Efficient enumeration of rooted maps of a given orientable genus by number of faces and vertices
 Timothy R Walsh, Alain Giorgetti

To cite this version:

Timothy R Walsh, Alain Giorgetti. Efficient enumeration of rooted maps of a given orientable genus by number of faces and vertices. Ars Mathematica Contemporanea, 2014, 7 (2), pp.263-280. hal03221874

HAL Id: hal-03221874

https://hal.science/hal-03221874

Submitted on 10 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Efficient enumeration of rooted maps of a given orientable genus by number of faces and vertices

T. R. S. Walsh
Department of Computer Science, University of Quebec in Montreal (UQAM), P.O. Box 8888, Station A, Montreal, Quebec, Canada, HC3-3P8

A. Giorgetti *
LIFC, University of Franche-Comté, 16 route de Gray, 25030 Besançon, France

Received dd mmmm yyyy, accepted dd mmmm yyyy, published online dd mmmmm yyyy

Abstract

We simplify the recurrence satisfied by the polynomial part of the generating function that counts rooted maps of positive orientable genus g by number of vertices and faces. We have written an optimized program in $\mathrm{C}++$ for computing this generating function and constructing tables of numbers of rooted maps, and we describe some of these optimizations here. Using this program we extended the enumeration of rooted maps of orientable genus g by number of vertices and faces to $g=4,5$ and 6 and by number of edges to $g=5$ and 6 and conjectured a further simplification of the generating function that counts rooted maps by number of edges. Our program is documented and available on request, allowing anyone with a sufficiently powerful computer to carry the calculations even further.

Keywords: Efficient enumeration, rooted maps, orientable genus, generating functions
Math. Subj. Class.: 05C30, 05A15

1 Introduction: definitions and history

A map is defined topologically as a 2 -cell imbedding of a connected graph, loops and multiple edges allowed, in a 2-dimensional surface. The faces of a map are the connected components of the complement of the graph in the surface. In this article the surface is assumed to be without boundary and orientable, with an orientation already attributed to it (clockwise, say), so that it is completely described by a non-negative integer g, its genus. For short, a map on a surface of genus g will be called a genus- g map. A planar map is a

[^0]genus-0 map (a map on a sphere) and a toroidal map is a genus-1 map (a map on a torus or donut). If a map on a surface of genus g has v vertices, e edges and f faces, then by the Euler-Poincaré formula [7, chap. 9]
\[

$$
\begin{equation*}
v-e+f=2(1-g) \tag{1.1}
\end{equation*}
$$

\]

Two maps are equivalent if there is an orientation-preserving homeomorphism between their imbedding surfaces that takes the vertices, edges and faces of one map into the vertices, edges and faces of the other. A dart of a map or graph is a semi-edge. A loop is assumed to be incident twice with the same vertex, so that every edge, whether or not it is a loop, is incident to two darts. The degree of a vertex is the number of darts incident to it. The face incident to a dart d is the face incident to the edge containing d and on the left of an observer on d facing away from the vertex incident to d and the degree of a face is the number of darts incident to it. A rooted map is a map with a distinguished dart, its root. Two rooted maps are equivalent if there is an orientation-preserving homeomorphism between their imbedding surfaces that takes the vertices, edges, faces and the root of one map into the vertices, edges, faces and the root of the other. A combinatorial map is a connected graph with a cyclic order imposed on the darts incident to each vertex, representing the order in which the darts of a (topological) map are encountered during a rotation around the vertex according to the orientation of the imbedding surface. The darts incident to a face are encountered by successive application of the following pair of actions: go from the current dart to the dart on the other end of the same edge and then to the next dart incident to the same vertex according to the cyclic order. In this way the faces of a combinatorial map can be counted, so that its genus can be calculated from (1.1). Two combinatorial maps are equivalent if they are related by a map isomorphism - a graph isomorphism that preserves this cyclic order - with an analogous definition for the equivalence of two rooted combinatorial maps. By enumerating maps with a given set of properties, whether rooted or not, we mean counting the number of equivalence classes of maps with these properties. It was shown in [10] that each equivalence class of topological maps is uniquely defined by an equivalence class of combinatorial maps; so for the purposes of enumeration, the term "map" can be taken to mean "combinatorial map".

Let $m_{g}(v, f)$ be the number of rooted genus- g maps with v vertices and f faces. By face-vertex duality, this number is equal to the number $m_{g}(f, v)$ of rooted genus- g maps with f vertices and v faces. The generating function that counts rooted genus- g maps is the following formal power series in two variables u and w :

$$
\begin{equation*}
M_{g}(w, u)=\sum_{v, f \geq 1} m_{g}(v, f) w^{v} u^{f} \tag{1.2}
\end{equation*}
$$

