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The quay crane scheduling problem (QCSP) is a global problem and all ports around the world seek to solve it, to get an acceptable time of unloading containers from the vessels or loading containers to the vessels and therefore reducing the docking time in the terminal. This paper proposes three solutions for the QCSP in port of Tripoli-Lebanon, two exact methods which are the mixed integer linear programming and the dynamic programming algorithm, to obtain the optimal solution and one heuristic method which is the genetic algorithm, to obtain near optimal solution within an acceptable CPU time. The main objective of these methods is to minimize the unloading or the loading time of the containers and therefore reduce the waiting time of the vessels in the terminals. We tested and validated our methods for small and large random instances. Finally, we compared the results obtained with these methods for some real instances in the port of Tripoli-Lebanon.

Introduction and related works

This study addresses the QCSP at port of Tripoli-Lebanon. Lebanon has two ports, the first one is located in the north (port of Tripoli) and the other one is 25 May 2020. 1 Univ.Bourgogne Franche -Comté, FEMTO-ST Institute/CNRS, (UTBM), Belfort, 90010, France 2 Jinan University (JU), Tripoli, 1300, Lebanon In August 2016, the container transportation and shipping company CMA CGM (Compagnie Maritime d'Affrètement (CMA) and Compagnie Générale Maritime (CGM)) released a route from south Asia to north Europe passing by the port of Tripoli-Lebanon, as a transshipment port. This will transfer the port from the secondary to the main center. Therefore, about 800 containers will pass through the port of Tripoli -Lebanon in a week, and finally the vessels will move to their intended ports. The quay crane is a machine used to unload containers from the vessels or to load containers on the vessels, and the container is an enclosure for holding products such as cars, food, wood... (Figure2). Each vessel is divided into many rows, and many bays and contains a specific number of containers (Figure1).

(Figure reference: https://www.morethanshipping.com)

The scheduling problem is a popular problem in many maritime ports. In this paper we propose a solution for the scheduling problem in the port of Tripoli-Lebanon. Many researchers have proposed the QCSP and have proposed methods for solving problems such as exact and heuristic methods. 26 of them are mentioned in the list below: [START_REF] Daganzo | The quay crane scheduling problem[END_REF] [START_REF] Daganzo | The quay crane scheduling problem[END_REF] is one of the first searcher who studied the QCSP for multiple container vessels. His suggestion was to divide the container vessels into bays, where only one quay crane can work on a bay at a time. These quay cranes are free to move quickly from one bay to another, and container vessels cannot depart until all their bays are unloaded. Minimizing the cost of delay is the main purpose, with an exact and an approximate solution method. Furthermore, a branch and bound method for the static QCSP was developed by [START_REF] Peterkofsky | A branch and bound solution method for the quay crane scheduling problem[END_REF] Peterkofsky et al. (1990), only if the quay cranes could cross over each other. Otherwise, [START_REF] Kim | A crane scheduling method for port container terminals[END_REF] Kim et al. ( 2004) discussed the QCSP with non-interference constraints, considering the case of a single container vessel. The main purpose was to reduce the total completion time of all quay cranes.

[16] Lim et al. (2004) assumed that a container vessel is a job. When this job is assigned to quay crane, there is a profit value. They found an assignment matching which maximizes the total profit. A dynamic programming algorithm and a Tabu search are used to provide a solution to the problem. [ 1 shows a classification of works according to the resolution methods (exact or heuristic) and according to the variant of the studied problem. We note that most researchers have used the MILP as an exact method and the genetic algorithm (GA) as a heuristic method to solve the QCSP.

In this study, we propose three solving methods for the scheduling problem of unloading tasks performed by several cranes assigned to a single vessel in ports like that of Tripoli-Lebanon. Those methods are a MILP, a dynamic programming algorithm (DPA) and a genetic algorithm. After that, we compare all obtained results for those methods with real results from the mentioned port.

The proposed MILP and the DPA allow us to find all possible assignments for the quay cranes to the bays, taking into consideration the non-interference constraints between quay cranes. Their main objective is to minimize the total completion time.

The proposed genetic algorithm aims to minimize the total completion time and to find the near optimal solutions. This study allows to find the optimal completion time for a container's vessel. We observe that the dynamic programming algorithm provided better results than the mixed-integer linear programming in terms of CPU time and completion time for large number of bays. Nevertheless, the drawback of the DPA is that for larger instances, for example, for 22 bays, it may take 4 hours to give a result, and therefore in such cases, we propose a genetic algorithm to obtain optimal or near optimal results with a quick execution time for the quay cranes scheduling problem without cranes crossing. Later in this paper, in section 2 we define the studied problem. In section 3 we propose three solving methods. In section 4 we compare the results of the three solving methods and the real results in the port of Tripoli-Lebanon. Finally, in section 5 we give a conclusion and a direction for future research.

