Timothy R S Walsh 
email: walsh.timothy@uqam.ca
  
A Giorgetti 
email: alain.giorgetti@univ-fcomte.fr
  
  
  
Efficient enumeration of rooted maps of a given orientable genus by number of faces and vertices

Keywords: Efficient enumeration, rooted maps, orientable genus, generating functions Math. Subj. Class.: 05C30, 05A15

published or not. The documents may come    

Efficient enumeration of rooted maps of a given orientable genus by number of faces and vertices

Introduction: definitions and history

A map is defined topologically as a 2-cell imbedding of a connected graph, loops and multiple edges allowed, in a 2-dimensional surface. The faces of a map are the connected components of the complement of the graph in the surface. In this article the surface is assumed to be without boundary and orientable, with an orientation already attributed to it (clockwise, say), so that it is completely described by a non-negative integer g, its genus. For short, a map on a surface of genus g will be called a genus-g map. A planar map is a genus-0 map (a map on a sphere) and a toroidal map is a genus-1 map (a map on a torus or donut). If a map on a surface of genus g has v vertices, e edges and f faces, then by the Euler-Poincaré formula [7, chap. 9] v -e + f = 2(1 -g).

(1.1)

Two maps are equivalent if there is an orientation-preserving homeomorphism between their imbedding surfaces that takes the vertices, edges and faces of one map into the vertices, edges and faces of the other. A dart of a map or graph is a semi-edge. A loop is assumed to be incident twice with the same vertex, so that every edge, whether or not it is a loop, is incident to two darts. The degree of a vertex is the number of darts incident to it. The face incident to a dart d is the face incident to the edge containing d and on the left of an observer on d facing away from the vertex incident to d and the degree of a face is the number of darts incident to it. A rooted map is a map with a distinguished dart, its root. Two rooted maps are equivalent if there is an orientation-preserving homeomorphism between their imbedding surfaces that takes the vertices, edges, faces and the root of one map into the vertices, edges, faces and the root of the other. A combinatorial map is a connected graph with a cyclic order imposed on the darts incident to each vertex, representing the order in which the darts of a (topological) map are encountered during a rotation around the vertex according to the orientation of the imbedding surface. The darts incident to a face are encountered by successive application of the following pair of actions: go from the current dart to the dart on the other end of the same edge and then to the next dart incident to the same vertex according to the cyclic order. In this way the faces of a combinatorial map can be counted, so that its genus can be calculated from (1.1). Two combinatorial maps are equivalent if they are related by a map isomorphism -a graph isomorphism that preserves this cyclic order -with an analogous definition for the equivalence of two rooted combinatorial maps. By enumerating maps with a given set of properties, whether rooted or not, we mean counting the number of equivalence classes of maps with these properties. It was shown in [START_REF] Jones | Theory of maps on orientable surfaces[END_REF] that each equivalence class of topological maps is uniquely defined by an equivalence class of combinatorial maps; so for the purposes of enumeration, the term "map" can be taken to mean "combinatorial map".

Let m g (v, f ) be the number of rooted genus-g maps with v vertices and f faces. By face-vertex duality, this number is equal to the number m g (f, v) of rooted genus-g maps with f vertices and v faces. The generating function that counts rooted genus-g maps is the following formal power series in two variables u and w:

M g (w, u) = v,f ≥1 m g (v, f )w v u f . (1.2)
Rooted maps were introduced in [START_REF] Tutte | A census of planar maps[END_REF] because they are easier to count than unrooted maps; this is because only the trivial map automorphism preserves the root [START_REF] Tutte | On the enumeration of planar maps[END_REF], so that rooted maps can be counted without considering map automorphisms. In [START_REF] Tutte | A census of planar maps[END_REF], W. T. Tutte found a closed-form formula for the number of rooted planar maps with n edges. In [START_REF] Tutte | On the enumeration of planar maps[END_REF], he found a parametric system of equations defining M 0 (w, u). In [START_REF] Arquès | Une relation fonctionnelle nouvelle sur les cartes planaires pointées[END_REF] D. Arquès obtained the simpler expression