Rooted maps were introduced in [13] because they are easier to count than unrooted maps; this is because only the trivial map automorphism preserves the root [14], so that rooted maps can be counted without considering map automorphisms. In [13], W. T. Tutte found a closed-form formula for the number of rooted planar maps with n edges. In [14], he found a parametric system of equations defining $M_{0}(w, u)$. In [1] D. Arquès obtained the simpler expression

$$
\begin{equation*}
M_{0}(w, u)=p q(1-2 p-2 q) \tag{1.3}
\end{equation*}
$$

with the parameters p and q defined by

$$
\begin{equation*}
w=p(1-p-2 q) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
u=q(1-2 p-q) \tag{1.5}
\end{equation*}
$$

where $p=q=0$ when $w=u=0$. In [14], a recursive formula was found for the number of rooted planar maps given the number of vertices, the number of edges, and the degree of the face containing the root; these numbers of maps were then added over all possible degrees of this face and the result expressed in terms of generating functions. In [15], the first author generalized this method to obtain a recursive formula for the number of maps of genus g with a distinguished dart in each vertex given the number of vertices and the degree of each one; these numbers were then multiplied by the appropriate factor and added over all possible non-increasing sequences of vertex-degrees summing to $2 e$ to obtain the number of rooted maps of genus g with e edges and v vertices. A table of these numbers of maps with up to 14 edges appears in [15] (see [17] for a published account of this work and a table of maps with up to 11 edges) but no attempt was made there to express this result in terms of generating functions. We note here that a similar generalization in which the degrees of all the faces are known but only some of them have a distinguished edge on their boundary, and these faces must be of degree at least 3, appears in [8], where it is attributed to Tutte under the name of Tutte's recursion equations.

In [5] an improvement on the method of [15] was introduced: to count rooted genusg maps it is sufficient to know the degree of the first $g+1$ vertices and to distinguish a dart of only the first vertex as the root, thus reducing the number of maps that have to be considered. Using doubly-rooted maps, D. Arquès [2] obtained the analogue of (1.3) for toroidal maps:

$$
\begin{equation*}
M_{1}(w, u)=\frac{p q(1-p-q)}{\left[(1-2 p-2 q)^{2}-4 p q\right]^{2}} . \tag{1.6}
\end{equation*}
$$

From this result, he obtained a closed-form formula for the number of rooted toroidal maps with e edges and another one for the number of rooted toroidal maps with v vertices and f faces. In [6] a generating function was obtained for the number of rooted maps of genus 2 and 3 with e edges.

In [9] the second author generalized (1.6) and obtained a general form for the generating function $M_{g}(w, u)$ counting rooted maps of any genus $g>0$:

$$
\begin{equation*}
M_{g}(w, u)=\frac{p q(1-p-q) P_{g}(p, q)}{\left[(1-2 p-2 q)^{2}-4 p q\right]^{5 g-3}} \tag{1.7}
\end{equation*}
$$

where $P_{g}(p, q)$ is a symmetric polynomial in p and q of total degree bounded by $6 g-6$ with integral coefficients (in what follows, unless otherwise specified, all the polynomials defined here are polynomials in p and q). The polynomial P_{g} is defined in terms of another polynomial T_{g} of degree bounded by $10 g-8$ by

$$
\begin{equation*}
P_{g}=\frac{T_{g}}{(1-p)^{4 g-2}}, \tag{1.8}
\end{equation*}
$$

and that polynomial, in turn, is defined in terms of a family of polynomials $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ in p and q by

$$
\begin{equation*}
T_{g}=R_{g-1}(0,0)+\sum_{j=1}^{g-1} q(1-p-q) R_{j}(0) R_{g-j}(0) \tag{1.9}
\end{equation*}
$$

The degree of the polynomial $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ is defined by the equation

$$
\begin{equation*}
\operatorname{deg} R_{g}\left(n_{1}, \ldots, n_{r}\right)=2\left(n_{1}+\ldots+n_{r}\right)+7 r+10 g-12 \tag{1.10}
\end{equation*}
$$

The polynomials $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ are defined recursively in terms of several other families of polynomials and a recursively-defined family of rational functions of p and q. We have two finite families of polynomials in p alone defined by the following two sets of equations.

$$
\begin{gather*}
K_{0}(p)=-p ; \quad K_{1}(p)=-1-p ; \quad K_{2}(p)=-1 ; \\
K_{m}(p)=0 \text { for all } m \geq 3 . \tag{1.11}\\
L_{0}(p)=-p ; \quad L_{1}(p)=-1-2 p ; \\
L_{2}(p)=-2-p ; \quad L_{3}=-1 ; \tag{1.12}\\
L_{k}(p)=0 \text { for all } k \geq 4 .
\end{gather*}
$$

In what follows, the parameter p will be omitted, so that these polynomials will be referred to as K_{m} and L_{k}. We then have two polynomials H and J (in p and q) defined by

$$
\begin{equation*}
J=q(1-p-q) \tag{1.13}
\end{equation*}
$$

and

$$
\begin{equation*}
H=(1-2 p-2 q)^{2}-4 p q \tag{1.14}
\end{equation*}
$$

Finally we have an infinite family $\left(E_{k}\right)_{k \geq 1}$ of rational functions of p and q, all but the first two of which are polynomials, defined recursively by

$$
\begin{gather*}
E_{1}=\frac{1}{2 J(1-p)^{2}} \\
E_{2}=\frac{-p-4 q+2 p^{2}+4 q^{2}+4 p q}{2 J(1-p)^{2}} \tag{1.15}\\
E_{3}=-1 ; \\
E_{k}=-J(1-p)^{2} \sum_{i=2}^{i=k-1} E_{i} E_{k+1-i} \text { for all } k \geq 4 .
\end{gather*}
$$

To make the recursive definition of the polynomials $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ comprehensible, we first explain the abbreviations we use. For any positive integer $r,[r]$ denotes the sequence $(2, \ldots, r)$ if $r \geq 2$ and the empty sequence if $r=1$. For any subsequence X of $[r]$, $[r]-X$ denotes the subsequence of the elements of $[r]$ that are not in X. For any sequence $\left(n_{2}, \ldots, n_{r}\right)$ of integers, N_{X} denotes the sequence of those n_{i} such that i is in X and N_{j} denotes the sequence $\left(n_{2}, \ldots, n_{j-1}, n_{j+1}, \ldots, n_{r}\right)$.