Problem definition and mathematical formulation

In this section, we provide the problem definition and the mathematical formulation such as the assumptions, the needed parameters and the decision variables used in the mathematical model. We study a QCSP with non-interference constraints for a single vessel unloaded by several quay cranes, as can be encountered in the port of Tripoli-Lebanon, using three solving methods to improve the results of such port.

Assumptions

The QCSP we study has the following characteristics:

• A single vessel is considered, which transports containers. Its surface is divided into many bays and each bay contains a specific number of containers put in a row or over each other. (cranes number<bays number) • The quay cranes move along a single-track, this means that they work without any crossing between them. • Each quay crane is able to unload containers from only one bay at a time, when it completes its work in the current bay, it can pass to the next one. • Each quay crane can unload one container at a time.

• Each bay is handled by at most one quay crane at a time.

• We ignore the travel time between two bays because it is short compared to the unloading times. • No idle quay crane.

Mathematical formulation

In this sub-section, we present the mathematical formulation of the problem with the different parameters, variables and the mathematical model.

Data

• Q: set of quay cranes, with |Q|: number of quay cranes.

• i: index of quay crane (i={1..|Q|}). • q i : the i th quay crane (i={1..|Q|}).

• B: set of bays, with |B|: number of bays.

• j: index of bay (j={1..|B|}) on the vessel. • C j : number of containers in bay j.

• Tc: time to unload a container by a quay crane and put it in the storage.

It is supposed to be the same for all containers in all bays. • M: great integer number.

Decision variables

∀i ∈ Q, ∀j, j ∈ B • x (j,i) =
1 if bay j is handled by quay crane i 0 otherwise

• z (j,j ) =   
1 if the unloading of bay j finishes before starting to unload bay j' 0 otherwise

• t j : completion time of bay j • C max : makespan 2.2.

Mathematical model

Here we show some equations to facilitate the understanding of the problem. 1) means, if there are two successive bays to be worked inside, then the completion time of the second one is greater than the first one. Equation ( 2) is used when the work at bay j finishes before than starting the work at bay j', while equation ( 3) is used when the work at bay j finishes after the one at bay j' starts. Equation ( 4) is used if quay crane q i works in bay j and quay crane q i+1 works in bay j' to prevent the crossing between quay cranes.

t j ≤ t j ∀j, j ∈ B (1) t j ≤ t j -(T c • C j ) ∀j, j ∈ B (2) t j > t j -(T c • C j ) ∀j, j ∈ B (3) q i + 1 ≤ q i+1 ∀q i ∈ Q (4) Equations (

Solving methods

In this section, we will propose three solving methods: MILP solved by CPLEX and dynamic programming algorithm coded with Java to obtain exact solutions, and a genetic algorithm which is a meta-heuristic method coded in Java to obtain near optimal solutions.

Mixed integer linear programming

The mixed integer linear formulation was found by [START_REF] Kantorovich | Mathematical methods of organizing and planning production[END_REF] Leonid [START_REF] Kantorovich | Mathematical methods of organizing and planning production[END_REF]. It is a technique for the optimization of an objective function, subject to linear inequality and equality constraints. The MILP we propose is as follows:

Objective M inimize C max (5) Subject to |Q| i=1 x (j,i) = 1 ∀j ∈ B ( 6 
)
t j ≥ (T c • C j ) ∀j ∈ B (7) t j -t j + (T c • C j ) + z (j,j ) • M > 0 ∀j, j ∈ B ( 8 
)
t j -t j + (T c • C j ) -(1 -z (j,j ) ) • M ≤ 0 ∀j, j ∈ B ( 9 
) |Q| i=1 i • x (j,i) + 1 ≤ |Q| i =1 i • x (j ,i ) + (z (j,j ) + z (j ,j) ) • M ∀j, j ∈ B, j < j (10) C max = max j t j (11) x (j,i) = {0, 1} ∀j ∈ B, ∀i ∈ Q (12) z (j,j ) = {0, 1} ∀j, j ∈ B, j < j (13) 
Equation ( 5) is the objective function that it is desired to minimize the makespan (completion time of all bays). Constraint [START_REF] Boysen | A generalized classification scheme for crane scheduling with interference[END_REF] ensures that every bay must be handled only by one quay crane. Constraint [START_REF] Chung | A modified genetic algorithm for quay crane scheduling operations[END_REF] ensures that the completion time is bigger than the working time in each bay (Working time = number of containers × time needed to unload a container and store it). Constraint [START_REF] Daganzo | The quay crane scheduling problem[END_REF] indicates that if z (j,j ) = 1, then bay j finishes before bay j' starts (Equation 2) and constraint [START_REF] Diabat | An integrated quay crane assignment and scheduling problem[END_REF] indicates if z (j,j ) = 0, bay j finishes after bay j' starts (Equation 3). Constraint [START_REF] Goldberg | Genetic algorithms in search[END_REF] avoids the interference between the quay cranes : Suppose that bays j and j' are performed simultaneously and j < j', if the first quay crane works in bay j and the second quay crane works bay j', then q 1 + 1 ≤ q 2 (Equation 4). Constraint [START_REF] Haoyuan | Simulation-based optimization on quay crane scheduling of container terminals[END_REF] defines the C max value, finally constraints ( 12) and ( 13) define the property of the decision variables.