M 0 (w, u) = pq(1 -2p -2q) (1.3)
with the parameters p and q defined by

w = p(1 -p -2q) (1.4) and u = q(1 -2p -q), (1.5) 
where p = q = 0 when w = u = 0. In [START_REF] Tutte | On the enumeration of planar maps[END_REF], a recursive formula was found for the number of rooted planar maps given the number of vertices, the number of edges, and the degree of the face containing the root; these numbers of maps were then added over all possible degrees of this face and the result expressed in terms of generating functions. In [START_REF] Walsh | Combinatorial enumeration of non-planar maps[END_REF], the first author generalized this method to obtain a recursive formula for the number of maps of genus g with a distinguished dart in each vertex given the number of vertices and the degree of each one; these numbers were then multiplied by the appropriate factor and added over all possible non-increasing sequences of vertex-degrees summing to 2e to obtain the number of rooted maps of genus g with e edges and v vertices. A table of these numbers of maps with up to 14 edges appears in [START_REF] Walsh | Combinatorial enumeration of non-planar maps[END_REF] (see [START_REF] Walsh | Counting rooted maps by genus I[END_REF] for a published account of this work and a table of maps with up to 11 edges) but no attempt was made there to express this result in terms of generating functions. We note here that a similar generalization in which the degrees of all the faces are known but only some of them have a distinguished edge on their boundary, and these faces must be of degree at least 3, appears in [START_REF] Eynard | Topological recursion in enumerative geometry and random matrices[END_REF], where it is attributed to Tutte under the name of Tutte's recursion equations.

In [START_REF] Bender | The asymptotic number of rooted maps on a surface[END_REF] an improvement on the method of [START_REF] Walsh | Combinatorial enumeration of non-planar maps[END_REF] was introduced: to count rooted genusg maps it is sufficient to know the degree of the first g + 1 vertices and to distinguish a dart of only the first vertex as the root, thus reducing the number of maps that have to be considered. Using doubly-rooted maps, D. Arquès [START_REF] Arquès | Relations fonctionnelles et dénombrement des cartes pointées sur le tore[END_REF] obtained the analogue of (1.3) for toroidal maps:

M 1 (w, u) = pq (1 -p -q) (1 -2p -2q) 2 -4pq 2 . (1.6)
From this result, he obtained a closed-form formula for the number of rooted toroidal maps with e edges and another one for the number of rooted toroidal maps with v vertices and f faces. In [START_REF] Bender | The number of rooted maps on an orientable surface[END_REF] a generating function was obtained for the number of rooted maps of genus 2 and 3 with e edges.

In [START_REF] Giorgetti | Combinatoire bijective et énumérative des cartes pointées sur une surface[END_REF] the second author generalized (1.6) and obtained a general form for the generating function M g (w, u) counting rooted maps of any genus g > 0:

M g (w, u) = pq (1 -p -q) P g (p, q) [(1 -2p -2q) 2 -4pq] 5g-3 , (1.7) 
where P g (p, q) is a symmetric polynomial in p and q of total degree bounded by 6g -6 with integral coefficients (in what follows, unless otherwise specified, all the polynomials defined here are polynomials in p and q). The polynomial P g is defined in terms of another polynomial T g of degree bounded by 10g -8 by

P g = T g (1 -p) 4g-2 , (1.8) 
and that polynomial, in turn, is defined in terms of a family of polynomials R g (n 1 , . . . , n r ) in p and q by

T g = R g-1 (0, 0) + g-1 j=1
q(1 -p -q)R j (0)R g-j (0).

(1.9)

The degree of the polynomial R g (n 1 , . . . , n r ) is defined by the equation deg R g (n 1 , . . . , n r ) = 2(n 1 + . . . + n r ) + 7r + 10g -12.

(1.10)

The polynomials R g (n 1 , . . . , n r ) are defined recursively in terms of several other families of polynomials and a recursively-defined family of rational functions of p and q. We have two finite families of polynomials in p alone defined by the following two sets of equations.