The polynomials $R_{0}\left(n_{1}\right)$ are not defined. The anchor of this recursive definition is

$$
\begin{equation*}
R_{0}(0,0)=(1-p)^{2} . \tag{1.16}
\end{equation*}
$$

If $g=0$ and $r=2$ but $\left(n_{1}, n_{2}\right) \neq(0,0)$, then we have

$$
\begin{align*}
R_{0}\left(n_{1}, n_{2}\right)= & (1-p)^{2}\left(-n_{2} H E_{n_{1}+n_{2}+2}-\left(n_{2}+1\right) E_{n_{1}+n_{2}+3}\right) \\
& +2 J(1-p)^{2} \sum_{\substack{i+j+k=n_{1}+1 \\
i>0, k<n_{1}}}(-1)^{j+1} H^{j} E_{i} R_{0}\left(k, n_{2}\right) \tag{1.17}
\end{align*}
$$

We note that (1.16) is a special case of (1.17) where $n_{1}=n_{2}=0$.

If $(g, r) \neq(0,2)$, then

$$
\begin{equation*}
R_{g}\left(n_{1}, \ldots, n_{r}\right)=\operatorname{term}_{1}+\operatorname{term}_{2}+\operatorname{term}_{3}+\operatorname{term}_{4} \tag{1.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{term}_{1}=2 J(1-p)^{2} \sum_{\substack{i+j+k=n_{1}+1 \\ i>0, k<n_{1}}}(-1)^{j+1} H^{j} E_{i} R_{g}\left(k, n_{2}, \ldots, n_{r}\right) \tag{1.19}
\end{equation*}
$$

(we note that the second line of (1.17) is a special case of (1.19) where $g=0$ and $r=2$),

$$
\begin{gather*}
\operatorname{term}_{2}=J \sum_{\substack{k+l+m=n_{1}+1 \\
0 \leq j \leq g \\
X \subseteq[r] \\
(j, X) \neq(0, \emptyset) \\
(j, X) \neq(g,[r])}} K_{m} H^{m} R_{j}\left(k, N_{X}\right) R_{g-j}\left(l, N_{[r]-X}\right), \tag{1.20}\\
\operatorname{term}_{3}=\sum_{\substack{i+j+m=n_{1}+1}} K_{m} H^{m} R_{g-1}\left(i, j, N_{[r]}\right) \tag{1.21}
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{term}_{4}=\sum_{j=2}^{r}\binom{n_{j} \sum_{k+l=n_{1}+n_{j}+2} L_{k} H^{k+1} R_{g}\left(l, N_{j}\right)}{+\left(n_{j}+1\right) \sum_{k+l=n_{1}+n_{j}+3} L_{k} H^{k} R_{g}\left(l, N_{j}\right)} . \tag{1.22}
\end{equation*}
$$

It was shown in [9] that each polynomial $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ is symmetric in all its variables. This was made possible by distinguishing a dart incident to each of the vertices whose degree is considered, which increases the size of the coefficients but does not increase the number of polynomials that have to be calculated.

We note here that in the account of these results published in [3] formula (1.17) and the sum in (1.15) are missing; the formulas are presented correctly in [9]. At that time the second author, programming in Maple, calculated the polynomial P_{g} and the generating function $M_{g}(w, u)$ for $g=2$ and $g=3$ (these results are published in [3]) and also computed the generating function that counts rooted maps of genus 4 by number of edges. This result was recently included in [11], where it was used to count both rooted and unrooted maps of genus 4 by number of edges.

Recently, the second author extended his enumeration results to genus 5. The first author, programming mainly in C , optimized the calculation of the polynomials $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ and thus extended the enumeration by number of vertices and faces, as well as by number of edges, to genus 6. Although each author used a different algorithm and a different programming language, we both obtained the same answers, and the numbers of rooted maps we calculated agree with the tables in [15], providing evidence of the correctness of our results. An account of these extensions is given in Sections 2 and 3 and the polynomials $P_{g}(p, q)$ appear in Appendix A. A discussion of the enumeration of rooted genus- g maps by number of edges appears in Section 4 and the polynomial part of each of the corresponding generating functions appears in Appendix B. Finally, a discussion of some open problems appears in Section 5.

2 Results from the Maple program

A first version of the Maple code written in 1998 implemented recurrence relations between the rational functions introduced in [4] for the computation of the generating functions M_{g}. It was not designed for efficiency but for validating formulas from [4]. That code has also been used for validating the formulas from (1.2) through (1.22) for the first values of g, r and n_{1}, \ldots, n_{r} (these formulas were first obtained from a long computation that was done by hand and is thus error-prone). When executed in 1998 with Maple V for computing $M_{4}(w, u)$ that code ran into a fundamental limitation (wired into the Maple kernel) of a maximal number of 65,535 terms in any polynomial.

That old code has been recently replaced by a simpler code implementing directly the recursion between polynomials described by the formulas from (1.2) through (1.22). The code is short (less than 400 lines) and resembles the mathematical formulas as much as possible in order to detect errors. All the results obtained by this new code match known results in rooted map enumeration. For all these reasons, it can be considered as a reference for the debugging of optimized implementations.

