. In this paper we study different measurement functions of the RUL of a path. Each block tries to optimize the RUL of the remaining path before reaching the final position. The RU L of a path p starting from the block b 1st is computed using the recursive function RU L(p) described in equation 3, where F is a function to be defined:

RU L(p) = F (RU L(p -{b 1st }), RU L(b 1st )) (3) 
F is a monotonic function that should be defined in such a manner that it respects the following condition:

         ∀p, ∀b, RU L(p) ≤ F (RU L(p), RU L(b)) or ∀p, ∀b, RU L(p) ≥ F (RU L(p), RU L(b))          (4) 
The monotonicity feature prevents inconsistent functions F where adding loops in a path may improve its evaluation.

Multi-criteria distributed conveying algorithm

This section presents a brief state of the art on shortest path problems, and afterward the proposed algorithm called incremental massively distributed algorithm. The incremental massively distributed algorithm presents an improvement of the massively distributed algorithm published in [START_REF] Mabed | Multicriteria optimization in distributed micro-conveying platform[END_REF].

State of the art on shortest path problems

The shortest path problem is one of the most fundamental network optimization problems, used in various fields such as telecommunication [START_REF] Medhi | Network routing -algorithms, protocols, and architectures[END_REF], transportation [START_REF] Jiang | A novel model and its algorithms for the shortest path problem of dynamic weight-varying networks in intelligent transportation systems[END_REF], production systems [START_REF] Nip | Combinations of some shop scheduling problems and the shortest path problem: Complexity and approximation algorithms[END_REF]. In the graph theory, this problem consists in finding a path between two nodes in a graph by minimizing the total weight of the path. Weights refer to any metric that describes the effort to traverse the path, such as length, time, cost, etc. The literature divides the shortest path problems in three categories:

• Single-source: find a shortest path from a given source node to each of the nodes.

• Single-pair: given two nodes, find a shortest path between them. This is a particular case of single source category.

• All-pairs: find the shortest path for each pair of nodes.

The best known algorithms for solving this kind of problems are: Dijkstra's (( 24)), Bellman-Ford (( 25)), A* (( 26)), Floyd-Warshall (( 27)) and dynamic programming algorithms ( 28), ( 29), (30, page 185).. The characteristics of these algorithms are given in table 1. Overall, it has to be noted that the algorithms based on computing the best path from multiple sources to multiple destinations (all pairs) are not relevant for our problem: path quality dynamically changes during object conveyance, and we just need the optimal path from the current position of the object to its destination.

Multi-objective shortest path problems

Real world problems have often a multi-objective nature (31; 32). In shortest path problems, it is not unusual that the paths be evaluated according to several criteria at the same time such as the distance, the cost, the time, the number of hops, etc.

In major works on multi-objective shortest path optimization, the problem is modeled by a graph where each node or edge is labeled with a vector of weights, one per objective (33; 34). The quality of a path according to a given objective is then measured as the sum of the weights of the nodes or edges belonging to the path. Object conveying problem with the smart surface is an original problem. Indeed, the impact on the smart surface lifespan of conveying an object can not be simply evaluated as the sum of the wear (RUL) of the be studied, as it will be shown in section 5.5.

Standard Dijkstra's algorithm

We decided to reuse the well-known Dijkstra's algorithm by reason of the similarities between the studied problem and the shortest path problem. According to the literature, Dijkstra's algorithm has the smallest complexity among all the algorithms finding the optimal solution. However, Dijkstra's algorithm was conceived for mono-criterion problems. Hence it needs to be adapted to fit our multi-criteria problem.