K 0 (p) = -p; K 1 (p) = -1 -p; K 2 (p) = -1; K m (p) = 0 for all m ≥ 3.
(1.11)

L 0 (p) = -p; L 1 (p) = -1 -2p; L 2 (p) = -2 -p; L 3 = -1; L k (p) = 0 for all k ≥ 4.
(1. [START_REF] Mednykh | Enumeration of unrooted maps of a given genus[END_REF] In what follows, the parameter p will be omitted, so that these polynomials will be referred to as K m and L k . We then have two polynomials H and J (in p and q) defined by

J = q(1 -p -q) (1.13) and H = (1 -2p -2q) 2 -4pq. (1.14) 
Finally we have an infinite family (E k ) k≥1 of rational functions of p and q, all but the first two of which are polynomials, defined recursively by

E 1 = 1 2J(1 -p) 2 ; E 2 = -p -4q + 2p 2 + 4q 2 + 4pq
2J(1 -p)

2

;

E 3 = -1; E k = -J(1 -p) 2 i=k-1 i=2 E i E k+1-i for all k ≥ 4.
(1.15)

To make the recursive definition of the polynomials R g (n 1 , . . . , n r ) comprehensible, we first explain the abbreviations we use. For any positive integer r, [r] denotes the sequence (2, . . . , r) if r ≥ 2 and the empty sequence if r = 1. For any subsequence X of [r],

[r] -X denotes the subsequence of the elements of [r] that are not in X. For any sequence (n 2 , . . . , n r ) of integers, N X denotes the sequence of those n i such that i is in X and N j denotes the sequence (n 2 , . . . , n j-1 , n j+1 , . . . , n r ).

The polynomials R 0 (n 1 ) are not defined. The anchor of this recursive definition is

R 0 (0, 0) = (1 -p) 2 .
(1.16)

If g = 0 and r = 2 but (n 1 , n 2 ) = (0, 0), then we have

R 0 (n 1 , n 2 ) = (1 -p) 2 (-n 2 HE n1+n2+2 -(n 2 + 1)E n1+n2+3 ) +2J(1 -p) 2 i+j+k=n1+1 i>0, k<n1 (-1) j+1 H j E i R 0 (k, n 2 ). (1.17)
We note that (1.16) is a special case of (1.17) where n 1 = n 2 = 0.

If (g, r) = (0, 2), then R g (n 1 , . . . , n r ) = term 1 + term 2 + term 3 + term 4 , (1.18) 
where

term 1 = 2J(1 -p) 2 i+j+k=n1+1 i>0, k<n1 (-1) j+1 H j E i R g (k, n 2 , . . . , n r ) (1.19)
(we note that the second line of (1.17) is a special case of (1.19) where g = 0 and r = 2),

term 2 = J k+l+m=n1+1 0≤j≤g X⊆[r] (j,X) =(0,∅) (j,X) =(g,[r]) K m H m R j (k, N X )R g-j (l, N [r]-X ),
(1.20)

term 3 = i+j+m=n1+1 K m H m R g-1 (i, j, N [r] ) (1.21) and term 4 = r j=2 n j k+l=n1+nj +2 L k H k+1 R g (l, N j ) +(n j + 1) k+l=n1+nj +3 L k H k R g (l, N j ) . (1.22) 
It was shown in [START_REF] Giorgetti | Combinatoire bijective et énumérative des cartes pointées sur une surface[END_REF] that each polynomial R g (n 1 , . . . , n r ) is symmetric in all its variables. This was made possible by distinguishing a dart incident to each of the vertices whose degree is considered, which increases the size of the coefficients but does not increase the number of polynomials that have to be calculated.