With a personal computer running under Windows XP with an Intel Core 2 Duo CPU at 2.19 GHz and 3.5 Gb of memory, and a Maple 14 release supporting larger objects, the next two generating functions $M_{4}(w, u)$ and $M_{5}(w, u)$ were successfully computed in 4 minutes and 5 hours, respectively. It was, however, not sensible to continue using this inefficient prototype for computing the next generating functions. A better idea was to write an independent implementation optimizing memory space and execution time.

3 Optimizations and the C program

Aside from the advantage in execution speed that C has over Maple, the first author optimized the calculation of the polynomials $R_{g}\left(n_{1}, \ldots, n_{r}\right)$. One of these optimizations was made possible by the following observation.

Proposition 1. For any $(g, r) \neq(0,1)$ and any sequence n_{1}, \ldots, n_{r}, the polynomial $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ is divisible by $(1-p)^{2}$.

Proof. (by generalized induction on the degree of a polynomial of the form $R_{g}\left(n_{1}, \ldots, n_{r}\right)$, which we call an R-polynomial).

Basic step (degree 2) The only R-polynomial of degree 2 is $R_{0}(0,0)=(1-p)^{2}$: see (1.16).

Induction step Suppose that the degree d of a given R-polynomial $R_{g}\left(n_{1}, \ldots, n_{r}\right)$, as defined by (1.10), is greater than 2 and that every R-polynomial of degree $<d$ is divisible by $(1-p)^{2}$. We show that $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ is also divisible by $(1-p)^{2}$. Since every R-polynomial on the right side of equations (1.17), (1.19), (1.20), (1.21) and (1.22) is of degree $<d$, it follows from the induction hypothesis that each such polynomial is divisible by $(1-p)^{2}$. We examine each of these equations in turn. Equation (1.17). The first line contains a factor $(1-p)^{2}$. The term $E_{n_{1}+n_{2}+3}$ is a polynomial for any non-negative n_{1} and n_{2}. The term $E_{n_{1}+n_{2}+2}$ is a polynomial unless $n_{1}=n_{2}=0$, but in this case $E_{n_{1}+n_{2}+2}$ is multiplied by $n_{2}=0$; so the first line of (1.17) is divisible by $(1-p)^{2}$. In the second line, each term of the sum contains a polynomial $R_{0}\left(k, n_{2}\right)$, which, by the induction hypothesis,
is divisible by $(1-p)^{2}$. This factor of $(1-p)^{2}$ could be cancelled by E_{1} or E_{2}, but the sum is nevertheless a polynomial, and the factor $(1-p)^{2}$ by which the sum is multiplied ensures that the second line of (1.17) too is divisible by $(1-p)^{2}$; so the right side of (1.17) is divisible by $(1-p)^{2}$. Equation (1.19). By an argument similar to the one used for the second line of (1.17), the right side of (1.19) is divisible by $(1-p)^{2}$.

Equations (1.20)-(1.22). Each term in the sum contains at least one R-polynomial that is divisible by $(1-p)^{2}$; so the right side of each of these equations is divisible by $(1-p)^{2}$. It follows from (1.18) that $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ is divisible by $(1-p)^{2}$, which completes the proof.

We now modify equations (1.8)-(1.10), and (1.16)-(1.22) in the light of Proposition 1. We introduce a new family of polynomials (which we call S-polynomials) defined by

$$
\begin{equation*}
S_{g}\left(n_{1}, \ldots, n_{r}\right)=R_{g}\left(n_{1}, \ldots, n_{r}\right) /(1-p)^{2} \tag{3.1}
\end{equation*}
$$

and we also let

$$
\begin{equation*}
U_{g}=T_{g} /(1-p)^{2} . \tag{3.2}
\end{equation*}
$$

Then U_{g} is a polynomial of degree $10(g-1)$ and (1.8)-(1.10) become (3.3)-(3.5), respectively.

$$
\begin{gather*}
P_{g}=\frac{U_{g}}{(1-p)^{4 g-4}}, \tag{3.3}\\
U_{g}=S_{g-1}(0,0)+q(1-p-q)(1-p)^{2} \sum_{j=1}^{g-1} S_{j}(0) S_{g-j}(0) . \tag{3.4}\\
\operatorname{deg} S_{g}\left(n_{1}, \ldots, n_{r}\right)=2\left(n_{1}+\ldots+n_{r}\right)+7(r-2)+10 g . \tag{3.5}
\end{gather*}
$$

Also, (1.16)-(1.22) become (3.6)-(3.12), respectively.

$$
\begin{gather*}
S_{0}(0,0)=1 \tag{3.6}\\
S_{0}\left(n_{1}, n_{2}\right)=\begin{array}{c}
\left(-n_{2} H E_{n_{1}+n_{2}+2}-\left(n_{2}+1\right) E_{n_{1}+n_{2}+3}\right) \\
+2 J(1-p)^{2} \sum_{\substack{i+j+k=n_{1}+1 \\
i>0, k<n_{1}}}(-1)^{j+1} H^{j} E_{i} S_{0}\left(k, n_{2}\right)
\end{array} .
\end{gather*}
$$