A first version of the algorithm was presented and analyzed in [START_REF] Skima | Post-prognostics decision making in distributed MEMS-based systems[END_REF] and used in [START_REF] Skima | Optimal path evolution in a dynamic distributed MEMS-based conveyor[END_REF] to In this first algorithm, each block computes the complete path toward the target position of the object, and stores it in next[] vector. In addition, each block stores the current estimated lifetime, RU L(b), and transfer time, T (b), of all the blocks. Each time the best path from a neighbor is computed, it is compared with the path provided by the other neighbors (line 17). The "better than" relation between two paths is determining for the optimization strategy and will be discussed in section 6 (simulation results). In other words, the "better than" relation expresses the selection procedure among two possible paths evaluated according to the same criterion.

discover
Definition 3. Let s 1 and s 2 be two paths with the same source and destination block and let (f 1 , ..., f n ) be n evaluation criteria. s 1 is said dominating s 2 if and only if: for each neighbor x of y do end if

• ∀f i , f i (s 1 )

23:

end for 24: end while

• and ∃f j | f j (s 1 ) is better than f j (s 2 ).
This first algorithm has some drawbacks:

• Memory: The memory complexity of the algorithm is O(3 × m), corresponding to the storage of RU L, T and next data. The memory limitation of the micro-modules makes this algorithm non scalable when the number of blocks increases.

• Time: Every block contained in the best path will initiate the procedure only when the object is present above it. Therefore, the transfer time includes also the computation of the best path. Note, however, that, with the trade-off of increasing network usage, this point could be ignored if every block sends the entire optimal path to the next block before or during moving the object.

• Network: The storage by each block of the RUL and T data of every block means that the update procedure used to broadcast the changes to each block of the smart surface needs |p * | × (m -1) exchanged messages, where |p * | represents the length of the best path found. In that case, the algorithm could not be started until the update procedure has finished. In case of numerous blocks, this can slowdown the conveying procedure.

Massively distributed algorithm

In [START_REF] Mabed | Multicriteria optimization in distributed micro-conveying platform[END_REF], we proposed a synchronous algorithm which avoids the drawbacks above. Each block stores three scalar values corresponding to its RU L, T and next. Where next refers to the next block to convey the object until the dest position. Therefore, the memory complexity of the algorithm is reduced to a constant value O(1), making the algorithm scalable.

While in Algorithm 1, blocks proceed sequentially, in massively distributed algorithm, optimal sub-paths are computed by the blocks in distributed way. Every time the block receives an OP T IM IZE message, it updates its optimal path by may be changing its next block and informs its neighbors by this change.

To ensure that no better path will be found by its neighbors (proof can be found in ( x, y are the number of columns and lines of the surface (x × y = m) respectively, and Ñ is equal to N if N is odd and 0 otherwise ( Ñ = N × N %2).

Incremental massively distributed algorithm

The objective of the incremental version of the massively distributed algorithm is to reduce the amount of computation, energy consumption and the number of exchanged messages needed to determine the best path. To that end, we take advantage of the results of the previous computations.

Let's take the following example: at instant t, an object located at the block S1 needs to be conveyed to the destination block D. After running the massively distributed algorithm, the variable next of the block S2 = S1 designates the best next hop to reach D from S2. isM odif ied is used to report paths which need to be recomputed.

Additionally, we consider a heuristic variant of the algorithm. To further reduce the number of exchanged messages, we propose that blocks do not systematically recalculate the best path to the dest block. This relies on the fact that during the conveyance of an object, the variation of the optimal path is often marginal. Therefore, it is counterproductive for a block to re-compute the new path each and every time the current stored path is modified this variant leads to sub-optimal paths, but reduces the number of exchanged messages.

Compared to the initial massively distributed algorithm, the incremental version increases the memory complexity of the algorithm from O(1) to O(2×m). Therefore, the improvement of the computational complexity of the incremental version should be sufficiently high to justify the lack of memory scalability. The termination condition is identical, with the same time complexity. Furthermore, the number of OPTIMIZE messages cannot exceed 3 × M axRounds in both algorithms, and in the heuristic variant it is even smaller. The efficiency of the incremental mechanism will then be assessed according to the real number of exchanged UPDATE messages that determines the needed computational effort.