We note here that in the account of these results published in [START_REF] Arquès | Énumération des cartes pointées de genre quelconque en fonction des nombres de sommets et de faces[END_REF] formula (1.17) and the sum in (1.15) are missing; the formulas are presented correctly in [START_REF] Giorgetti | Combinatoire bijective et énumérative des cartes pointées sur une surface[END_REF]. At that time the second author, programming in Maple, calculated the polynomial P g and the generating function M g (w, u) for g = 2 and g = 3 (these results are published in [START_REF] Arquès | Énumération des cartes pointées de genre quelconque en fonction des nombres de sommets et de faces[END_REF]) and also computed the generating function that counts rooted maps of genus 4 by number of edges. This result was recently included in [START_REF] Mednykh | Enumeration of genus four maps by number of edges[END_REF], where it was used to count both rooted and unrooted maps of genus 4 by number of edges.

Recently, the second author extended his enumeration results to genus 5. The first author, programming mainly in C, optimized the calculation of the polynomials R g (n 1 , . . . , n r ) and thus extended the enumeration by number of vertices and faces, as well as by number of edges, to genus 6. Although each author used a different algorithm and a different programming language, we both obtained the same answers, and the numbers of rooted maps we calculated agree with the tables in [START_REF] Walsh | Combinatorial enumeration of non-planar maps[END_REF], providing evidence of the correctness of our results. An account of these extensions is given in Sections 2 and 3 and the polynomials P g (p, q) appear in Appendix A. A discussion of the enumeration of rooted genus-g maps by number of edges appears in Section 4 and the polynomial part of each of the corresponding generating functions appears in Appendix B. Finally, a discussion of some open problems appears in Section 5.

Results from the Maple program

A first version of the Maple code written in 1998 implemented recurrence relations between the rational functions introduced in [START_REF] Arquès | Counting rooted maps on a surface[END_REF] for the computation of the generating functions M g . It was not designed for efficiency but for validating formulas from [START_REF] Arquès | Counting rooted maps on a surface[END_REF]. That code has also been used for validating the formulas from (1.2) through (1.22) for the first values of g, r and n 1 , . . . , n r (these formulas were first obtained from a long computation that was done by hand and is thus error-prone). When executed in 1998 with Maple V for computing M 4 (w, u) that code ran into a fundamental limitation (wired into the Maple kernel) of a maximal number of 65,535 terms in any polynomial.

That old code has been recently replaced by a simpler code implementing directly the recursion between polynomials described by the formulas from (1.2) through (1.22). The code is short (less than 400 lines) and resembles the mathematical formulas as much as possible in order to detect errors. All the results obtained by this new code match known results in rooted map enumeration. For all these reasons, it can be considered as a reference for the debugging of optimized implementations.

With a personal computer running under Windows XP with an Intel Core 2 Duo CPU at 2.19 GHz and 3.5 Gb of memory, and a Maple 14 release supporting larger objects, the next two generating functions M 4 (w, u) and M 5 (w, u) were successfully computed in 4 minutes and 5 hours, respectively. It was, however, not sensible to continue using this inefficient prototype for computing the next generating functions. A better idea was to write an independent implementation optimizing memory space and execution time.

Optimizations and the C program

Aside from the advantage in execution speed that C has over Maple, the first author optimized the calculation of the polynomials R g (n 1 , . . . , n r ). One of these optimizations was made possible by the following observation.

Proposition 1. For any (g, r) = (0, 1) and any sequence n 1 , . . . , n r , the polynomial

R g (n 1 , . . . , n r ) is divisible by (1 -p) 2 .
Proof. (by generalized induction on the degree of a polynomial of the form R g (n 1 , . . . , n r ), which we call an R-polynomial).