Dynamic Programming Algorithm

Definition

Dynamic programming algorithm was found by [START_REF] Bellman | Dynamic programming[END_REF] Richard [START_REF] Bellman | Dynamic programming[END_REF]. It is used for problems optimization to explore the optimal solution. The dynamic programming algorithm (DPA) consists in dividing the problem into many small sub-problems and after solving each sub-problem only once, and ultimately, the problem has been solved. Finally, we can save the results and select the obtained optimal solution. The dynamic programming problems can be classified into two categories:

• Optimization problems Selecting the feasible solution with the value of the function is maximized or minimized.

• Combinatorial problems

Figuring out the number of ways to do something, or the probability of some events happening.

Hierarchy tree diagram

A hierarchical chart represents a system of hierarchy progressing from the top to the bottom and can also be referred to as a structure chart. The first node of the tree is called the root. If this root node is connected by another node, the root is then a parent node and the connected node is a child. All Tree nodes are connected by links called edges. It's an important part of trees, because it manages the relationship between nodes. We start by generating all parameters and we finish by obtaining the optimal solution.

The DPA works depending on the hierarchy tree diagram system. As shown below, a detailed tree example of the DPA is provided: We start by developing all the needed conditions in the problem. After we get all possible choices whatever the CPU time will be high, with a single solution for each choice. Finally, we choose the optimal solution which is the smallest one.

Parameters

Algorithm description

Algorithm 1 Dynamic programming algorithm Our DPA generates all variables and then all crane-to-bay assignments. In this case, for 4 bays and 2 cranes, there is initially 2 4 , or 16 possible assignments which are:

1-1-1-1, 1-1-1-2, 1-1-2 -1, 1-1-2-2, 1-2-1-1, 1-2-1-2, 1-2-2-1, 1-2-2-2, 2-1-1-1 , 2- 1-1-2, 2-1-2-1, 2-1-2-2, 2-2-1-1, 2-2-1-2, 2-2-2-1, 2 -2-2-2.
In these x-y-z-t type lists, the value in i th position represents the number of the crane assigned to unload bay i.

In a second step, the 2 assignments (1-1-1-1 and 2-2-2-2) are eliminated because all the cranes reserved for the vessel are all supposed to unload containers. We are therefore forbidden here to use only one crane.

In the next step, a crossing test is carried out, which leads to eliminating the assignments which start with 2. In fact, if the second crane works in the first bay there will be a crossing between the cranes. Note that the reverse is not true: the quay crane 1 can unload the containers from bay 4, however it cannot start with this bay, which will be limiting in terms of the scheduling phase.

• The first assignment is • The seventh assignment is 1-2-2-1: the QC1 crane (respectively QC2) unloads the containers from bays 1 and 4 (respectively 2 and 3) with an end date of 43.29 (respectively 32.76). The makespan is therefore equal to 43.29. As for scenario 6, this date includes a waiting time for QC1, here of 17.55 time units between the unloading of bays 1 and 4, in order to allow QC2 time to finish its work in bays 2 and 3 and avoid thus a collision.

Summary

The dynamic programming algorithm (DPA) allows to find all possible completion times which grow when the number of quay cranes and bays increases, taking into consideration the non-crossing conditions for the quay cranes. Finally, it allows to choose the optimal completion time. After testing large instances using the MILP and dynamic programming algorithm, we observed that those two methods took a long CPU time to solve the problem and obtain the optimal solution (as we will see later in the next section). We propose a meta-heuristic method which is the genetic algorithm (GA) to obtain near optimal solution with fast CPU time. The genetic algorithm (GA) was proposed by [START_REF] Holland | Genetic algorithms, computer programs that evolve in ways that resemble natural selection can solve complex problems even their creators do not fully understand[END_REF] John [START_REF] Holland | Genetic algorithms, computer programs that evolve in ways that resemble natural selection can solve complex problems even their creators do not fully understand[END_REF] and developed and applied by [START_REF] Goldberg | Genetic algorithms in search[END_REF] David [START_REF] Goldberg | Genetic algorithms in search[END_REF].

Genetic Algorithm

In this paper, GA depends on Roulette wheel selection, order crossover and swap mutation.

The genetic algorithm steps are presented as follows: generation of an initial population of solutions, after that, test of the non-interference constraints for the quay cranes to avoid the crossing between them, if there is no crossing, calculation of the fitness value, if not setting of the fitness to zero. If the current generation is the final one, then the program is terminated, and the results are provided. If not, we execute the GA steps which are roulette wheel selection, order crossover and swap mutation. We choose the genetic algorithm due to its simplicity, as it is easy to be implemented. Figure 5 describes the flowchart of this genetic algorithm.

