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Optimization of the Logical Topology for Mobile MEMS Networks
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aUFC/FEMTO-ST, UMR CNRS 6174, 1 cours Leprince-Ringuet, 25201 Montbeliard, France

Abstract

In this paper, we propose an improvement of the logical topology by using self-reconfiguration protocol in MEMS
microrobot networks. Recently, solutions have been given for this problem for a chain of microrobots as a starting
physical topology; the advantage of these solutions is that they are distributed protocols without map of the target
shape which makes them efficient and scalable. This paper shows how to generalize the solution for any starting physical
topology. We propose an efficient map-less self-reconfiguration protocol where nodes can perform the algorithm regardless
the place where they are deployed, because the algorithm is independent of the map of the target shape. Furthermore,
our solution tries to reach the target shape with a minimum amount of movement. The protocol consists of two main
algorithms, initiator election and shape shifting. The initiator election aims to choose the best initiator that initializes
the algorithm shape shifting, the criterion of choice is the effect on the amount of movement on the other nodes. The
shape shifting algorithm aims to convert the initial physical topology with an incremental process using collaboration,
coordination and help between nodes. This protocol is implemented in DPRSim, the Dynamic Physical Rendering
Simulator.

Keywords: MEMS Microrobots; DiMEMS; Mobility; Self-reconfiguration; Self-organization; Physical Topology;
Logical Topology; Communication; Energy

1. Introduction

Micro electro mechanical system (MEMS, for short) is
a technology that enables the batch fabrication of minia-
ture mechanical structures, devices, and systems that can
sense and act [1, 2]. It is projected that these small de-
vices, referred to as MEMS nodes, will be mass-produced,
making their production cost almost negligible due to the
microtechnology manufacturing. Their applications will
require a massive deployment of nodes, thousands or even
millions [3, 4] which will give birth to the Distributed In-
telligent MEMS [5].
The size of MEMS microrobots can vary from well be-
low one micron to several millimeters. Likewise, the types
of MEMS devices can vary from relatively simple struc-
tures having no mobile elements, to extremely complex
electromechanical systems with multiple mobile elements
under the control of integrated microelectronics compo-
nents. Due to their small size and the batch-fabrication
process, microrobots are potentially very cheap, particu-
larly through their use in many areas in our day to day
life [6].
The Smart Surface project [5] is an example of MEMS sys-
tem without mobile components. In this project, MEMS
nodes form a planar surface and collaborate in order to
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recognize and to orient set of objects placed on it. In
the Smart Blocks project [7], a modular blocks composed
of several MEMS are able to move in order to transport
some objects. The Claytronics Project [8, 9, 10, 11] studied
in this paper, presents an example of mobile microrobots
called Catoms in which direct communications are only
possible between physical neighbors. In all these projects,
there are at least some elements which have some sort of
mechanical functionality whether or not these elements are
mobile.
One of the major technological challenges for microrobot
developing is the way to achieve a precise movement to
reach a destination position using a very limited power
supply. Many different solutions have been studied. Within
the Claytronics project, microrobots help each other to
know the positions reached which introduce the idea of a
collaborative way of moving. But, even if the requested
power for moving has been lowered, it still costs a lot re-
garding the communication and computation requirements
[12]. Optimizing the number of movements of microrobots
is therefore crucial in order to save energy.
At the present time, swarm MEMS nodes is gaining in-
creasing attention since large-scale swarms can perform
various missions and tasks, in a wide range of applications
including odor localization, firefighting, medical service,
surveillance and security, and search and rescue [13]. In
order to help the microrobots swarm in achieving their
mission, it is suitable to reorganize the geometric shape
of microrobots according to their task as well as the en-
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vironment. Self-reconfiguration problem and construction
of optimal logical topology (in term of message exchang-
ing complexity) starting from a random physical topology
is a very challenging problem. Most of the researches in
the field of swarm configurations have not yet considered
the energy and memory (needed data to map the desired
shape) optimization aspects [14]. Our research therefore
aims to develop self-configurable microrobot swarms that
can be deployed in a constrained environment. Specifi-
cally, we have made the following assumptions to improve
the literature works:
• no map of the target shape,
• direct communications are restricted to the immediate
vicinity of the node (physical neighbor),
• the same algorithm is run on every node,
• and the sensing range is limited.
Based on these assumptions, we address here the problem
of microrobots swarm reorganization. The adaptive self-
configuration enables microrobots swarms to strive toward
achieving their mission without map managing (predefined
final positions) of the target shape.
Self-reconfiguration of microrobots is a useful distributed
algorithm with many applications. Optimizing the energy
cost of self-reconfiguration algorithms will, therefore, have
a direct impact on the energy efficiency of the swarm.
In the literature, self-reconfiguration can be seen from two
points of view. On the one hand, it is defined as a pro-
tocol, centralized or distributed, which reorganizes a set
of nodes to reach an optimal logical topology [15]. In our
works, the square shape was chosen since it represents an
optimal physical topology for message exchanging. For
example, a set of n connected microrobots organized as
a chain presents a broadcast complexity of O(n) in the
worst case (required time to reach all the other nodes).
When the n microrobots are reconfigured into a square
shape, the worst case broadcasting complexity diminishes
to O(

√
n). That is, the number of direct contacts between

microrobots is minimal and secondly the average distance
between two microrobots (in term of number of hops) is of
(n+1)/3 where n is the number of microrobots. Therefore,
improving the logical topology for communication will im-
prove the propagation procedures and convergence in the
network. On the other hand, and in second sense the
self-reconfiguration is built from modules which are au-
tonomously able to change the way they are connected,
thus changing the overall shape of the network [10, 16].
The self-reconfiguration process is difficult to control, be-
cause it involves the distributed coordination of a large
numbers of identical modules connected in time-varying
ways. The range of exchanged information and the amount
of displacements determine the communication and energy
complexity of the distributed protocol. When the informa-
tion exchange involves close neighbors (restricted number
of hops), the complexity is moderate and the resulting dis-
tributed self-reconfiguration scales gracefully with network
size if the protocol is without map of the target shape.
An open issue is whether distributed self-reconfiguration

would result in an optimal configuration with a moderate
complexity in message, movements and memory usage.