Optimization criteria

The aforementioned algorithms use an objective function F to compute the quality of a given path. Not only it defines what the best path is, but also the desired trade-off between the short-term (fast object conveyance) and the long-term vision (high system lifespan).

Consequently, the choice of this function is a key factor for the efficiency of the proposed solution. In this section, we present various ways to combine the two criteria (RU L and T ) within a single function F . The global lifetime of the system relies on the lifetime of each block, and especially the impact of a given conveying path on the system durability. In a precedent work [START_REF] Mabed | Multicriteria optimization in distributed micro-conveying platform[END_REF] we performed a detailed study on the optimization criteria modeling.

We retake here only the two following:

MaxMin RUL function The RU L of a path, to maximize, is the smallest RU L among the RU L of path's blocks:

max p RU L(p) = max p min(RU L(p -{b 1st }), RU L(b 1st )) (6) 
= max

p min b∈p RU L(b)KaisaM iettinen (7) 
If two paths have the same RU L, the path with the better transfer time is considered.

Squares function

The RU L of a path, to minimize, is the sum of the squares of the uses number C(b) over the path's blocks:

min p RU L(p) = min p (RU L(p -{b 1st }), C(b 1st ) 2 ) (8) = min p b∈p C(b) 2 (9) 
If two paths have the same RU L, the path with the better transfer time is considered.

Experiments

This section has for objective to prove the relevance of the conveying distributed algorithm in smart surface. We will describe in turn the conveying scenarios and smart surface platform simulator. Then we assess the relevance of the different optimization strategies (optimization criteria) and we study the performance of the incremental distributed algorithm.

Scenarios

To propose representative set of test scenarios, we conceived 10 scenarios with different smart surface sizes, different rules for generating initial and final positions of the objects and different degradation processes. Simulated smart surface sizes vary from 10x10 to 40x40 (1600 blocks). The initial and final positions of conveyed objects are generated following two different rules. In the "any" rule, the initial and final positions are selected randomly and could be any block in the smart surface. While in "edge" rule, the initial and final positions are located on one of the four sides (first or last line or column) of the smart surface. Each rule corresponds to a class of conveying problems. The "any" rule is suitable for manipulation and placement applications, when "edge" rule fits filtering or classification applications.

At this stage of the work, a real PHM model is not used. So the blocks Remaining Useful Life (RU L) is estimated according to the number of block uses. We assume that blocks are designed for a maximum number of uses, C max . The block RUL can be deduced from the number of uses of the block using equation:

RU L(b) = C max -C(b) (10) 
Finally, to enlarge the scenarios diversity, we studied two different degradation models.

The degradation models describe how the performances (transfer time) of the blocks are 

where RN D is a randomly selected value in the interval [0,1].

In the second degradation model, called idle-based model, we introduce the period during which a block was not used as a factor of the degradation. The objective is to push the system to regularly select every block in order to conserve the valves health state. This way, the transfer time of a given block varies according to the following expression:

T (b) = T (b) -α log(RN D) + β × U (b) (12) 
U (b) represents the number of cycles during which the block b has not been used.

It should be recalled that the degradation model is not a prediction model used by blocks to forecast their future transfer time. Indeed, blocks refer to their last transfer time (during an object conveying) as the current T (b). The degradation model is used to simulate the gap between the predicted path performance (during the distributed algorithm phase) and the real performance (during the conveying simulation). The simulator functioning scheme is depicted in figure 2.

Simulator

We implemented a simulator in VBA Microsoft Excel. The simulator executes a given scenario until a maintenance procedure is required as a result of a block end of life (∃b, RU L(b) = 0). At each iteration of the simulator (see figure 2), a new object is generated with its initial and final positions. According to the last experienced T(b) and the current RUL(b), a path is computed to convey the object from its initial to the final position. Then the simulation of the conveying process is started. The object crosses over the blocks of the computed path according to the transfer times simulated using the degradation model (equations 11 or 12).