Representation of a chromosome

The solution in the genetic algorithm is called a chromosome and each element inside is called gene. In our study, the chromosome is composed of a serie of bays.

Table 2 shows a chromosome and each gene contains the bay number. For example, the third element (third gene) in the chromosome represents the bay number 4.

Table 2. Chromosome and genes 7 9 4 10 3 8 6 1 2 5

Initial positions of quay cranes

To fix the initial position of a quay crane we use the following equation: 1 + (i -1) × R, where i is the index of the quay crane and R a random number between 1 and L, with L = bays number / quay cranes number. If L is a rational number, we take its natural part number. Be aware that the position of the first quay crane is always at the first bay.

Example: Let us suppose that we have 12 bays and 3 quay cranes, then R should be a random number between 1 and 12/3 (hence between 1 and 4). If R=2, then the main position of quay crane 1 is at bay 1, quay crane 2 is at bay 3 and quay crane 3 is at bay 5.

Quay cranes scheduling

Algorithm 2 explains how the scheduling problem works. The initial positions of the quay cranes, and therefore the bays will be assigned to the quay cranes. A sequential procedure is used to consider the order of the bays in the chromosome. Non-crossing (step 1): The first step consists to determine which quay cranes can unload the first unassigned bay in the chromosome without crossing with the other quay cranes. If there is only one available quay crane, this bay is assigned to this quay crane, else we continue to the next step. For our example, quay crane 2 and quay crane 3 can handle bay 7 without interference with quay crane 1.

Selection based on time criteria (step 2): Among these two cranes, we choose the one which is available sooner. In case of equality, that means if the two cranes have the same completion time, then we go to step 3 to discriminate them according to a distance criterion. In our example, the completion times of quay crane 2 and quay crane 3 are equal.

Selection based on distance criteria (step 3): If no crane has been chosen in step 2 with the time criterion, we assign the current bay to the nearest crane. In case of equality (if the two cranes are at equal distance from the bay), we choose the crane at the left (with the smallest index). The distance between bay 7 and bay 3 (which quay crane 2 works inside) is 3 bays and the distance between bay 7 and bay 5 (which quay crane 3 works inside), is 1 bay. Then crane 3 is nearer to bay 7 than crane 2. Assignment (step 4): Assign bay 7 to quay crane 3. Update the position of quay crane 3 and the associated completion time (see iteration 1 in Table 3). Then update the current gene (following one) in the chromosome (gene 2, bay 9 in our example). Repeat the four steps until all bays are assigned to one quay crane. Algorithm 2 describes the process of the quay cranes scheduling while Table 3 shows a detailed numerical example for the scheduling.

Fitness

In the previous section, we have seen a procedure to prevent the interference between the quay cranes. Nevertheless, we should check if the quay cranes satisfy the constraints or not, so we used the two constraints ( 8) and ( 9) and then checked the interference constraint [START_REF] Goldberg | Genetic algorithms in search[END_REF] to ensure that there is no collision between quay cranes. The fitness value will be calculated from the Equation ( 14). If the constraints are not satisfied, the fitness value will be set to zero.

F itness = 1/C max (14) 

Roulette wheel selection

The roulette wheel selection is a process to choose individuals from a population, according to the "fitness" function or the values of their cost, to form a new population. Individuals will be evolved by some successive iterations of selection, called generations. All individuals are selected proportionally to their "fitness" function, so an individual with a higher fitness function will be more likely to be selected than another with a lower fitness value. This function can be considered as a measure of profit or quality that one wishes to maximize. A simple operator of selection is the technique of the weighted roulette where each individual of a population occupies a surface of the roulette proportional to the value of its function "fitness". For reproduction, candidates are selected with a probability proportional to their "fitness". For each selection of an individual, a simple rotation of the wheel gives the selected candidate. Roulette Wheel Selection works as follows:

Calculate the sum of all fitness, then generate a number between 0 and this sum; add the fitness values to a partial sum X starting from the top of population, and finally the chosen chromosome is the first chromosome for which X overpasses the random number. The procedure is illustrated in Figure 6. The order crossover procedure aims to select randomly a substring from a random parent. After that we create an offspring by copying the selected substring in their corresponding positions. Then, we delete from the second parent all existing in the substring and place the genes in the empty positions of the offspring from left to right. Finally, we should take into consideration the order of the sequence of the offspring creation. The procedure is illustrated in Figure 7. The swap mutation procedure aims to test all the individuals bit by bit.

From the chromosome, we randomly select two positions (two genes) and then we swap the values of these two positions.

The procedure is illustrated in Figure 8. 

Experimental results

In this section, we evaluate the performance of our methods (MILP, dynamic programming, and genetic algorithm). For this goal, we test them on randomly instances, as well as on a real case related to the port of Tripoli-Lebanon. Our programs were executed in a MacBook Pro 2,7 GHz Intel Core i5 with 8GB RAM 1867 MHz DDR3 running in OSX 10.11.6.