2. Related Works

In the literature, many terms refer to the concept of
self-reconfiguration. In several works on wireless networks
and mobile robots [17] the term used is self-organization .
This term is also used to express the partitioning and clus-
tering of ad-hoc networks or wireless networks to groups
called cliques or clusters. The objective is to determine
the various spots where the organization is carried by the
cluster head that has more amount of energy. Also the
self-organization term can be found in protocols for sensor
networks to form a sphere or a polygon from a center node
[18, 19, 20]. The term redeployment is also another term
to address self-reconfiguration for sensor networks [21, 22].
In [23] an efficient protocol addresses the problem of au-
tonomous deployment of mobile sensors that need to cover
predefined positions with a connectivity constraint.
For the self-reconfiguration with robots or microrobots
there are the protocols [16, 24] where the desired configu-
ration is grown from an initial seed module. A generator
uses a 3D CAD model of the desired configuration and
outputs a set of overlapping blocks which represent this
configuration. In the second step this representation is
combined with a control algorithm to produce the final
self-reconfiguration algorithm.
A growing number of researchers are working on reconfigu-
ration of microrobots using centralized algorithms. Among
them, we find the proposed control algorithms for self-
assembly and/or reconfiguration with a centralized man-
ner, see for instance [25]. Other approaches give each node
a unique ID and predefined positions of the target shape,
see for instance [26]. The disadvantage of these meth-
ods is the centralized computing and the need for nodes
identification. More distributed approaches that need the
map of the target shap in [27, 28, 29, 30]. In simula-
tion, the authors in [24, 31] have demonstrated algorithms
for self-reconfiguration of cubic units based on gradients
and cellular automata. Bojinov and al. [32] have shown
how a simulated modular robot (Proteo) can self-configure
into useful and emergent morphologies when the individ-
ual modules use local sensing and local control rules.
In [33] the authors developed a centralized algorithm for
reconfiguration (with predefined positions of the target
chain) of an initial chain configuration into another chain
configuration and then from a straight chain into an ar-
bitrary goal that fulfills certain admissibility requirements
[34]. The distributed version of this algorithm was given
in [35]. Recent work in [36] demonstrated a time complex-
ity of O(n) for probabilistic reconfiguration a systems of
hexagonal metamorphic robots for single-move algorithms,
in which at most one module can move in a time step.
Claytronics, which stands for Clay-Electronics is the name
of a recent robotics project by Carnegie Mellon University
and Intel Corporation, in which nanoscale robots called
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Catoms (Claytronics Atoms) are assembled to form larger
objects. It is designed by Researchers from Carnegie Mel-
lon University and Intel Corporation that have been work-
ing on this project where the idea is to have hundreds of
thousands of nanoprocessors (microrobot) form together
to create new solid objects in any shape or size. The chal-
lenges are vast, but once it becomes a reality it will change
the world forever. Much like the cells in a body or complex
organism, each small member of the whole is committed
to doing its own part and communication between parts
results in a unified form.
Many works have been done on the Claytronics project.
In [37], the authors propose a metamodel for the recon-
figuration of catoms starting from an initial configura-
tion to achieve a desired configuration using creation and
destruction catoms primitives. The authors use these two
functions to ignore the inability of motion of Catoms in the
presence of neighbors that can be considered as barriers.
In [10] the authors present a scalable distributed reconfig-
uration algorithm with the Hierarchical Median Decom-
position, to achieve arbitrary target configurations with a
map and without a global communication. Another scal-
able algorithm can be find in [11]. In [9] a scalable protocol
for Catoms self-reconfiguration is proposed, written with
the MELD language [8] [38] and using the creation and de-
struction primitives. In all these works, all Catoms know
the correct positions composing the target shape at the
beginning of the algorithm and each node is aware of its
current position. Other solutions without predefined posi-
tions of the target shape in [39, 40, 41, 42]. In these pro-
tocols, the starting physical topology is a chain of MEMS
microrobots.

3. Contributions and comparison with literature
works

In this paper we present a map-less and energy-efficient
distributed self-reconfiguration protocol. The proposed al-
gorithm takes into account the technological constraints
on MEMS microrobots related to memory and energy lim-
itations. A self-reconfiguration with a map of the target
shape is not memory-efficient, because in order to cover
a target shape consists of a set of positions, it will be
required to divide this target shape to very small units ac-
cording to the size of the microrobots which is very small,
which will give millions or billions of positions, therefore
each node should have a memory capacity of millions or
billions of positions, hence the importance of a reconfigu-
ration protocol without map of the target shape. That is,
in the literature works when a self-reconfiguration process
aims to reach a given target shape composed of a set of
P positions (like a pixels for a given picture), each micro-
robot records all the P positions. This is neither efficient
nor scalable since we address here configurations with mil-
lions of nodes have a low-memory capacity, and millions of
final positions because the MEMS nodes have a very small
size.

In this work, we propose a new efficient approach for self-
reconfiguration of MEMS microrobots where nodes do not
record any position and where the target shape is built
incrementally. Each node in the current increment acts
as a benchmark point for other nodes to form the next
increment. The proposed model makes the assumption
that each node can obtain the state of its physical neigh-
bors to achieve self-reconfiguration for distributed MEMS.
Using these states, nodes collaborate and help each other
without need for a global information. Contrary to exist-
ing works, our algorithms do not need to know the map
of the target shape (i.e. coordinates of the microrobots),
consequently memory usage is dramatically reduced. The
presented approach has the advantage of not requiring the
node knowledge of its own position either. Such knowledge
would need a positioning technology which would require a
lot of energy or a multilateration method [43, 44] which is
not sufficiently precise, this imprecision can lead to incor-
rect behaviors of the self-reconfiguration applications. In
all applications of self-reconfiguration, knowing the exact
position of every node is an important factor in receiving
expected programmed behavior. This paper is the first
to provides a self-reconfiguration standalone and portable
for any starting shape, because it is independent of the
map that builds the target shape. In this solution, the
self-reconfiguration is achieved using the help and the col-
laboration between nodes, so to make intelligent algorithm
by analyzing the characteristics of the target shape.