Basic step (degree 2) The only R-polynomial of degree 2 is R 0 (0, 0) = (1 -p) 2 : see (1.16).
Induction step Suppose that the degree d of a given R-polynomial R g (n 1 , . . . , n r ), as defined by (1.10), is greater than 2 and that every R-polynomial of degree < d is divisible by (1 -p) 2 . We show that R g (n 1 , . . . , n r ) is also divisible by (1 -p) 2 . Since every R-polynomial on the right side of equations (1.17), (1.19), (1.20), (1.21) and (1.22) is of degree < d, it follows from the induction hypothesis that each such polynomial is divisible by (1 -p) 2 . We examine each of these equations in turn. Equation (1.17). The first line contains a factor (1-p) 2 . The term E n1+n2+3 is a polynomial for any non-negative n 1 and n 2 . The term E n1+n2+2 is a polynomial unless n 1 = n 2 = 0, but in this case E n1+n2+2 is multiplied by n 2 = 0; so the first line of (1.17) is divisible by (1 -p) 2 . In the second line, each term of the sum contains a polynomial R 0 (k, n 2 ), which, by the induction hypothesis, is divisible by (1 -p) 2 . This factor of (1 -p) 2 could be cancelled by E 1 or E 2 , but the sum is nevertheless a polynomial, and the factor (1 -p) 2 by which the sum is multiplied ensures that the second line of (1.17) too is divisible by (1 -p) 2 ; so the right side of (1.17) is divisible by (1 -p) 2 . Equation (1.19). By an argument similar to the one used for the second line of (1.17), the right side of (1.19) is divisible by (1 -p) 2 .

Equations (1.20)- (1.22). Each term in the sum contains at least one R-polynomial that is divisible by (1 -p) 2 ; so the right side of each of these equations is divisible by (1 -p) 2 . It follows from (1.18) that R g (n 1 , . . . , n r ) is divisible by (1 -p) 2 , which completes the proof.

We now modify equations (1.8)-(1.10), and (1.16)- (1.22) in the light of Proposition 1. We introduce a new family of polynomials (which we call S-polynomials) defined by

S g (n 1 , . . . , n r ) = R g (n 1 , . . . , n r )/(1 -p) 2 (3.1)
and we also let

U g = T g /(1 -p) 2 . (3.2)
Then U g is a polynomial of degree 10(g -1) and (1.8)-(1.10) become (3.3)-(3.5), respectively.

P g = U g (1 -p) 4g-4 , (3.3) 
U g = S g-1 (0, 0) + q(1 -p -q) (1 -p) 2 g-1 j=1
S j (0)S g-j (0). 

S 0 (0, 0) = 1, (3.6) 
S 0 (n 1 , n 2 ) = (-n 2 HE n1+n2+2 -(n 2 + 1)E n1+n2+3 ) +2J(1 -p) 2 i+j+k=n1+1 i>0, k<n1 (-1) j+1 H j E i S 0 (k, n 2 ). (3.7) 
If (g, r) = (0, 2), then

S g (n 1 , . . . , n r ) = term 5 + term 6 + term 7 + term 8 , (3.8) 
where

term 5 = 2J(1 -p) 2 i+j+k=n1+1 i>0, k<n1 (-1) j+1 H j E i S g (k, n 2 , . . . , n r ), (3.9 
)

term 6 = J(1 -p) 2 k+l+m=n1+1 0≤j≤g X⊆[r] (j,X) =(0,∅) (j,X) =(g,[r]) K m H m S j (k, N X )S g-j (l, N [r]-X ), (3.10) 
term 7 = i+j+m=n1+1 K m H m S g-1 (i, j, N [r] ), (3.11) 
and

term 8 = r j=2 n j k+l=n1+nj +2 L k H k+1 S g (l, N j ) +(n j + 1) k+l=n1+nj +3 L k H k S g (l, N j ) . (3.12)
Since R g (n 1 , . . . , n r ) is symmetric in all its variables, so is S g (n 1 , . . . , n r ); so only those polynomials S g (n 1 , . . . , n r ) with n 1 ≤ . . . ≤ n r are treated. In all the S-polynomials on the right side of each of the equations (3.9)-(3.12), only the first two variables can violate these inequalities; so they are inserted into their proper slots among the remaining variables to preserve the inequalities. Also, equation (3.4) is symmetric in j and g -j, equation (3.10) is symmetric in k and l and equation (3.11) is symmetric in i and j; so the calculations there can be cut almost in half. In equation (3.12), each polynomial S g (l, N j ) is calculated only once and then used twice. The following easily proved observations can be used to avoid calculating a polynomial that is identically 0:

term 5 = 0 if n 1 = 0, term 6 = 0 if g + r ≤ 2, term 7 = 0 if g = 0, term 8 = 0 if r = 1 or (g, r) = (0, 2).
From these observations, it follows that the only term that could possibly contribute to S 0 (n 1 ) is term 5 . From (3.9) it follows by generalized induction on n 1 that S 0 (n 1 ) = 0 for all n 1 ≥ 0; so these polynomials do not have to be defined.

All the S-polynomials are stored in a single one-dimensional array s. A preliminary recursion does not calculate any of these polynomials. Instead, it calculates all the quadruples (d, g, r, c) of parameters of the S-polynomials that will later be calculated, where d = degS g (n 1 , . . . , n r ) and c is an integer coding the sequence (n 1 , . . . , n r ), and stores the list of quadruples in four parallel arrays, one array for each of the four parameters d, g, r, c and one element of all four arrays for each quadruple (d, g, r, c). The program then sorts the four parallel arrays by degree d using bucket sort, computes the number of Spolynomials that have to be calculated and the total number of terms in these polynomials and stores in two arrays the index in s and the one in the four parallel arrays of the first term for each degree d. Then the S-polynomials are calculated in increasing order of their degree and stored in s. This can be done non-recursively because all the S-polynomials that need to be used will have already been stored and need only be found by searching the four parallel arrays, starting with the first index for the appropriate degree d, for the appropriate parameters, and adding (d + 1)(d + 2)/2 to the index in s each time the index in the four parallel arrays is increased by 1. Once the last polynomial S g-1 (0, 0) has been calculated, first (3.4) is used to calculate U g and then (3.3) is used to calculate P g and its coefficients are stored in a text file, which is available from the first author on request. The polynomials P 2 and P 3 appear in [START_REF] Arquès | Énumération des cartes pointées de genre quelconque en fonction des nombres de sommets et de faces[END_REF]. The polynomials P 4 , P 5 and P 6 appear in Appendix A. Because these polynomials are symmetric in p and q, to save space we include only those terms in which the exponent of p is at least as great as the exponent of q.

The number of S-polynomials that have to be calculated is roughly the total number of partitions of all the positive integers up to 10(g -1). For each of these polynomials, the most expensive calculation is term 6 , because the sum there runs over all the partitions of the sequence [r] = (2, . . . , r), where r can be as great as g + 1, and involves multiplying two S-polynomials. The time-complexity of calculating P g is therefore exponential in g, but the optimizations made here nevertheless made it possible to calculate P g for a greater value of g than was possible previously. Another program computes a table of numbers of rooted genus-g maps counted by number of vertices and faces by reading this file and using (1.2) if g ≥ 1 or (1.3) if g = 0. Tables of numbers of rooted genus-g maps for any g ≤ 6 and with up to any reasonable number of edges are available from the first author on request.

The programs were written mainly in C. The one that computes the polynomials is about 2000 lines long and the one that computes the tables is about 300 lines long. They both use the C++ library CLN to do arithmetic on big integers because CLN reads arithmetic expressions in C that use only addition, multiplication and subtraction; only statements involving quotients, remainders, input/output of big integers and file management had to be modified. Since CLN requires a GNU compiler, XCODE was downloaded and installed by Jerome Tremblay, a computer technician at UQAM, who also downloaded and installed CLN and wrote sample C++ statements for input/output of big numbers and file management.