If $(g, r) \neq(0,2)$, then

$$
\begin{equation*}
S_{g}\left(n_{1}, \ldots, n_{r}\right)=\operatorname{term}_{5}+\operatorname{term}_{6}+\operatorname{term}_{7}+\operatorname{term}_{8} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{term}_{5}=2 J(1-p)^{2} \sum_{\substack{i+j+k=n_{1}+1 \\ i>0, k<n_{1}}}(-1)^{j+1} H^{j} E_{i} S_{g}\left(k, n_{2}, \ldots, n_{r}\right), \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{term}_{7}=\sum_{i+j+m=n_{1}+1} K_{m} H^{m} S_{g-1}\left(i, j, N_{[r]}\right) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{term}_{8}=\sum_{j=2}^{r}\binom{n_{j} \sum_{k+l=n_{1}+n_{j}+2} L_{k} H^{k+1} S_{g}\left(l, N_{j}\right)}{+\left(n_{j}+1\right) \sum_{k+l=n_{1}+n_{j}+3} L_{k} H^{k} S_{g}\left(l, N_{j}\right)} \tag{3.12}
\end{equation*}
$$

Since $R_{g}\left(n_{1}, \ldots, n_{r}\right)$ is symmetric in all its variables, so is $S_{g}\left(n_{1}, \ldots, n_{r}\right)$; so only those polynomials $S_{g}\left(n_{1}, \ldots, n_{r}\right)$ with $n_{1} \leq \ldots \leq n_{r}$ are treated. In all the S-polynomials on the right side of each of the equations (3.9)-(3.12), only the first two variables can violate these inequalities; so they are inserted into their proper slots among the remaining variables to preserve the inequalities. Also, equation (3.4) is symmetric in j and $g-j$, equation (3.10) is symmetric in k and l and equation (3.11) is symmetric in i and j; so the calculations there can be cut almost in half. In equation (3.12), each polynomial $S_{g}\left(l, N_{j}\right)$ is calculated only once and then used twice. The following easily proved observations can be used to avoid calculating a polynomial that is identically 0 : term ${ }_{5}=0$ if $n_{1}=0$, term $_{6}=0$ if $g+r \leq 2$, term $_{7}=0$ if $g=0$, term ${ }_{8}=0$ if $r=1$ or $(g, r)=(0,2)$. From these observations, it follows that the only term that could possibly contribute to $S_{0}\left(n_{1}\right)$ is term ${ }_{5}$. From (3.9) it follows by generalized induction on n_{1} that $S_{0}\left(n_{1}\right)=0$ for all $n_{1} \geq 0$; so these polynomials do not have to be defined.

All the S-polynomials are stored in a single one-dimensional array s. A preliminary recursion does not calculate any of these polynomials. Instead, it calculates all the quadruples (d, g, r, c) of parameters of the S-polynomials that will later be calculated, where $d=\operatorname{deg} S_{g}\left(n_{1}, \ldots, n_{r}\right)$ and c is an integer coding the sequence $\left(n_{1}, \ldots, n_{r}\right)$, and stores the list of quadruples in four parallel arrays, one array for each of the four parameters d, g, r, c and one element of all four arrays for each quadruple (d, g, r, c). The program then sorts the four parallel arrays by degree d using bucket sort, computes the number of S polynomials that have to be calculated and the total number of terms in these polynomials and stores in two arrays the index in s and the one in the four parallel arrays of the first term for each degree d. Then the S-polynomials are calculated in increasing order of their degree and stored in s. This can be done non-recursively because all the S-polynomials that need to be used will have already been stored and need only be found by searching the four parallel arrays, starting with the first index for the appropriate degree d, for the appropriate parameters, and adding $(d+1)(d+2) / 2$ to the index in s each time the index in the four parallel arrays is increased by 1 . Once the last polynomial $S_{g-1}(0,0)$ has been calculated, first (3.4) is used to calculate U_{g} and then (3.3) is used to calculate P_{g} and its coefficients are stored in a text file, which is available from the first author on request. The polynomials P_{2} and P_{3} appear in [3]. The polynomials P_{4}, P_{5} and P_{6} appear in Appendix A. Because these polynomials are symmetric in p and q, to save space we include only those terms in which the exponent of p is at least as great as the exponent of q.

The number of S-polynomials that have to be calculated is roughly the total number of partitions of all the positive integers up to $10(g-1)$. For each of these polynomials, the most expensive calculation is term ${ }_{6}$, because the sum there runs over all the partitions of the sequence $[r]=(2, \ldots, r)$, where r can be as great as $g+1$, and involves multiplying two S-polynomials. The time-complexity of calculating P_{g} is therefore exponential in g, but the optimizations made here nevertheless made it possible to calculate P_{g} for a greater value of g than was possible previously. Another program computes a table of numbers of rooted genus- g maps counted by number of vertices and faces by reading this file and
using (1.2) if $g \geq 1$ or (1.3) if $g=0$. Tables of numbers of rooted genus- g maps for any $g \leq 6$ and with up to any reasonable number of edges are available from the first author on request.

The programs were written mainly in C. The one that computes the polynomials is about 2000 lines long and the one that computes the tables is about 300 lines long. They both use the C++ library CLN to do arithmetic on big integers because CLN reads arithmetic expressions in C that use only addition, multiplication and subtraction; only statements involving quotients, remainders, input/output of big integers and file management had to be modified. Since CLN requires a GNU compiler, XCODE was downloaded and installed by Jerome Tremblay, a computer technician at UQAM, who also downloaded and installed CLN and wrote sample C++ statements for input/output of big numbers and file management.