We propose a scalable protocol for node’s reconfigura-
tion to optimize communication for MEMS nodes. This
protocol consists of two steps Initiator Election and Shape
Shifting. The initiator election algorithm aims to choose
the best initial node that will initializes the algorithm
Shape Shifting, the criteria of choice is the effect on the
amount of movement on the other nodes. The initiator
selection is made on the basis of the predicted amount of
movements of the other nodes, needed to achieve the tar-
get shape. The objective is then to select the node leading
to the minimum amount of movements. We try to apply a
principle of ”the target shape arrives to nodes” and reach
the target shape with a minimum amount of movements.
The shape shifting algorithm aims to convert the initial
form with an incremental process starting with an initia-
tor node (representing a punctual square) and adding ev-
ery time a new layer composed of a number of nodes equal
to the previous layer plus two nodes.
The remainder of this paper is organized as follows: Sec-
tion 4 discusses the model and terminology. Section 5 dis-
cusses the proposed protocol and analyzes its characteris-
tics. Section 6 discusses the simulation results based on the
Dynamic Physical Rendering Simulator (DPRsim)[45]. Fi-
nally, section 7 summarizes our conclusions and illustrates
our suggestions for future work.
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4. Problem Statement

Model and definitions : Within Claytronics, a Catom
that we call in this paper a node (see Figure 1) is modeled
as a sphere which can have at most six 2D-neighbors with-
out overlapping. Each node is able to sense the direction
of its physical neighbors (east (E), west (W), north-east
(NE), south-east (SE), south-west (SW) and north-west
(NW)). In this work, the starting topology can be an arbi-
trary connected physical topology with n nodes linked to-
gether. A node A is in neighbor’s list of node B if A touch
physically B. Communications are only possible through
contact, which means that only neighbors can have a direct
communication.

Figure 1: Two catoms
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To calculate the number of movements we define the
following:
Consider Figure 2 which represents a microrobot. We say
that a microrobot has done a single movement if the dis-
tance between its former position and its new position is
exactly twice the radius D1 = 2R. For example, if the
node is in a position at a distance D2 (see Figure 3) from
the former position it has done two movements. We have
360◦ can be divided to six equal angles each one has 60◦,
since the perimeter at an angle a is Pa = π Ra/180 and
P = 2πR we find P1 = P2 = P3 = P4 = P5 = P6, this
means that the node can have without overlapping at most
six neighbors and in each movement the node travels Ra
(with a = 60◦) from m0 to m.

Consider the connected undirected graph G = (V, E) mod-
eling the network, where v ∈ V , is a node that belongs to
the network and, e ∈ E a bidirectional edge of commu-
nication between two physical neighbors. For each node
v ∈ V , we denote the set of neighbors of v as N(v). Each
node v ∈ V knows the set of its neighbors in G, denoted
N(v). We define Spanning tree: is a tree composed of all
v ∈ V without any cycle. In the spanning tree, a node is
either a child or a parent. Leaves are nodes without chil-
dren.
To facilitate the explanation of the algorithms we model
the network as follows:

• A node N in a matrix J ∗ I where we can find an
empty box(j, i)( there is no node in this box), the
node N in row i and column j called N(j, i), see
Figure 5.

N(1, 0) N(0, 0)

N(2, 1) N(1, 1)

N(2, 2) N(1, 2) N(0, 2)

N(2, 3) N(0, 3)

Figure 5: An example of a network modeled into a matrix

• We call best width of a nodeN(j, i), the value cntW =
J − j and best height the value cntH = I − i.

• We call absolute best initiator the node N(0, 0),
knowing that counting is from bottom to down for
the row i and from right to left for column j.

We assume (and according to the tools of simulation) that
message exchanging between two physical neighbors is car-
ried without time complexity (0 rounds). This is according
to the simulation tools where the node can see the state of
its physical neighbor. However, when a node consults the
state of not neighboring node then the consultation leads
to message exchange that takes time and thus involves the
decision delay. Figure 3 illustrates those cases:

• At t0: Node A needs to know the state of the node B
to move to the new position. This motion is done by
a simple read action (without message exchanging).

• At t2: If A is in the new position and needs to know
the state of the node D, this last sends a message
to C containing its state, after which C forwards the
message to A. There is a message exchange; A must
wait two rounds for the input to decide.

• If at t0 or at t1 a message has been sent from D
to C, A at t2 can have the state of D with a simple
consultation of C’s state, without message exchange.

Objective: As described earlier, we propose reconfigura-
tion protocol without map (without predefined positions of
the target shape) optimizing the amount of displacements.
This protocol has another goal at the same time which is
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to optimize the physical topology. That is, the chain is the
configuration (physical topology) that represents the worst
complexity for messages exchanging, within the chain if
the two nodes in both ends of the chain exchange message
the complexity will be of O(n), where n is the network
size. The physical configuration that represents the best
complexity in terms of messages exchanging is a square
with O(

√
n) in the worst case. The objective of our pro-

tocol is also to improve the propagation procedure, fault
tolerance and convergence. This protocol will convert any
configuration of a connected network of microrobots in a
square configuration.

5. Proposed Protocol

The protocol consists of two algorithms, initiator elec-
tion and shape shifting. The initiator election aims to
choose the best initiator, the criteria of choice is the effect
on the amount of movement on the other nodes, we try to
apply a principle of the target shape arrives to nodes and
reach the target shape with a minimum amount of move-
ment. The shape shifting aims to convert the form with
an incremental process, starting with a node that assumed
a square and each time we add a new layer with number of
nodes equal to previous layer plus two nodes. The nodes
of each layer added change their state and become stable
nodes. The shape shifting algorithm shows how the prob-
lem of synchronization in state changing was solved using
states and messages.

5.1. Initiator election

Overview: The objective of initiator election proce-
dure is to identify simply and quickly the starting point of
the shape-shifting procedure in order to guaranty a min-
imum amount of movements required to reach the target
shape. The idea is twofold. First the selected initiator
node represents the top-right corner of the targeted square,
restricting the redeployment surface to a quarter of the
plan. Secondly, the initiator node is selected in order to
minimize the number of nodes out of this quarter of plan.
The combined action of those two principles makes that
almost all nodes are in the same area and move in this
area reducing therefore the needed displacement amount.
Furthermore the impact of the initiator election procedure
on the shape-shifting displacements will be discussed and
analyzed in the experimental section of this paper. In this
protocol, the nodes will be organized only in quarter of the
plan, e.g. with the example in figure 6), nodes movement
will be carried only in the area A1, and long distances are
avoided. With the example of figure 6 the best initiator is
the node 1 because no node is out of the plan if the node 1
has been chosen. If this node is not present (figure 7), the
best initiator will be the node 4, because there is a prob-
ability of 2/n of node’s existence out of the area A1-a1,
in this case 2 nodes (the node 2 and the node 3) do not
belong to the plan A1-a1. Similarly, if the node 4 is not
present the best initiator will be the node 2, and so on.