The programs were executed on a 2004 Macintosh GR4 computer. The time taken to compute the polynomial P g varied from run to run. In Table 1 we show, for each g from 1 to 6, the number of S-polynomials that were calculated, the total number of terms in all these S-polynomials, and a typical execution time. Once the S-polynomials had been computed and stored, it took the computer only 48 seconds to make a table of numbers of genus-6 maps with up to 42 edges counted by number of vertices and faces. Source codes of both programs are available from the first author on request.

g number of S-polynomials total number of terms execution time 

Counting by number of edges

To compute the generating function M g (z) = z 2g-2 M g (z, z) that counts rooted genus-g maps by number of edges alone, we use the substitution obtained in [START_REF] Mednykh | Enumeration of genus four maps by number of edges[END_REF], which is a more compact form of the one obtained in [START_REF] Giorgetti | Combinatoire bijective et énumérative des cartes pointées sur une surface[END_REF] and published in [START_REF] Arquès | Énumération des cartes pointées de genre quelconque en fonction des nombres de sommets et de faces[END_REF]. Let

p = q = m, (4.1) 
where z = m(1 -3m) and m = 0 when z = 0. (4.2)

By substituting from (4.1) into (1.4) and (1.5) to express w and u in terms of m and then substituting into (1.7), we obtain the following equation for g ≥ 1:

M g (z) = m 2g (1 -3m) 2g-2 P g (m, m) (1 -6m) 5g-3 (1 -2m) 5g-4 . (4.3)
For g = 0, we substitute into (1.3) instead of (1.7) and obtain

M 0 (z) = (1 -3m) -2 (1 -4m). (4.4)
The first author computed M g (z) from the computed values of M g (w, u) for g ≤ 6. The program divides the polynomial P g (m, m) by 1 -2m as often as possible. The program then divides the resulting polynomial by 2 and by 3 as often as possible, extracts the appropriate constant factor and then stores the resulting generating function in another text file, also available from the first author. The second author computed M g (z) directly for g ≤ 6. We then compared our formulas and verified that they agree. The formulas for P g (m, m) for 1 ≤ g ≤ 6 appear in Appendix B. Now P g (m, m) is of degree 6g -6, but we found experimentally that for 1 ≤ g ≤ 6, P g (m, m) is divisible by (1 -2m) 2g-2 , so that the quotient is only of degree 4g -4, and we conjecture that this will be the case for any positive integer g.

Some interesting open problems

The recurrences satisfied by the Rand S-polynomials both result from proofs by induction. After the right conjecture has been guessed by observing the first computed terms, these proofs are not difficult to find, but they are tedious and error-prone due to the length of the expressions involved. Thus they are good candidates for automation. We plan to develop a suitable formal framework for assisting this kind of proofs with a computer algebra system. The challenge is to shorten the chain of conjectures and proofs about the general pattern of generating functions for counting rooted maps. This chain has been initiated in [START_REF] Bender | The number of rooted maps on an orientable surface[END_REF] and continues in the present work with a new conjecture that the polynomial

P g (m, m) is divisible by (1 -2m) 2g-2 for all g ≥ 1.
Once the numbers of rooted maps of genus up to g are known, the number of unrooted maps up to genus g can be calculated using the methods presented in [START_REF] Mednykh | Enumeration of unrooted maps of a given genus[END_REF]. As was mentioned above, the second author collaborated with A. Mednykh to count rooted and unrooted maps of genus 4 by number of edges [START_REF] Mednykh | Enumeration of genus four maps by number of edges[END_REF]. It would be interesting to count unrooted genus-g maps by number of vertices and faces for as many values of g as possible (see [START_REF] Walsh | Enumeration of unrooted orientable maps of arbitrary genus by number of edges and vertices[END_REF] for an account of the progress made on this problem). 

(3. 4 )

 4 deg S g (n 1 , . . . , n r ) = 2(n 1 + . . . + n r ) + 7(r -2) + 10g. (3.5) Also, (1.16)-(1.22) become (3.6)-(3.12), respectively.

Table 1 :

 1 Evaluation of the computation cost

	1	1	1	instantaneous
	2	16	507	1 second
	3	67	7407	10 seconds
	4	205	49796	2 minutes
	5	543	235410	20 minutes
	6	1314	900114	3,5 hours

Appendix A

Coefficients of the polynomial P g (p, q) in the generating function M g (w, u). The exponent of p is i and the exponent of q is j.