We fix the size of the population, the probability of the mutation, the probability of the crossover and the max number of generations when executing the genetic algorithm which are respectively 300, 0.2, 0.25 and 1000. Small and large sizes instances were generated randomly with 2 or 3 quay cranes, 4 to 15 bays, and containers number in each bay were also generated in a random way between 5 and 30 containers.

MILP versus DPA

The MILP was solved by CPLEX 12.7.1, a software for solving integer programming, while the DPA is coded with JAVA J2EE. JAVA is a programming language developed by Sun Microsystems. It was designed to develop programs and creating web applications. It is an object-oriented programming language and its syntax is similar to C++. As shown in Table 4, CPLEX results and DPA results are logically the same (same makespan) for small and large instances, but DPA is better in terms of CPU time. For instance 21 with 14 bays and 2 quay cranes, CPLEX did not provide any result after 2 hours, so we interrupted the execution, while DPA solved the problem to optimality. But in instance 22 for 14 bays and 3 quay cranes CPLEX gives us a result like DPA. For instances 23 and 24, we waited more than 3 hours using CPLEX without obtaining any result. We can therefore state that DPA is more efficient in terms of time than MILP. We will adopt DPA as the exact method to be compared with the meta-heuristic method. The genetic algorithm (GA) and the DPA are both coded with JAVA J2EE. Table 5 shows us, that both GA and DPA gave the same optimal solution with an acceptable and realistic CPU time but only for small instances.

As shown in Table 6, from instance 1 to instance 20, DPA gives us the optimal solutions and GA gives us near optimal solutions, but the difference is the higher CPU time for DPA. The GAP between DPA results and GA results is between 0% and 3.33%. From instance 21, DPA was unable to provide any solution after more than 4 hours of CPU processing time, meanwhile GA provides solutions in a very short time. We therefore state that the proposed GA is successful and practical for our problem. (GAP = ((DPA -GA)/DPA) * 100)

Stability analysis of the genetic algorithm

To evaluate if our genetic algorithm is stable, we executed the same instance 5 times and we got the same result as shown in Table 7 for small instances. For the large instances, we also executed the same instance 5 times (Table 8). At least two executions have the same near optimal result, with a percentage of 40% while the three other executions give results more or less 3% away from the near optimal result. As an example, for 2 quay cranes and 12 bays, the first, third and fourth executions give the near optimal solution obtained by the genetic algorithm (109.98), while the second and the fifth executions give results more or less 3% away from the near optimal solution. Percentage calculation for second execution:

• 112. We therefore state that the proposed genetic algorithm is stable and good to be applied.

Comparison between both DPA, GA and port results

In Table 9, the real results in the port of Tripoli-Lebanon are compared with the dynamic programming algorithm (DPA) results and with the genetic algorithm (GA) results. In the second example in Table 9, there are two quay cranes and four bays containing in total 62 containers. The time to unload a container by a quay crane is about 1.17 minutes. DPA makespan is 44.78 minutes, whereas in the port, the unloading time of 62 containers is about 95 minutes. Finally, the DPA enables us to save time by 52.86%, while GA result is 45.95 minutes and it enables to save time by 51.63%. (we add the percentage of the saved time only for DPA because it is the best method). The better one should have the higher percentage of saved time but although the percentage of the saved time by GA is smaller than DPA percentage, the GA results are good and can be applied. Note that this model accommodates the true conditions of the port of Tripoli-Lebanon.

Conclusion

This paper studies the QCSP in its multi-cranes variant, for which we proposed a mixed-integer linear programming (MILP) model, a dynamic programming algorithm (DPA) and a genetic algorithm (GA). Then, we make results comparison with the real instances from the port of Tripoli-Lebanon. This paper shows the difference between two exact methods and a meta-heuristic method. We saw that for the large instances, the QCSP should be solved by a meta-heuristic method which is genetic algorithm, to have good solutions quickly.

To improve the quality of solutions in terms of execution time and convergence towards the optimal solution, other meta-heuristic methods should be tested in future work.
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  Line 1: generating all needed variables (number of quay cranes, number of bays, number of containers in a specific bay, and time to unload a container by the quay crane).• Line 2: generating all possible choices for the assignment of all bays to quay cranes. • Lines 3 to 9: for each assignment, we test if there is any crossing between the quay cranes. If yes, we test another assignment; if there is no crossing, we calculate the completion time. • Line 10: create a new variable called min and give it the calculated value of the first assignment. • Lines 11 to 18: for each assignment, we test if the completion time is less than the variable min, if yes set min to the new completion time, or else go to the next assignment.3.2.4. Process exampleWe suppose that we have 2 quay cranes with 4 bays containing 13, 16, 12 and 9 containers respectively to be unloaded. The container's unloading times of these 4 bays are respectively 15.21, 18.72, 14.04 and 10.53 time units.
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  27] Steeken et al. (2004) studied the QCSP to increase the competition's capacity of port container terminals. [15] Liang et al. (2008) studied the berthing position problem and determined the number of quay cranes assigned to each ship. The objective was to reduce the handling time and the waiting time for each vessel. A genetic algorithm was proposed to find the best solution.