A1
B1

C1D1

123

4

5

6

7

8

Figure 6: Nodes move in the area A1
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D1 C1

B1

23

4

5

6

7

8

Figure 7: Nodes move in the area A1 − a1, nodes that are outside
this area will join it, as the case of node 2 and 3

With the initiator election algorithm, all nodes con-
verge toward the same best initiator. The algorithm con-
sists in two steps. In step 1 called coordinates finding a
distributed algorithm is run. In step 2 a heuristic algo-
rithm called best initiator finding is executed locally on
each node using the information obtained by coordinates
finding step. In step 1, each node calculates its best width
and its best height values and saves those of the other
nodes. The aim of the initiator election algorithm is to
find the node that will initialize the shape shifting algo-
rithm.

5.1.1. Coordinates Finding

This section presents the Coordinates Finding algo-
rithm. The coordinates finding algorithm (presented here-
after) runs in rounds. At each round, the satisfied predi-
cates are chosen to run. In this section, each node finds its
best width (cntW ) and best height (cntH), and it saves
those other nodes. The information obtained in this sec-
tion will be used in the next step best initiator finding al-
gorithm. At the end of the coordinates finding algorithm
each node has registered a list L containing all the coor-
dinates of nodes by choosing for each id received in feed-
back (receiveRESPv(id, cntH, cntW )) the MAX(cntH)
and MAX(cntW ).
Description of the algorithm coordinates finding
The predicate BroadcastMSGv(id, 0, 0) is true for each
node connected to the network. The node sends the mes-
sage (id, 0, 0) to all its neighbors. With the predicate
ReceiveMSG−Xv(id, cntH, cntW ) the neighbors receive
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Variables and Predicates

• initiatorv(): each node initiates the algorithm.

• broadcastMSGv(id, 0, 0): each initiator sends a message containing its identity id, a variable to count the
best height cntH = 0, and a variable to count the best width cntW = 0.

• receiveRESP(id, cntH, cntW ): the node receives the message (id, cntH, cntW ) in feedback if it was the
first message with same parameters id, cntH, cntW .

• receiveMSG−Xv(id, cntH, cntW ): with X ∈ {NW,NE,E, SE, SW,W} . The node receives the message
in brodcast if it was the first message with identity id.

• visitedBv(id): true if the node already received a message in broadcast with the same id.

• visitedFv(id, cntH, cntW ): visited on feedbak (response), true if the node received on feedabk the same id
with the same cntH and cntW .

• broadcastMSGv(id, cntH, cntW + 1): increment cntW and broadcast the message received by the node in
E direction.

• broadcastMSGv(id, cntH + 1, cntW + 1): increment cntH and cntW and broadcast the message received
by yhe node in NE direction.

• broadcastMSGv(id, cntH + 1, cntW ): increment cntH and broadcast the message received by the node in
NW direction.

• broadcastMSGv(id, cntH, cntW − 1): decrement cntH and broadcast the message received by the node in
W direction.

• broadcastMSGv(id, cntH − 1, cntW ): decrement cntH and broadcast the message received by the node in
SE direction.

• broadcastMSGv(id, cntH − 1, cntW − 1): decrement cntH ans cntW and broadcast the message received
by the node in SW direction.

• broadcastRESPv(id, cntH, cntW ): nodes that do not have neighbors in the direction E, SW and SE, and
others that do not have neighbors in the directions W, SE and SW will begin the feedback.

• receiveRESPv(id, cntH, cntW ): the node can broadcsat the feedback if it was the first message with the
same id, cntH and cntW .

• broadcastRESPv(id, cntH, cntW ): the node bradcasts the feedback to the other nodes until the message
arrives to the node id.

Predicates checked only in the first round
initiatorv() ≡ Connectedv.

broadcastMSGv(id, 0, 0) ≡ initiatorv().

Predicates checked in each round

receiveMSG-NEv(id, cntH, cntW ) ≡ (V ne(v)) ∧ (¬visitedBv(id)).
receiveMSG-NWv(id, cntH, cntW ) ≡ (V nw(v)) ∧ (¬visitedBv(id)).
receiveMSG-SEv(id, cntH, cntW ) ≡ (V se(v)) ∧ (¬visitedBv(id)).

receiveMSG-SWv(id, cntH, cntW ) ≡ (V sw(v)) ∧ (¬visitedBv(id)).
receiveMSG-Ev(id, cntH, cntW ) ≡ (V e(v)) ∧ (¬visitedBv(id)).

receiveMSG-Wv(id, cntH, cntW ) ≡ (V w(v)) ∧ (¬visitedBv(id)).
visitedBv(id) ≡ receiveMSG−Xv(id,−,−).

broadcastMSGv(id, cntH, cntW + 1) ≡ receiveMSG− Ev(id, cntH, cntW ).
broadcastMSGv(id, cntH + 1, cntW + 1) ≡ receiveMSG−NEv(id, cntH, cntW ).

broadcastMSGv(id, cntH + 1, cntW ) ≡ receiveMSG−NWv(id, cntH, cntW ).
broadcastMSGv(id, cntH, cntW − 1) ≡ receiveMSG−Wv(id, cntH, cntW ).
broadcastMSGv(id, cntH − 1, cntW ) ≡ receiveMSG− SEv(id, cntH, cntW ).

broadcastMSGv(id, cntH − 1, cntW − 1) ≡ receiveMSG− SWv(id, cntH, cntW ).
visitedFv(id, cntH, cntW ) ≡ ReceveRESPv(id, cntH, cntW ).

broadcastRESPv(id, cntH, cntW ) ≡ (¬Ne(v)) ∧ (¬Nsw(v)) ∧ (¬Nse) ∧ ¬visitedFv(id, cntH, cntW ).
broadcastRESPv(id, cntH, cntW ) ≡ (¬Nw(v)) ∧ (¬Nse(v)) ∧ (¬Nsw) ∧ ¬visitedFv(id, cntH, cntW ).

receiveRESPv(id, cntH, cntW ) ≡ ¬visitedFv(id, cntH, cntW ).
broadcastRESPv(id, cntH, cntW ) ≡ receiveRESPv(id, cntH, cntW ).