For all the tests presented hereafter, we used the following parameters: C max = 100, T 0 = 1s, α = 10s, β = 0.1s, T o = 0.3 s. We assume that the smart surface is unused at the beginning of the simulation, i.e. ∀b, C(b) = 0 . final positions), and the algorithm is run to compute the path that should be followed by the object.

Optimization criteria comparison

The behavior of each of the two studied criteria (MaxMin RUL and Square Sum objective) is depicted in figure 3, where the the color of each block designates its wear level at the end of the simulation (when the RUL of a given block reach 0). We also show, in figure 3 the wear state of the smart surface at the end of the simulation using two other criteria: the minimum transfer time path and the straight line path. As we can see, the use of the sum of RUL square allows a better exploitation of the smart surface with a good partition of the block usage. We also observe (Figure 5) that Squares sum based optimization provides a better average transfer time even though the average value is computed for a longer period; i.e. more conveyed objects. The transfer time efficiency of Squares sum based optimization is better observed when the comparison is restricted to the 200 first conveyed objects (Figure 6).

Incremental algorithm performance

Let's recall that the heuristic incremental algorithm reduces the computation time and the number of exchanged messages to the detriment of memory and particularly the accuracy of the results. Computation time and memory have already been presented. Thus, this section considers the other criteria.

Figures 7 and8 compare incremental and non-incremental algorithms in terms of the number of exchanged messages and the number of conveyed objects. We observe that the variation of the prob parameter allows to adjust the desired trade-off between the optimality of the used paths and the number of messages needed to guarantee this optimality. On the one hand, the smaller the value of prob parameter, the smaller the number of conveyed objects (due to lower quality paths being used). On the other hand, smaller prob values produce fewer exchanged messages and thus faster convergence and less energy consumption. We also observe that the system lifespan (number of conveyed objects) is not significantly degraded when the optimal paths are not systematically updated. For the scenario No 6, compared to the non-incremental algorithm, updating the optimal path only every 20% of time reduces the number of conveyed objects by less than 0.8% (903-895=8 fewer objects) while the number of exchanged messages is reduced by 10%. In practice, it is up to the decision maker to specify the balance between the algorithm lightness and solution optimality considering the effective capacity of blocks and surface dimensions.

Finally, we observe that for relatively big surfaces, the reduction of exchanged messages is less significant. For example, in 20:edge:lin scenario (in bold in the table), the number of messages goes from 16M (non-incremental method) to 10M (using prob=5%). The reason is that the average conveying path length increases with the surface size. The probability that an optimal path needs to be updated depends on the parameter prob and the number of hops to the destination block as given by the following formula:

t i=0 (1 -prob) i × prob ( 13 
)
where t is the length of the stored optimal path between a source and a destination block.

We conclude that prob parameter needs to be adjusted according to the surface size: the bigger the surface, the smaller the prob parameter.

Conclusion and perspectives

In this paper, we have studied the optimization of objects conveyance with a modular distributed MEMS surface. We proposed a bi-criteria optimization model that takes into account a short-term objective consisting to convey the current object as soon as possible to its final position, and a long-term objective related to the extension of the system lifespan.

We studied different ways to combine these two criteria within a single objective function used by the optimization algorithm. Our results show that methods based on the transformation of the RUL value to distinguish overused blocks from under-used blocks (such as square sum function) provide the best results.

We also implemented an incremental distributed algorithm that allows every block to reuse optimal paths previously found which leads to reduce the number of exchanged messages. The algorithm presents a linear complexity, guaranteeing the scalability of the system with respect to the number of blocks.

The results obtained are encouraging since the lifespan of the system is extended with the use of the square sum criterion by up to 160% compared to naive direct line approach without degrading the conveying speed. Approaches that make the short-term objective a priority, such as direct line or transfer time minimization, lead to an unbalanced (heterogeneous) use of the surface blocks (see figure 3). Later this unbalance provokes the degradation of the conveying speed as well. This is due to the relationship between the blocks RUL and the degradation of the transfer time. Hence, we have analyzed two different degradation models defining this relationship called exponential and idle based degradation model. In both cases, the square sum objective performs better than the other criteria according to the number of conveyed objects and the average transfer time of an object.