	[20] Msakni et al. (2016) studied the problem of determining the assignment of
	quay cranes to containers vessels and the scheduling operation by each quay crane.
	They developed an exact method based on a branch-and-price algorithm.
	[21] De Oliveira et al. (2016) focused on the integration of quay side operations
	and the QCSP taking in consideration the minimization of the time spent and the
	fuel consumption.
	[18] Liu et al. (2016) studied a scheduling problem with two uniform quay cranes.
	Their objective was to minimize the turn-around time of a vessel.
	[32] Zhen et al. (2016) studied the quay crane and yard truck scheduling problem
	to minimize the total handling time of all tasks, using a MILP solved with CPLEX
	and a particle swarm optimization algorithm-based solution.
	[11] Haoyuan et al. (2017) proposed a simulation model of container terminal, to
	solve its quay crane scheduling problem, with the objective to optimize the short-
	est total delay time for all vessels. [23] Salhi et al. (2017) proposed a model that
	combines three distinct problems, namely berth allocation, quay crane assignment,
	and quay crane scheduling that arises in container ports. A genetic algorithm was
	developed to solve the problem and finally, [30] Xiazhong et al. (2017) found the
	optimal storage location of container groups while minimizing both the maximum
	completion time and the traveling time of trucks. They used MILP and tabu
	search to solve the problem.
	[24] Skaf et al. (2018) studied the QCSP with non-interference constraints in
	the port of Tripoli-Lebanon. They proposed a mixed-integer linear programming
	(MILP) model and a dynamic programming algorithm to solve the problem.
	[25] Skaf et al. (2019) studied the QCSP with non-interference constraints in the
	port of Tripoli-Lebanon, they proposed a genetic algorithm to solve the problem,
	and finally they compared the obtained results with the mentioned port results.
	The above review suggests that methods such as genetic algorithm are adapted to
	solve the Quay Crane Scheduling Problem (QCSP).
	Later, [26] Skaf et al. (2019) aimed to study both the quay crane and yard truck
	scheduling problem for a single quay crane and multiple yard trucks, the main ob-
	jective is to minimize the total completion time for all containers. They proposed
	a MILP and a dynamic programming to solve the problem.
	Table
	Then, [2] Alnaqbi et al. (2016) aimed to minimize the latest starting time for the
	vessel and its handling time. They used MILP and a hybrid algorithm to solve the
	problem, meanwhile [6] Boysen et al. (2016) presented a classification scheme for
	the QCSP without considering the non-interference constraints between the quay
	cranes. A scheme was applied to classify the existing literature, to determine the
	status-quo of complexity results, and to identify future research.

[START_REF] Moghaddam | An efficient algorithm for solving a new mathematical model for a quay crane scheduling problem in container ports[END_REF] 

[START_REF] Moghaddam | An efficient algorithm for solving a new mathematical model for a quay crane scheduling problem in container ports[END_REF] 

presented a novel, MIP model for the quay crane scheduling and assignment problem, after that

[START_REF] Wang | Multi quay crane scheduling problem based on aco in container terminals[END_REF] 

[START_REF] Wang | Multi quay crane scheduling problem based on aco in container terminals[END_REF] 

determined the sequence of unloading operation, with the objective to minimize the weighted operation time of jobs and travel time. [29] Wang et al. (2010) made a study to improve knowledge for quay crane and berth scheduling. [7] Chung et al. (2012) proposed a modified genetic algorithm to deal with the problem and to test the optimization reliability of the proposed algorithm. A set of well-known benchmarking problems was solved, meanwhile [31] Yi et al. (2012) proposed a general model for the QCSP and introduced a heuristic model to solve it. Their objective is to minimize the total handling time of all tasks. [4] Azza et al. (2014) found the handling sequence of tasks at ship. Their objective is to minimize the time spent by the vessel at berth and minimize the total cost. MILP and ant colony algorithm were used in the previous papers to solve the problem. Furthermore, [9] Diabat et al. (2014) developed a formulation for the quay crane scheduling problem and quay crane assignment which accounts for crane position. They also proposed a resolution by genetic algorithm. Moreover, [1] Al-Dhaheri et al. (

2015

) determined the sequence of unloading operations of a vessel that a set of quay cranes will perform so that the completion time of the operations is minimized. A mixed-integer programming (MIP) formulation was presented for the problem.

[START_REF] Liu | A branch-and-price framework for the general double-cycling problem with internal-reshuffles[END_REF] 

[START_REF] Liu | A branch-and-price framework for the general double-cycling problem with internal-reshuffles[END_REF] 

proposed models and algorithms for the general doublecycling problem with internal-reshuffles, where reshuffle containers can move directly from one stack to another. A branch-and-price framework is used to solve the problem.