The Coordinates Finding Algorithm
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the message where the guard visitedBv(id)) ensures
that the node receives a message in broadcast of this type
only once per each id. After receiving this message, the
node depending on the direction of reception it increments,
decrements or it does nothing on the parameters cntH,
cntW . To calculate the best width: for each message re-
ceived by the E or NE directions the node increments the
parameter cntW . If the message was received by the W
directions or by the SW directions, then the node decre-
ments cntW . The same procedure is carried for the best
height, whenever the message was received by the NE or
NW directions, the node increments cntH, and the node
decrements cntH if the message was received by SE or
SW directions. Nodes that do not have neighbors in the
E, SW and SE directions, and other nodes that do not
have neighbors in the W, SE and SW directions will begin
the feedback (response message) just after receiving the
broadcast message for an identity id, these nodes broad-
cast the message BroadcastRESPv(id, cntH, cntW ), and
neighbors which receive this message will rebroadcast it,
the guard visitedFv(id, cntH, cntW ) is used to avoid broad-
casting the same message with the same parameters cntH
and cntW .
Example
We take the example with the node 1 in Figure 8 know-
ing that other nodes will do with the same procedure. The
node 1 sends to its neighbors 2 and 3 the message (1, 0 ,0)
with predicate broadcastMSGv(id, 0, 0) and waits for an-
swers with the predicate receiveRESP (id, cntH, cntW ).
At the reception of this message, the node 2 increments
with broadcastv(id, cntH, cntW + 1), and node 3 incre-
ments and broadcasts with broadcastv(id, cntH+1, cntW+
1). So the message becomes (1, 0, 1), (1, 1, 1) for the
node 2 and 3 respectively. For the node 4, at the recep-
tion of the message (1, 0, 1) sent by the node 2 or (1, 1,
1) sent by the node 3, it increments and broadcats with
broadcastv(id, 1cntH + 1, cntW + 1) (if the message was
sent by node 2 ) or with broadcastv(id, cntH, cntW + 1)
(if the message was sent by node 3), the message becomes
(1, 1, 2). The node 7 at the reception of (1, 1, 2) sent
by node 4 or (1, 1, 1) sent by node 3 increments with the
suitable predicate depending on the direction of reception,
the message becomes (1, 2, 2), the node 7 broadcasts this
new message.
Coming back to the node 5, this node at the reception of (1,
1, 1) sent by node 3, the node 5 increments and broadcasts
(1, 2, 1) with the predicate BroadcastMSGv(id, cntH +

1, cntW ), the node 6 at the reception of (1, 2, 2) sent by
the node 7 or (1, 2, 1) sent by 5, it increments with the
suitable predicate, the message becomes (1, 3, 2). Simi-
larly, the node 9 receives and decrements with the pred-
icate broadcastMSGv(id, cntH, cntW − 1) and the mes-
sage becomes (1, 2, 0), the node 9 sends the message
to the node 8, this last increments to (1, 3, 0). The
nodes 6 and 8 can start the feedback procedure with send-
ing the message (1, 3, 2) and (1, 3, 0) to others nodes
(with broadcastRESPv(id, cntH, cntW )), each node re-
ceives only once the same message and takes always the
max of cntH and cntW e.g. the node 5 receives in feed-
back (1, 3, 0) and (1, 3, 2) in this case the node 5 saves in
its local memory the message (1, 3, 2).
The list Ln presents the list of node’s coordinates saved
by each node at the end of the algorithm:
Ln = {(1, 3, 2), (2, 3, 1), (3, 2, 1), (4, 2, 0), (5, 1, 1), (6, 0, 0)}
∪ {(7, 1, 0), (8, 0, 2), (9, 1, 2)}.

Lemma 1. Since each node saves for each id, the values
cntH and cntW , the algorithm coordinates finding requires
3n of memory for each node.
Lemma 2. Since the chain shape represents the worst phys-
ical topology for many distributed algorithms in terms of
fault tolerance, propagation procedures and convergence,
and since nodes initialize the algorithm in parallel, the
lengthy communication will be between the two ends of the
chain with 2n messages, n messages for the broadcast and
n message for the response (feedback).

5.1.2. Best Initiator Finding

The best initiator finding algorithm (presented here-
after) is executed by each node in the networks. This algo-
rithm uses the information acquired in coordinates finding
algorithm to elect the initiator that will initiate the shape
shifting algorithm.
The absolute best initiator if exists has the coordinate(J, I),
with J = MAX(cntH) and I = MAX(cntW ), with cntW
and cntH ∈ Ln, it takes the coordinate (0, 0). Then,
each node takes the coordinates (J − cntH, I− cntW ) and
does the same subtraction for all coordinates stored in
its local memory. So the list will have this forme L =
{(x1, y1), (x2, y2), ..., (xn, yn)}. We define the function
ID(x, y) that gives the id of the node having the coor-
diantes (x, y).
Description of the algorithm best initiator finding
The absolute best initiator, if it exists, has the coordinates
(0, 0). At the beginning, each node checks if the coordi-
nates (0, 0) is in its local memory. If so, the node ID(0,
0) declares itself as an initiator, and the other nodes ac-
knowledge it. If there is no absolute best initiator, the
candidate nodes will be in the list LC, these candidates
are neighbors of the candidates (that does not exist) were
in LC in the previous round. For each candidate in LC
the number of nodes out the plan Nli is calculated, and
the node with minimum Nli will be elected. If this elected
node does not exist by checking in the list L, a new LC is
considered in the next round and so on.
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Algorithm for each node

Variables

• list: A, li, LC,R1, R2.

• integer: Nli initialized to 0, represents the
number of nodes out the area if the node hav-
ing li as coordinate is chosen.