The incremental version of the massively distributed algorithm allows adjusting the number of exchanged messages according to the desired degree of optimality. For instance, on the scenario No 10, the use of an updating probability of 1% divides the number of exchanged messages by 4, while the number of conveyed objects has decreased by only 4%.

The main limitation of this work is the sequential introduction of the objects on the smart surface. It is then necessary to adapt the algorithmic solutions in order to take into account the conveying of several objects at the same time. Also, for more accurate modeling of the problem, it will be interesting to associate 4 different transfer times to each block according to the next neighboring block. Finally, we need to consider that a single block is not sufficient to control an object, hence several neighboring blocks need to collaborate to
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 1 Figure 1: The smart surface architecture. The object is conveyed from its initial position S to its final position D using air pressure forces.

Definition 1 .

 1 RU L(b) is the remaining number of times that the block b can be used before the maintenance.

Definition 2 .

 2 T (b) is the recorded transfer time during the last use of the block b.

  how the optimal path evolves in time during conveyance. The modified Dijkstra's algorithm, presented in Algorithm 1, returns the path with the higher minimum RUL over the crossed blocks (MaxMin RUL). If several paths have the same MaxMin RUL, the path with minimum transfer time is then returned. To obtain this algorithm, authors started with an original Dijkstra's algorithm that minimizes the transfer time and then modified the initialization part and the relaxation part (lines 4, 8, 16 and 18 have been added, and line 17 has been modified) to maximize the RUL. The obtained algorithm maintains the same complexity as the original Dijkstra's algorithm, and is still optimal.

15 :

 15 RULThroughY = F(bestRUL[y], RUL[x]) 16: if (RULThroughY,timeThroughY) is better than (bestRUL[x],bestT[x]) then

Now, another object

  needs to be moved towards D starting from S2. If no block within the path between S2 and D was crossed since t, then the path P remains valid and does not need to be computed again. This idea is explored in Algorithm 3, where each block stores a vector next[] of m entries and next[b] refers to the best next block to reach the block b (or N U LL if the path to the block b is not yet known). When an object crosses a block b provoking changes of its RU L and T values, all the paths involving the block b are erased by setting to N U LL the values next[], as depicted in Algorithm 4. Note that this algorithm is run only in incremental case, after Algorithm 3. More precisely, ∀n ∈ N eighbors(b) and ∀b with next n [b] = b, next n [b] is set to N U LL, where next n [] refers to the vector next stored by the node n. Recursively, ∀ modified next n [b] and ∀n ∈ N eighbors(n) with next n [b] = n, next n [b] is set to N U LL, and so on. A flag vector

  impacted by the successive valves activation. The first degradation model represents a realistic degradation model (36; 20) called exponential model. Every time the block is used, its transfer time increases by a probabilistic value following an exponential distribution with mean α. T (b) = T (b) -α log(RN D)

Figure 2 :

 2 Figure 2: Simulator architecture. At each iteration, the conveying of a new object is simulated (initial and

Figures 4 ,

 4 Figures 4, 5 and 6 show the comparison results between the squares sum based optimization and the MaxMin RUL based optimization. The comparison is made, respectively, on the basis of the number of conveyed objects, the average transfer time of conveyed objects and the average transfer time of the first 200 conveyed objects. The latter is important since a surface which conveys more objects will clearly be more degraded at the end than a surface which only conveys a few objects. Also, the average on the first 200 objects allows to assess the conveyance rapidity during the starting period of the system. Figures 4, 5 and 6 show that the function evaluating the entire path's blocks such as

Figure 3 :

 3 Figure 3: Wear level of a smart surface with 20x20 blocks at the end of 4 simulations with the different optimization criteria: square sum, MinMax RUL, Minimum Transfer time and straight line move. Darker is the block lower is the RUL.