The programs were executed on a 2004 Macintosh GR4 computer. The time taken to compute the polynomial P_{g} varied from run to run. In Table 1 we show, for each g from 1 to 6 , the number of S-polynomials that were calculated, the total number of terms in all these S-polynomials, and a typical execution time. Once the S-polynomials had been computed and stored, it took the computer only 48 seconds to make a table of numbers of genus-6 maps with up to 42 edges counted by number of vertices and faces. Source codes of both programs are available from the first author on request.

g	number of S-polynomials	total number of terms	execution time
1	1	1	instantaneous
2	16	507	1 second
3	67	7407	10 seconds
4	205	49796	2 minutes
5	543	235410	20 minutes
6	1314	900114	3,5 hours

Table 1: Evaluation of the computation cost

4 Counting by number of edges

To compute the generating function $M_{g}(z)=z^{2 g-2} M_{g}(z, z)$ that counts rooted genus- g maps by number of edges alone, we use the substitution obtained in [11], which is a more compact form of the one obtained in [9] and published in [3]. Let

$$
\begin{equation*}
p=q=m, \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
z=m(1-3 m) \text { and } m=0 \text { when } z=0 . \tag{4.2}
\end{equation*}
$$

By substituting from (4.1) into (1.4) and (1.5) to express w and u in terms of m and then substituting into (1.7), we obtain the following equation for $g \geq 1$:

$$
\begin{equation*}
M_{g}(z)=\frac{m^{2 g}(1-3 m)^{2 g-2} P_{g}(m, m)}{(1-6 m)^{5 g-3}(1-2 m)^{5 g-4}} \tag{4.3}
\end{equation*}
$$

For $g=0$, we substitute into (1.3) instead of (1.7) and obtain

$$
\begin{equation*}
M_{0}(z)=(1-3 m)^{-2}(1-4 m) . \tag{4.4}
\end{equation*}
$$

The first author computed $M_{g}(z)$ from the computed values of $M_{g}(w, u)$ for $g \leq 6$. The program divides the polynomial $P_{g}(m, m)$ by $1-2 m$ as often as possible. The program then divides the resulting polynomial by 2 and by 3 as often as possible, extracts the appropriate constant factor and then stores the resulting generating function in another text file, also available from the first author. The second author computed $M_{g}(z)$ directly for $g \leq 6$. We then compared our formulas and verified that they agree. The formulas for $P_{g}(m, m)$ for $1 \leq g \leq 6$ appear in Appendix B. Now $P_{g}(m, m)$ is of degree $6 g-6$, but we found experimentally that for $1 \leq g \leq 6, P_{g}(m, m)$ is divisible by $(1-2 m)^{2 g-2}$, so that the quotient is only of degree $4 g-4$, and we conjecture that this will be the case for any positive integer g.

5 Some interesting open problems

The recurrences satisfied by the R - and S-polynomials both result from proofs by induction. After the right conjecture has been guessed by observing the first computed terms, these proofs are not difficult to find, but they are tedious and error-prone due to the length of the expressions involved. Thus they are good candidates for automation. We plan to develop a suitable formal framework for assisting this kind of proofs with a computer algebra system. The challenge is to shorten the chain of conjectures and proofs about the general pattern of generating functions for counting rooted maps. This chain has been initiated in [6] and continues in the present work with a new conjecture that the polynomial $P_{g}(m, m)$ is divisible by $(1-2 m)^{2 g-2}$ for all $g \geq 1$. Once the numbers of rooted maps of genus up to g are known, the number of unrooted maps up to genus g can be calculated using the methods presented in [12]. As was mentioned above, the second author collaborated with A. Mednykh to count rooted and unrooted maps of genus 4 by number of edges [11]. It would be interesting to count unrooted genus- g maps by number of vertices and faces for as many values of g as possible (see [16] for an account of the progress made on this problem).

References

[1] D. Arquès. Une relation fonctionnelle nouvelle sur les cartes planaires pointées. J. Combin. Theory Ser. B, 39(1):27-42, 1985.
[2] D. Arquès. Relations fonctionnelles et dénombrement des cartes pointées sur le tore. J. Combin. Theory Ser. B, 43(3):253-274, 1987.
[3] D. Arquès and A. Giorgetti. Énumération des cartes pointées de genre quelconque en fonction des nombres de sommets et de faces. J. Combin. Theory Ser. B, 77(1):1-24, 1999.
[4] D. Arquès and A. Giorgetti. Counting rooted maps on a surface. Theoretical Computer Science, 234:255-272, 2000.
[5] E. A. Bender and E. R. Canfield. The asymptotic number of rooted maps on a surface. J. Combin. Theory Ser. A, 43(2):244-257, 1986.
[6] E. A. Bender and E. R. Canfield. The number of rooted maps on an orientable surface. J. Combin. Theory Ser. B, 53(2):293-299, 1991.
[7] H. S. M. Coxeter. Regular Polytopes. Dover, New York, 1973. 3rd ed.
[8] B. Eynard and N. S. Orantin. Topological recursion in enumerative geometry and random matrices. Journal of Physics A: Mathematical and Theoretical, 42(29):293001, 2009.
[9] A. Giorgetti. Combinatoire bijective et énumérative des cartes pointées sur une surface. PhD thesis, Université de Marne-la-Vallée, Institut Gaspard Monge, 1998.
[10] G. A. Jones and D. Singerman. Theory of maps on orientable surfaces. Proc. London Math. Soc., 37:273-307, 1978.
[11] A. Mednykh and A. Giorgetti. Enumeration of genus four maps by number of edges. Ars Mathematica Contemporanea. To be published.
[12] A. Mednykh and R. Nedela. Enumeration of unrooted maps of a given genus. J. Comb. Theory, Ser. B, 96(5):706-729, 2006.
[13] W. T. Tutte. A census of planar maps. Canad. J. Math., 15:249-271, 1963.
[14] W. T. Tutte. On the enumeration of planar maps. Bull. Amer. Math. Soc., 74:64-74, 1968.
[15] T. R. S. Walsh. Combinatorial enumeration of non-planar maps. PhD thesis, University of Toronto, 1971.
[16] T. R. S. Walsh, A. Giorgetti, and A. Mednykh. Enumeration of unrooted orientable maps of arbitrary genus by number of edges and vertices. Submitted.
[17] T. R. S. Walsh and A. B. Lehman. Counting rooted maps by genus I. J. Combin. Theory Ser. B, 13:192-218, 1972.