A = {(0, 0)};
if ∃a = (x, y) ∈ A ∧ a ∈ L then
end of the algorithm, the initiator is ID(a); else
begin
LC = �;
for all a = (x, y) ∈ A,LC = LC ∪
{(a.x+ 1, a.y) ∪ (a.x+ 1, a.y + 1) ∪ (a.x, a.y + 1)} ;
end for all
LC = {l1, l2, l3, ..., ln}, with ∀li ∈ LC, li /∈ A;
for each li = (x, y) of LC the node computes NLi:
begin
calculate the list R1 and R2 for li ;
Let X = MAX(xi, i ∈ {1..n}), with (xi, yi) ∈ A
Let Y = MAX(yi, i ∈ {1..n}), with (xi, yi) ∈ A
R1 = {(X, y1), (X, y2), ..., (X, yn)} . With:
y1 6= y2 6=, ..., 6= yn, yi < y and R1 ⊆ A

R2 = {(x1, Y ), (x2, Y ), ..., (xn, Y )} . With:
x1 6= x2 6=, ..., 6= xn, xi < x and R2 ⊆ A

for all xi ∈ R1:
For m = xi+ 1 to J NLi+ +;
for all yi ∈ R2:
For m = yi+ 1 to I NLi+ +;
end
BEST = li having(MIN NLi);
If BEST ∈ L then
End of the algorithm, the best is ID(BEST ).
else
begin
A = A ∪ li;
Repeat the algorithm;
end
end

The Best Initiator Finding Algorithm

5.2. Shape Shifting

Description and analysis of the algorithm
The Shape Shifting algorithm (presented hereafter) runs

in rounds. At each round, the satisfied predicates are cho-
sen to run. To describe the algorithm we define the first
row all nodes having the state FR which are at the left of
the initiator and the first column all nodes having the state
FC which are at the south east of the initiator. Anew layer
is constructed of a new column and a new row as shown
in Figure 10. A node becomes stable once it has state the
state well, because it belongs to a position in the target
shape.

1 2 3

456

Figure 9: Nodes cannot apply the principle of node follows its neigh-
bor to ensure the connectivity and to avoid losing nodes, because
of a cycle. Moreover, nodes may enter in collusion state when they
move at the same time to the same place. Therefore, nodes may be
move in a boucle and do not converge towards the target shape. So
the solution is to use a spanning tree: rooted by the initiator and the
node follows its parent, and after each movement the parent waits
for one child
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FR
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wellwellwellwell
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+=
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BE 
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BE 

BNW
BNW+

BNW
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layer

new layer

diagonal node

first row

first colomun

end node of the layer

end node of the layer

Figure 10: An instance of nodes with their states

The algorithm runs in rounds. At each round, the sat-
isfied predicates are chosen to run. The distributed al-
gorithm seeks the desired form by using an incrementally
process. In a completed increment, the nodes that build it
belong already to the form; these nodes will help neighbor
nodes and future neighbor nodes to get correct positions.
That is, the node makes decisions and actions depending
on neighbors states.
The initiator takes the state well and becomes stable with
the predicate (2), and each node will be stable after having
the state well. With predicate (1), the initiator also ini-
tializes the spanning tree construction, the spanning tree
is used to provide network connectivity and avoid losing
nodes, since communication is possible only through con-
tact. If a node has no neighbors at the beginning it cannot
find or join another node. The use of the spanning tree
is also to avoid infinite movement. Indeed, if there is a
cycle in the network there will be an infinite movement,
because if we assume to ensure the network connectivity
a node follows the neighbor node that has moved in the
previous, we can find a case where the nodes move in a
cycle, as the case in Figure 9, by definition the tree is a
connected network without cycle.
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Variables and Predicates

• parent(v, v): the initiator(the root of the tree ) is a parent of itself.

• isLeaf(v): the node v is a leaf, not a parent.

• parent(v, u): the node v is parent of its neighbor u.

• statev(X): v has the state X ∈ {wel, bad, FR, FC,BE,BE+, BNW,BNW+}, we note that the node
cannot take the state well and bad at the same time. At the beginning all nodes are initialized with bad
state. We note that the node loses its state BE+ and BNW+ if it moved and it reserves the other states
once obtained.

• moveAroundwellv(u1, PX): v moves around u1 until this last becomes in the direction NW relative to v.

• moveTov(u1, posu1): the node v moves to the old position of its parent u1.

• r:an integer denotes the current round of the algorithm for the node.

1. parent(v, v) ≡ initiatorv().

2. statev(well) ≡ initiatorv().

3. isLeaf(v) ≡ (6 ∃u, parent(u, v)) ∧ statev(bad).

4. parent(v, u) ≡ (parent(w, v), u 6= w) ∧ (N(v) = u) ∧ stateu(bad) ∧ (6 ∃z ∈ N(v), parent(v, z)).

5. statev(FR) ≡ initiatorv() ∨ (Ne(v) = u ∧ stateu(FR) ∧ statev(well)).

6. statev(FC) ≡ initiatorv() ∨ (Nnw(v) = u ∧ stateu(FC) ∧ statev(well)).

7. statev(BE) ≡ (Nnw(v) = u ∧ stateu(well) ∧ stateu(FC).

8. statev(BE) ≡ (Ne(v) = u1∧ stateu1(bad)∧ stateu1(BE))∧ (Nne(v) = u2∧ stateu2(well))∨ ((Nse(v) =
u1 ∧ stateu1(bad) ∧ stateu1(BE)) ∧ (Ne(v) = u2 ∧ stateu2(well))).

9. statev(BNW ) ≡ (Ne(v) = u ∧ stateu(well) ∧ stateu(FR).

10. statev(BNW ) ≡ (Nnw(v) = u1 ∧ stateu1(BAD) ∧ stateu1(BNW )) ∧ (Ne(v) = u2 ∧ stateu2(well)) ∨
((Nw(v) = u1 ∧ stateu1(bad) ∧ stateu1(BE)) ∧ (Nne(v) = u2 ∧ stateu2(well))).

11. statev(BE+) ≡ (Nnw(v) = u ∧ stateu(well)) ∧ ¬IsLeaf(v).

12. statev(BE+) ≡ (Ne(v) = u1 ∧ stateu1(bad) ∧ stateu1(BE+) ∧ stateu1(BE)) ∧ (Nnw(v) = u2 ∧
stateu2(well))).

13. statev(BNW+) ≡ (Ne(v) = u ∧ stateu(well)) ∧ ¬IsLeaf(v).

14. statev(BNW+) ≡ (Nnw(v) = u1 ∧ stateu1(bad) ∧ stateu1(BNW+) ∧ stateu1(BNW )) ∧ (Ne(v) = u2 ∧
stateu2(well))).