Figure 4 :

 4 Figure 4: Comparison of the number of conveyed objects on the 10 studied scenarios (x-axis) according to the optimization criteria.

Figure 5 :

 5 Figure 5: Comparison of the transfer time of conveyed objects on the 10 studied scenarios (x-axis) according to the optimization criteria.

Figure 6 :

 6 Figure 6: Comparison of the transfer time of the 200 first conveyed objects on the 10 studied scenarios (x-axis) according to the optimization criteria.

Figure 7 :

 7 Figure 7: Comparison of the number of conveyed objects on the 10 studied scenarios (x-axis) according to the incremental probability parameter prob.

Figure 8 :

 8 Figure 8: Comparison of the number of exchanged messages on the 10 studied scenarios (x-axis) according to the incremental probability parameter prob.

Table 1 :

 1 Examples of shortest path algorithms (V is the number of nodes and A is the number of edges in the graph). More subtle formulation of the path impact on the smart surface RUL is to

	Algorithm	Characteristics	Speed
	Dijkstra	-single source	-O(V 2 )
		-positive weight	-fast
		-optimal	
	Bellman-Ford	-single source	-O(|V |.|A|)
		-negative weight	-slower than
		-negative cycles	Dijkstra
		-optimal	
	Floyd-Warshall -all pairs	-O(|V | 3 )
		-negative weight	-slower than
		-negative cycles	Dijkstra
		-optimal	
	A*	-single pair	-depends on the
		-heuristic, optimality heuristic
		not guaranteed	-fast

  is better than or equal to f i (s 2 )

	Algorithm 1 Modified Dijkstra's algorithm.
	Require: RUL[], T[], dest
	Ensure: best path toward dest: next[]
	1: for each block x in the surface do
	2:	bestT[x] = ∞
	3:	bestRUL[x] = 0
	4:	next[x] = undefined
	5: end for

6: bestT[dest] = T[dest] 7: bestRUL[dest] = F(RUL[dest]) 8: Q = initially contains the source node 9: while Q is not empty do 10: y = node in Q with best RUL in bestRUL[] 11: remove y from Q 12:

  ) and to inform neighboring blocks of this change. A re-computing probability prob is used (see algorithm 3, line 9) to trigger the recalculation of the variable next[dest]. As such,

	(next[]
	Algorithm 3 Incremental distributed algorithm.
	Require: myRUL, myT, dest, next[] Algorithm 4 Procedure executed during object conveyance.
	1: for all d, bestRUL = WorstValue Require: myRUL, myT, dest, next[]
	2: for all d, bestT = ∞ 1: for each round do
	3: for all d, next[d] = N U LL 2: if the object is on self then
	4: for all d, isModified[d] = f alse 3: push the object to next[destination] {move the object to the next position}
	4:	send message UPDATE(self, NULL) to all neighbors
	5:	else if self receives message UPDATE(v, dest) then
	6:	if dest == NULL then
	7:	for each destination d do
	8:	if next[d] == v then
	9:	isModified[d] = true
	10:	send message UPDATE(self, d) to all neighbors except v
	11: 11:	bestRUL = F(myRUL,pathRUL) end if
	12: 12:	bestT = T(self)+pathT end for
	13: 13:	next[dest] = v else
	14: 14:	if self is not the source of the object then if next[dest] == v then
	15: 15:	send message OPTIMIZE(self, bestRUL, bestT) to all neighbors except v isModified[dest] = true
	16: 16:	end if send message UPDATE(self, dest) to all neighbors except v
	17: 17:	end if end if
	18: 18:	end if end if
	19: end for 19: end if
	20: isModified[dest] = false 20: end for

5: if self == dest then 6: send message OPTIMIZE(self, myRUL, myT) to all neighbors 7: end if 8: for each round do 9: if isModified[dest] AND rand()< prob AND self receives a message OPTIMIZE(v, pathRUL, pathT) then 10:

if (F(myRUL,pathRUL),myT+pathT) is better than (bestRUL,bestT) then
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move the objects.