Appendix A

Coefficients of the polynomial $P_{g}(p, q)$ in the generating function $M_{g}(w, u)$. The exponent of p is i and the exponent of q is j.
\(\left.\begin{array}{r|r|r|r}i \& j \& g=4 \& g=5

\hline \& \& \&

0 \& 0 \& 225225 \& 59520825\end{array}\right]\)| |
| ---: |
| |
| 1 |

i	$g=4$	$g=5$	$g=6$	
11	2	-10713306325248	-1042554952469042304	-19187364188750019565152
10	3	117776047833344	4516890628991951232	41344101184760217491296
9	4	358004273099520	17994448820561075520	236076485845255486809152
8	5	55421194708224	5366219028182108736	102780528051948653669760
7	6	-786362512663296	-37365766731378686976	-470331494499995012997600

i	j	$g=4$	$g=5$	$g=6$
20	0		-1314425012060160	1734907897013798707200
19	1		-144756328655585280	-82270304819565116424192
18	2		-1003742680227373056	-950537663871767965327360
17	3		2793526743911620608	123942395082217765601280
16	4		37212677250180292608	25401535424315681802590208
15	5		74033510974972723200	68224472042582041260310528
14	6		-126547074782265335808	-60103610493582286559100928
13	7		-617784335206111223808	-455901258606342321520386048
12	8		-546726907955477200896	-459420163369720948794875904
11	9		649350664927183921152	454685060181345136472375296
10	10		1490642394729913761792	1124259071282640899991023616
21	0		-691618625617920	-3287209913451861196800
20	1		40536738621112320	37757890897078575218688
19	2		525558553546752000	1012421892818336673087488
18	3		537141243831877632	2933439037885385986981888
17	4		-12971512057664028672	-18499038609283674999029760
16	5		-50848326713136218112	-101915380576965190921158656
15	6		-11466349125110857728	-69325462005106596812193792
14	7		271282055277714407424	465259720654830491776679936
13	8		505564751059841875968	1004168281109519127253991424
12	9		19279289107118014464	123399556004059650470100992
11	10		-858679181948511092736	-1623142957450538470768787456
22	0		422807362338816	3275288152263117619200
21	1		-5245555110445056	5444851329172509179904
20	2		-151512465918394368	-732441188073602443542528
19	3		-600079032863293440	-4616834991352115554598912
18	4		2127180102928957440	4780217912523242048700416
17	5		17957704067381329920	97662542580870457285214208
16	6		27852639873149435904	201398200141129982533009408
15	7		-55489682094287486976	-230059791405368439926259712
14	8		-223545638210122285056	-1283832320250295204348280832
13	9		-179740722217994551296	-1164487905229217354305224704
12	10		224480279722662297600	1227775939882047307777605632
11	11		497283663440438231040	2901788578865019448150867968
23	0		-93895550042112	-2191214043993597542400
22	1		-180122816741376	-25945834528510036738048
21	2		22137226308747264	331074763427574885711872
20	3		166230484940881920	4142547710539723494981632
19	4		29854175151390720	6580460553696860428894208
18	5		-3108417189221892096	-59294451733964817490968576
17	6		-9621688907482398720	-242963919760936271213494272
16	7		-288936506265698304	-104046724336661909629304832
15	8		46767719292133441536	1018758498586088458575544320
14	9		78823390451111165952	1952022892302645218017542144
13	10		295628344393334784	158260143999731503140700160
12	11		-130643039199866781696	-3084421320247115490844278784
24	0		7824629170176	1002905366223804825600
23	1		93895550042112	23866267878384050372608
22	2		-1112799110234112	-47763916603770777894912
21	3		-16200052572684288	-2434768431564630892544000
20	4		-41493010924044288	-9848254830211976468594688
19	5		179786567324270592	16787453017997301006204928
18	6		1107409870381645824	180200756079958706269814784
17	7		1385183221916368896	297825520442142229904818176
16	8		-3155594586761723904	-412271650796339599785295872
15	9		-10948740544549355520	-1852715643223710048204619776
14	10		-8105149379104210944	-1536106917047051711260983296
13	11		10592953241186598912	1712620377368461492695662592
12	12		22778024644118446080	3900362066433824862261280768