[3] Al

[START_REF] Awar | A multi-vessel quay crane scheduling problem[END_REF] 

proposed a solution to minimize the entire processing time for all vessels and used mixed-integer linear algorithm to solve the problem.

Table 1 .

 1 Classification of works

	References	Variant	Resolution methods Exact Heuristic
	[16] Lim et al.	QCSP	DPA	Tabu search
	[15] Liang et al.	QCSP		GA
	[9] Diabat et al.	QCSP		GA
	[1] Al-Dhaheri et al.	QCSP	MIP	
	[19] Moghaddam et al.	QCSP	MIP	
	[7] chung et al.	QCSP		GA
	[32] Zhen et al.	QCYTSP	MILP	PSO
	[4] Azza et al.	QCSP	MILP	Ant-colony
	[2] Alnaqbi et al.	QCSP	MILP	Hybrid
	[3] Al Awar et al.	QCSP	MILP	
	[23] Salhi et al.	QCSP		GA
	[30] Xiazhong et al.	QCYTSP	MILP	Tabu search
	This study	QCSP	MILP, DPA	GA

QCSP: quay crane scheduling problem QCYTSP: quay crane and yard truck scheduling problem

Table 3 .

 3 Detailed example

	Iteration		QC1	QC2	QC3
	init	bay position	1	3	5
		partial scheduling	∅	∅	∅
		completion time	0	0	0
	1	bay position	1	3	7
		partial scheduling	∅	∅	7
		completion time	0	0	10
	2	bay position	1	3	9
		partial scheduling	∅	∅	7, 9
		completion time	0	0	20
	3	bay position	1	4	9
		partial scheduling	∅	4	7, 9
		completion time	0	10	20
	4	bay position	1	4	10
		partial scheduling	∅	4	7, 9, 10
		completion time	0	10	30
	5	bay position	3	4	10
		partial scheduling	3	4	7, 9, 10
		completion time	10	10	30
	6	bay position	3	8	10
		partial scheduling	3	4, 8	7, 9, 10
		completion time	10	20	30
	7	bay position	6	8	10
		partial scheduling	3,6	4, 8	7, 9, 10
		completion time	20	20	30
	8	bay position	1	8	10
		partial scheduling	3,6,1	4, 8	7, 9, 10
		completion time	30	20	30
	9	bay position	1	2	10
		partial scheduling	3,6,1	4, 8, 2	7, 9, 10
		completion time	30	30	30
	10	bay position	2	5	10
		completed scheduling	3,6,1	4, 8, 2, 5	7, 9, 10
		completion time	30	40	30

Table 4 .

 4 Small and large instances

	No.	(|Q| x |B|)	Makespan	CPU Time
			CPLEX	DPA	CPLEX	DPA
			(min)	(min)	(s)	(s)
	1	2 x 4	32.76	32.76	< 1	< 1
	2	3 x 4	24.57	24.57	< 1	< 1
	3	2 x 5	39.78	39.78	< 1	< 1
	4	3 x 5	29.25	29.25	< 1	< 1
	5	2 x 6	51.48	51.48	< 1	< 1
	6	3 x 6	37.44	37.44	< 1	< 1
	7	2 x 7	58.5	58.5	< 1	< 1
	8	3 x 7	39.78	39.78	< 1	< 1
	9	2 x 8	73.71	73.71	< 1	< 1
	10	3 x 8	51.48	51.48	< 1	< 1
	11	2 x 9	90.09	90.09	< 1	< 1
	12	3 x 9	60.84	60.84	< 1	< 1
	13	2 x 10	99.45	99.45	4.77	1.33
	14	3 x 10	70.2	70.2	1.16	0.35
	15	2 x 11	104.13	104.13	24.43	3.89
	16	3 x 11	73.71	73.71	5.57	1.13
	17	2 x 12	107.64	107.64	115.27	13.34
	18	3 x 12	73.71	73.71	7.39	3.28
	19	2 x 13	114.66	114.66	1723.85	32.59
	20	3 x 13	76.05	76.05	20.38	4.57
	21	2 x 14	N.A.	119.34	N.A.	82.44
	22	3 x 14	81.9	81.9	197.83	34.86
	23	2 x 15	N.A.	127.53	N.A.	131.77
	24	3 x 15	N.A.	91.26	N.A.	104.82

|Q| x |B|: number of quay cranes x number of bays N.A. = No result after interrupting execution

Table 5 .

 5 Small instances

	4.2. DPA versus GA					
	No.	(|Q| x |B|)		Makespan		CPU Time
			DP	GA	GAP	DP	GA
			(min)	(min)	(%)	(s)	(s)
	1	2 x 4	32.76	32.76	0	< 1	< 1
	2	3 x 4	24.57	24.57	0	< 1	< 1
	3	2 x 5	39.78	39.78	0	< 1	< 1
	5	2 x 6	51.48	51.48	0	< 1	< 1

Table 6 .