15. statev(well) ≡ (Nnw(v) = u1 ∧ stateu1(BNW ) ∧ Nse(v) = u2 ∧ stateu2(BE)) ∨ (Nw(v) = u1 ∧
stateu1(BNW ) ∧Ne(v) = u2 ∧ stateu2(BE)).

16. statev(well) ≡ statev(BEW ) ∧ Nse(v) = u1 ∧ stateu1(BE)) ∨ (statev(BE) ∧ Nw(v) = u2 ∧
stateu2(BNW )).

17. moveAroundwellv(u1, Pnw) ≡ statev(bad)∧((Nne(v) = u1∧Nnw(v) = u2∧stateu1(well)∧stateu2(well)).

18. moveAroundwellv(u1, Pe) ≡ statev(bad) ∧ ((Nne(v) = u1 ∧Ne(v) = u2 ∧ stateu1(well) ∧ stateu2(well)).

19. moveAroundwellv(u1, Pne) ≡ statev(bad) ∧ statev(BNW+) ∧ (Ne(v) = u1 ∧ stateu1(well)).

20. moveAroundwellv(u1, Pne) ≡ statev(bad) ∧ statev(BE+) ∧ (Nnw(v) = u1 ∧ stateu1(well)).

21. moveAroundwellv(u1, Pne) ≡ statev(bad)∧((Nne(v) = u1∧Ne(v) = u2∧stateu1(well)∧stateu2(BE))∧
statev(BE+).

22. moveAroundwellv(u1, Pne) ≡ statev(bad)∧((Ne(v) = u1∧Nnw(v) = u2∧stateu1(well)∧stateu2(well))∧
statev(BEW+).

23. moveAroundwellv(u1, Pse) ≡ statev(bad) ∧ (Nsw(v) = u1 ∧ stateu1(FR)).

24. moveAroundwellv(u1, Pw) ≡ statev(bad) ∧ (Nsw(v) = u1 ∧ stateu1(FC)).

25. moveAroundwellv(u1, Pe) ≡ statev(bad) ∧ (Nse(v) = u1 ∧ stateu1(FR)).

26. moveAroundwellv(u1, Pnw) ≡ statev(bad) ∧ (Nsw(v) = u1 ∧ stateu1(FC)).

27. moveTov(u1, posu1) ≡ statev(bad) ∧ (∃xNx(v) = u1 ∧ parent(u1, v)∧, r = r − 1) ∧ (∀x,¬∃Nx(v) =
u, stateu(well)) ∧ (∃xNx(v) = u2 ∧ parent(v, u2)) .

28. moveTov(u1, posu1) ≡ statev(bad) ∧ (∃xNx(v) = u1 ∧ parent(u1, v) ∧ isLeaf(v), r = r − 1).

Shape Shifting Algorithm
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Therefore, with the tree, one of the child nodes follows
its parent. After making a movement, a parent cannot
make another movement except after being followed by
a child and becomes a parent in the current round, with
a principle of The child follows its parent and the parent
waits for its child. With the predicate (4) other nodes take
a child, except the leaves which cannot be parents, because
all neighbors are parents (3).
With the predicate (5) the nodes of the first row take the
state FR and with (6) the nodes of the first column take
the state FC. These two last states are used to manage
nodes outside the surface of the final square, and to bring
them into the surface with predicates (23), (24), (25) and
(26). The state BE is used to fill a new row starting from
right to left (the nodes take the state BE from right to
left), the node that has a neighbor in NW direction hav-
ing the state FC is the first in a new layer that takes the
state BE (7), this node does not move unless it has a child
in the tree (a child necessarily has no state except the state
bad) because this node begins the construction of a new
row of the new layer. After, a node takes the state BE if it
has a neighbor in the E direction having the state BE, this
is with predicate (8). The state BNW is used to populate
a new column starting from top to bottom (the nodes take
the state BNW from top to bottom) with both predicates
(9) and (10). A node that has the state BE or BNW
never moves unless it has a child, therefore the state BE+
or BNW+ or if it received a message from a node that
has a child but cannot move.
Thus, with (11) a node takes the state BE+ if two condi-
tions are met: this node must be in the layer being built
(new layer) which can be checked with the neighbor in di-
rection E/NW, this node must be in a well state and it has
a child, if these two conditions are hold, and if it finds a
space to move in the direction W/SE it makes the motion
because one of its neighbor or its child will take its old
position with predicates (27) and (28). The node can take
the state BE+ after receiving a message with predicate
(12) informing that there is a node or nodes having a child
but they cannot move. If this node has an empty space, it
moves around a node having the state well with the predi-
cate (20). Similarly, the node having state BNW can take
the state BNW+ if it has a child (13), and it moves in
the SE direction if this space is empty with the predicate
(19), if this space is filled, the message will be transmitted
with the predicate (14).
The change of state to well is done with the predicates
(15) and (16).With these two predicates, the node changes
its state after being sure that the new layer is completely
filled. So with (15) the node having the neighbor in the
NW direction that has the state BNW and a neighbor
in the SE direction having the state BE takes the state
well, because the states BE/BMW are propagated from
nodes in the current layer having the state FL/FC, so
if the node has two neighbors with these two states it is
sure that the new layer (row and column) is filled and the
change of state to well is possible. The predicate (16) is

similar to (15) except that, in (16), the node checks if its
state is BNW or BE. These procedures solve the syn-
chronization problem in state changing to well, because
these nodes (nodes building the new layer) do not have a
global view of the network and they cannot know when
the new layer is completely filled so they can change the
state.
At the beginning, a new layer must be built from right to
left, for a row, and, from top to bottom for a column. The
node in a new layer and before having any state it moves
to right using the predicate (17) until it has a neighbor
in the direction NW having the state FC or until it has
a neighbor in the direction E having the state BE. Simi-
larly to build the column node moves up with the predicate
(18). With the predicates (19) and (20) the nodes which
are building the new layer (having neighbors with well
state) move to left /bottom only if it has a child or after
receiving a message BNW + /BE+ from a node in the
new layer having a child. The predicates (21) and (22) al-
low nodes in a new layer to move from a row to a column
or vice versa. The predicate (21) allows moving around
the diagonal node and going build a row. The predicate
(22) allows nodes to go from row to column to build a new
column. The predicates (23), (24), (25), and (26) allow to
nodes which are outside the surface to enter in it. These
nodes move around a node having the state FR or FC to
enter the surface and contribute to build a new layer. The
predicates (27) and (28) help to ensure network connectiv-
ity using the tree. With the predicate (27), a node moves
to the position of its parent after the displacement of one
of its child to its former position, with the predicate (28)
a leaf follows its parent.