i	j	$g=4$	$g=5$	$g=6$
25	0			-285304295475875020800
24	1			-13019864404167917174784
23	2			-51034174217385844408320
22	3			904044957708439040753664
21	4			6936863376620909023395840
20	5			5732105919258544040509440
19	6			-83175532784859475363823616
18	7			-271158382680239061117566976
17	8			-64704411807431220565770240
16	9			1064744937747759948796133376
15	10			1849619507461262722511536128
14	11			85505021984116658204639232
13	12			-2871501006670227403616747520
26	0			27690864336578150400
25	1			4588106349690589413376
24	2			43501795960950565502976
23	3			-158443780051573765570560
22	4			-2984431989395324335947776
21	5			-8444613336874597020205056
20	6			19385457184008341525495808
19	7			141846119528265879913234432
18	8			193544289191514303047663616
17	9			-313292474074364228914642944
16	10			-1194858652760318935298736128
15	11			-916494090959170730061987840
14	12			1073951607856788572243361792
13	13			2371241776317800764876914688
27	0			13380773146295009280
26	1			-989176345247856197632
25	2			-17138514929224228274176
24	3			-23157227973833071263744
23	4			771894093092065032273920
22	5			4145085744542445448724480
21	6			1320069405683931754266624
20	7			-43540978794449370439745536
19	8			-117985326814393280210403328
18	9			-10447319791863684478795776
17	10			440134443742099127958241280
16	11			704053535822806742737092608
15	12			11679697966843194243022848
14	13			-1077951639081065204332625920
28	0			-6190520242793349120
27	1			101016358687762022400
26	2			3807901986513082122240
25	3			19615951537674393747456
24	4			-97674513220242562351104
23	5			-1084102913562460783902720
22	6			-2255348130201475262447616
21	7			6515494903420947731054592
20	8			36369531269030571785846784
19	9			41835756382734171758395392
18	10			-77589384625987118061060096
17	11			-259738834288657801351790592
16	12			-186045942562385408245628928
15	13			228048682467475103233867776
14	14			490423474716303045493260288

i	j	$g=4$	$g=5$	$g=6$
29	0			1083051875657318400
28	1			2298277762254766080
27	2			-437826375156907376640
26	3			-4211038540274023268352
25	4			-200747762008901812224
24	5			143015960801484793184256
23	6			580006330365817173049344
22	7			-32493650288141295157248
21	8			-5512732263193381158518784
20	9			-12796038146349004392235008
19	10			456361894794872437604352
18	11			45861472268551994896023552
17	12			68348456393778007627530240
16	13			-628640702799589914181632
15	14			-103507964466220510312660992
30	0			-72203458377154560
29	1			-1083051875657318400
28	2			17867338076431319040
27	3			323429243322850344960
26	4			1015274769514512777216
25	5			-6579490900655978053632
24	6			-50868714879266907488256
23	7			-79994609460852264271872
22	8			283830624039163303821312
21	9			1286453941063525028855808
20	10			1265675554473947355414528
19	11			-2659332082494215974551552
18	12			-7994494268883530252550144
17	13			-5386144726152482176106496
16	14			6882605843718109598318592
15	15			14466113532455038048272384

Appendix B

Polynomial $P_{g}(m, m) /(1-2 m)^{(2 g-2)}$ in the generating function $M_{g}(z)$.

g	$P_{g}(m, m) /(1-2 m)^{(2 g-2)}$
1	1
2	$3\left(7-70 m+295 m^{2}-636 m^{3}+588 m^{4}\right)$
3	$3^{2}\binom{165-2596 m+19835 m^{2}-102138 m^{3}+397742 m^{4}}{-1162744 m^{5}+2360496 m^{6}-2918016 m^{7}+1642656 m^{8}}$
4	$3^{2}\left(\begin{array}{l}25025-465894 m+4245462 m^{2}-28633200 m^{3} \\ +178608786 m^{4}-1025233956 m^{5}+4855070265 m^{6} \\ -17709582732 m^{7}+48202134300 m^{8}-95026128096 m^{9} \\ +128766120048 m^{10}-107657028288 m^{11}+41956066368 m^{12}\end{array}\right)$
	$\left(\begin{array}{l} 6613425-128153480 m+1123286598 m^{2}-7641539820 m^{3} \\ +68489369190 m^{4}-681945904584 m^{5}+5453799804351 m^{6} \\ -33175983024306 m^{7}+157025924018370 m^{8} \end{array}\right)$
5	$3^{2}\left(\begin{array}{l}-590662433458296 m^{9}+1778501684246544 m^{10} \\ -4258112783048352 m^{11}+7946769062433024 m^{12} \\ -11156448512891520 m^{13}+11087677481748480 m^{14} \\ -6955529138076672 m^{15}+2071316467035648 m^{16}\end{array}\right)$
	$\left(\begin{array}{l} 900951975-16624244750 m+105922471285 m^{2} \\ -402327939748 m^{3}+9014122899102 m^{4} \\ -183050473605084 m^{5}+2152106046117936 m^{6} \\ -17716916701552824 m^{7}+113738504396139378 m^{8} \\ 600051015680710 m^{9} \end{array}\right)$
6	$3^{3}\left(\begin{array}{l} -602051461456822740 m^{9}+2694620167659984726 m^{10} \\ -10264333975933057272 m^{11}+33144207748349404248 m^{12} \\ -89851078246171110912 m^{13}+201700042332545251008 m^{14} \\ -368052722019205320960 m^{15}+531966143515513800960 m^{16} \\ -586003188281237388288 m^{17}+462270648384927677952 m^{18} \\ -232608604432295245824 m^{19}+56102738197832792064 m^{20} \end{array}\right)$

[^0]: * Corresponding author.

 E-mail addresses: walsh.timothy@uqam.ca (T. R. S. Walsh), alain.giorgetti@univ-fcomte.fr (A. Giorgetti)