 6 Large instances

	No.	(|Q| x |B|)		Makespan		CPU Time
			DPA	GA	GAP	DPA	GA
			(min)	(min)	(%)	(s)	(s)
	1	2 x 12	107.64	109.98	2.13	13.34	< 1
	2	3 x 12	73.71	74.88	1.56	3.28	< 1
	3	2 x 13	114.66	115.83	1.01	32.59	< 1
	4	3 x 13	76.05	76.05	0	4.57	< 1
	5	2 x 14	119.34	122.85	2.86	112.44	< 1
	6	3 x 14	81.9	83.07	1.41	54.86	< 1
	7	2 x 15	127.53	129.87	1.8	231.77	< 1
	8	3 x 15	91.26	92.43	1.27	104.82	< 1
	9	2 x 16	132.21	132.21	0	303.04	2.31
	10	3 x 16	95.94	98.28	2.38	112.94	1.59
	11	2 x 17	139.23	142.74	2.46	509.96	4.36
	12	3 x 17	101.79	105.3	3.33	203.34	3.12
	13	2 x 18	146.25	147.42	0.79	1144.12	9.67
	14	3 x 18	105.3	106.47	1.1	708.32	7.39
	15	2 x 19	153.27	155.61	1.5	1392.84	13.34
	16	3 x 19	113.49	113.49	0	912.48	10.62
	17	2 x 20	161.46	164.97	2.13	1601.13	32.99
	18	3 x 20	118.17	119.34	0.98	1044.19	28.64
	19	2 x 21	170.82	173.16	1.35	3563.7	58.28
	20	3 x 21	125.19	127.53	1.83	2390.13	34.72
	21	2 x 22	N.A.	180.18	-	N.A.	77.14
	22	3 x 22	N.A.	128.7	-	N.A.	60.12
	23	2 x 23	N.A.	186.03	-	N.A.	104.35

Table 7 .

 7 Stability analysis for small instances

		(|Q| x |B|)	(|Q| x |B|)	(|Q| x |B|)	(|Q| x |B|)
	Execution	2 x 4	3 x 4	2 x 5	3 x 5
	1	32.76	24.57	39.78	29.25
	2	32.76	24.57	39.78	29.25
	3	32.76	24.57	39.78	29.25
	4	32.76	24.57	39.78	29.25
	5	32.76	24.57	39.78	29.25

Table 8 .

 8 32 -109.98 = 2.34 (2.34/109.98) * 100 = 2.12% from the near optimal result. • 113.49 -109.98 = 3.51 (3.51/109.98) * 100 = 3.19% from the near optimal result. • 77.22 -74.88 = 2.34 (2.34/74.88) * 100 = 3.12% from the near optimal result. • 76.39 -74.88 = 1.51 (1.51/74.88) * 100 = 2.01% from the near optimal result. Stability analysis for large instances

		(|Q| x |B|)	(|Q| x |B|)
	Execution	2 x 12	3 x 12
	1	109.98 *	74.88 *
	2	113.49	76.39
	3	109.98 *	77.22
	4	109.98 *	77.22
	5	112.32	74.88 *
			

* : the best near optimal solution

Table 9 .

 9 DPA results vs Port results vs GA results

	Ex. Cranes Bays Containers	Port	DPA GA Saved time %
					makespan		Port-DPA
	1	2	6	25	40	19.5 21.84	51.25
	2	2	4	62	95	44.78 45.95	52.86
	3	2	3	90	103	70.2 72.54	31.84
	4	2	4	84	96	49.14 52.01	48.81
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Algorithm 2 Quay cranes scheduling if q nb = 1 then q 1 ← bay j ; bay j ← -1; j ← j+1; comp q ← comp q + w bayj ; end else if comp qi Not in {comp q }/comp qi then comp qi = Min{comp q }; bay j ← -1; j = Next bay(); comp qi ← comp qi + w bayj ; end else if ∆(bay) > 0 then q i ← bay j with shorter distance; bay j ← -1; j = Next bay(); comp qi ← comp qi + w bayj ; end end else q i ← bay j with smaller index number; bay j ← -1; j = Min bay(); comp qi ← comp qi + w bayj ; end end comp q : quay crane's completion time // bay j : bay number j // q nb : number of quay cranes // q i : the i th quay crane // w bayj : quay crane's time to finish working in bay j // ∆ = |bay k2 -bay k1 | : calculate the distance between bays// Next bay() : get the next bay, Min bay() : get the smaller bay number

The four following steps of this algorithm are featured. For each step we clarify it with the numerical example used in section 3.3.1 with 3 quay cranes and 10 bays.

In this example, the main makespan (completion time) of all the quay cranes is initialized to 0, because no unloading operation has been performed until now (iteration init in Table 3).

In the chromosome, we consider the current bay (current gene) which corresponds to an unassigned bay, and we assign it to a crane. For example, let us take the first gene of the chromosome (bay 7), and we suppose the processing time for all bays is 10.