5.3. Message transmission analysis

In this section we analysis the number of messages re-
quired for the nodes to change their states to well, so each
node be aware that it is in the final form.

5.3.1. In the best case

Lemma 3. In the best case, the shape shifting algorithm
needs 2n− 2

√
n+O(n)− 1 messages.

The justification is the following. The root that repre-
sents itself a layer changes its state without using a mes-
sage, because it does not need to know any state from its
neighbors. The best case for the number of message ex-
change is when the starting the shape is already a square
because no node will do the movement, and it needs only
to change its state to well and become a stable node. In
this case, the message transmission can be done in par-
allel. In a current layer (layer being built), the two end
nodes of the layer wait for the transmission of the state
BE(BMW ). Since the transmission takes place in paral-
lel, each end node must wait the state BE(BNW ) from
the other end node of the layer. The message BE(BNW )
will visit all nodes of the current layer. We find that n− 1
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messages are required.
The nodes of the next layer cannot do anything since the
nodes of the current layer do not have the state well so
they wait the change of state to well of nodes of the current
layer. Nodes of the next layer have therefore to wait for
number of message equal to the size of the current layer,
except nodes of the last layer that will not be expected by
another layer, therefore we have to add O(n− 2

√
n) mes-

sage.

5.3.2. In the worst case

Lemma 4. The algorithm shape shifting needs 3n−2
√
n+

O(n) messages in the best case.

The case that represents the worst case for the number
of message exchanged is when at the beginning the shape
is a straight chain because message transmission cannot be
carried in parallel. Therefore in each layer |layer| mes-
sages are to be added, matching exactly to n− 1 messages.

Theorem 5. From Lemma 1, Lemma 2, Lemma 3 and
Lemma 4 the proposed protocol needs 3n of memory since
the algorithm initiator election and shape shifting do not
executed in parallel. And needs 4n− 2

√
n+O(n)− 1 mes-

sages in the best case. And 5n− 2
√
n+O(n) in the worst

case.

6. Simulation
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Figure 11: Execution time of the algorithm

We have done the simulations with the Dynamic Physi-
cal Rendering Simulator (DPRSim), which is a tool for use
in the dynamic physical rendering project. It is a multi-
threaded platform on which we can develop and test new
distributed algorithms for large ensembles of nodes; it rep-
resents a real environment of distributed algorithms for
implementing distributed algorithm dedicated to MEMS
microrobots. In our simulations, the radius of the node is
1 mm. The simulations were executed on a laptop with
an Intel(R) Core(Tm) i5 at 2.53 GHz processor and 4 GB
of memory. The following simulation results are the aver-
age of 100 tests (for each number of nodes) on the physical
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Figure 12: Average of the overall number of movements in the net-
work based on the number of nodes
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Figure 13: Average of the highest number of movements in the net-
work based on the number of nodes

topology of connected and randomly generated networks of
10, 100, 200, 300, 400 and 500 nodes in 50 x 50 (mm2) sim-
ulation area respectively. Figures 14, 15, 16, 17 and 18
represent instances of execution of the self-reconfiguration
algorithm. The figures in this section compare the simula-
tion results with initiator election algorithm (in figures of
simulation, IE is an abbreviation of Initiator Election) and
results with random choice of the initiator in the networks
(without initiator election). We recall that the initiator
election objective is to obtain a minimal number of move-
ments, a good execution time, therefore an efficiency in
energy consumption. The figures compare the execution
time, the average of the number of movements (consumed
energy), and the average of the highest number of move-
ments.

Figure 14: Instance of execution: T1
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Figure 15: Instance of execution: T2

Figure 16: Instance of execution: T3

Figure 11 represents the execution time based on the
number of nodes, Figure 12 represents the average of the
overall number of movements in the network based on the
number of nodes and Figure 13 represents the average of
the highest number of movements in the network based
on the number of nodes. In Figure 11 we see clearly the
effect of the initiator election algorithm to optimize the
execution time of the protocol, we see that whenever the
network size increases the difference increases dramatically
until 200 nodes.

An interesting thing to notice is that optimizing the
execution time of the algorithm will have a direct effect on
messages complexity, therefore a gain on communication,
and if the algorithm is fast then the critical information
arrives early at the concerned node. Also, if the task is a
heavy parallel computation, therefore if the algorithm is
faster, the parallel computing will be fast and light on the
nodes because the tasks are well distributed. In figures 12
and 13 we see that whenever the network size increases
the difference in number of movements increases dramat-
ically, which will increases the probability of lifetime of
nodes, therefore the probability that the node continues
its task (its movements), this is also improving the energy
consumption. We see in the results in figures that from
200 nodes, the curves decrease. This is because the num-
ber of nodes becomes large and nodes cover a large part of
the simulation which gives a dense network. Therefore this
change is the effect of the density of the network and the
initiator election algorithm to have a good performance.

7. Conclusion

In this paper we proposed an improvement of the log-
ical topology by using self-reconfiguration in MEMS mi-
crorobot networks. In this work, we proposed a proto-

Figure 17: Instance of execution: T4

Figure 18: Instance of execution: T5

col for self-reconfiguration of MEMS microrobots without
map of the target shape (predefined positions of the tar-
get shape), which makes the algorithm efficient and scal-
able. The proposed solution deals with MEMS micro-
robots characteristics as the limited energy and memory
capacities. In the presented work, nodes do not record any
position which will make the protocol memory-efficient.
The presented protocol is the first that provides a self-
reconfiguration standalone and portable because it is in-
dependent of the map that builds the target shape starting
from any connected network. The predefined positions of
the target shape are replaced by the collaboration between
nodes, which makes the algorithm more intelligent than a
coordinate-based one.
However, some open problems remain; we will study the
fault tolerance on self-reconfiguration in microrobot net-
works. The study of the effect of self-reconfiguration on
the permutation routing [46] where the objective will be
to optimize the path of a node to go to the correct posi-
tion where it finds its correct data. Also, the use of tabu
algorithms to achieve the self-reconfiguration for MEMS
microrobots.
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