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Abstract

As the energy transformation in the transportation sector is taking place driven by the development of fuel cell technologies,
fuel cell hybrid electric vehicles become available solutions owing to their long driving duration and zero emissions. However, the
unsatisfied lifespan of fuel cells is an inevitable obstacle for their massive commercialization. This paper aims to propose an online
adaptive prognostics-based health management strategy for fuel cell hybrid electric vehicles, which can improve the durability of
the fuel cell thanks to online health monitoring. Here, particle filtering method is adapted for online fuel cell prognostics and the
uncertainty of the predicted results is calculated based on the distribution of particles. A health management strategy is developed
based on prognostics and a decision-making process is designed by considering the prognostics uncertainty through a decision
fusion method. The obtained results show that the developed strategy has effectively improved the durability of the on-board fuel
cell by up to 95%. Moreover, a sensitivity analysis of the prognostics occurrence frequency and probability calculation has also
been conducted in this paper.
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Nomenclature

Abbreviations

EMS energy management strategy

FLC fuzzy logic controller

GA genetic algorithm

HEV hybrid electric vehicle

MF membership function

PDM prognostics-enabled decision-making

PEM proton exchange membrane

PHM prognostics and health management

S OC state of charge

S OH state of health

WOB width of bin

Symbols

ibat battery current

i f c fuel cell current

mH2 hydrogen consumption

P f c fuel cell power

Qmax maximum available battery capacity

Vbat battery voltage

V f c−degrade fuel cell degraded voltage

V f c fuel cell voltage

Vini initial voltage

1. Introduction 1

Hydrogen, as a clean energy carrier, is leading the energy 2

transformation in today’s transportation sector and the develop- 3

ment of fuel cell technology has accelerated this momentum. 4

Fuel cell hybrid electric vehicles (HEVs), which offer a sim- 5

ilar recharge time to that of the current gasoline solution and 6

a comparable autonomy, have seen widespread use in replac- 7

ing the traditional fossil fuel combustion vehicles [1]. How- 8

ever, on-board fuel cells are subject to unsatisfying durability 9

[2]. According to the U.S. Department of Energy, the techni- 10

cal durability of integrated hydrogen-fueled polymer electrolyte 11
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membrane (PEM) fuel cell power systems and fuel cell stacks1

operating on direct hydrogen should attain 8000 hours for trans-2

portation applications, however, only 4000 to 5000 hours have3

been reached nowadays [3].4

Prognostics and health management (PHM) technologies5

have been applied to improve the durability of fuel cells, which6

relies on the predictive nature of prognostics to anticipate and7

predict the remaining useful life (RUL) of the fuel cell and8

uses a post-prognostics decision support layer to design main-9

tenance, control and management actions [4]. Prognostics ap-10

proaches exist in three manners: data-driven approach, model-11

based approach, and hybrid approach [5]. Methods like filtering12

algorithms [6, 7], neural networks [8, 9, 10], and other predic-13

tive algorithms have been developed in the literature. How-14

ever, most fuel cell prognostics methods are developed based15

on finished experimental degradation data, some of which are16

obtained under constant operating conditions. Although they17

are devoted to estimating the health state of the fuel cell, the18

real driving conditions have not been considered. Moreover,19

prognostics itself cannot reach the goal of improving durabil-20

ity, i.e., post-prognostics decisions and mitigation actions are21

lacking [11].22

To improve the durability of fuel cells in HEV applications,23

efforts have been made to develop health-conscious energy24

management strategies (EMSs) [11]. A deterministic dynamic25

programming strategy and a rule-based strategy have been de-26

veloped in [12] to minimize the cost and at the same time, re-27

spect the operation limits to avoid degradation. Liu et al. have28

developed a multi-objective EMS to achieve optimal cost and29

fuel cell lifetime based on predicted vehicle speed and battery30

state of charge [13]. Moreover, an equivalent consumption min-31

imization strategy has been developed in [14], which considers32

the fuel cell degradation in the objective function. However,33

existing researches usually consider the fuel cell degradation34

by setting constraints or using fitting degradation models in the35

strategies, which are less accurate and cannot signify the real36

health state of the system. The developed fuel cell prognos-37

tics technologies are less applied to the energy management of38

HEV applications. Without an exact understanding of the cur-39

rent health state, the actions taken by the controller may be not40

appropriate and may even cause more damages to the system’s41

health, shortening its lifetime [15].42

To go further from prognostics to health management for fuel43

cell HEV applications, a prognostics-enabled decision-making44

(PDM) process has been proposed in [16], which uses the data45

provided by the prognostics step to reconfigure the mission of46

a fuel cell HEV depending on its health state. The decision is47

made by allocating confidence factors to different degradation48

states and fusing the parameters of fuzzy logic controllers based49

on the confidence factors to find the optimal power distribution50

between the fuel cell and the energy storage system in real time.51

However, the confidence factors in [16] are obtained through a52

classification method based on a Gaussian-shaped fuzzy infer-53

ence system, while only the median value of RUL predictions54

is used. Therefore, the classification results are less convinced55

if RUL uncertainties are not considered. To improve this defi-56

ciency, the uncertainties of the prognostic results are examined57

based on the particle filtering prognostics method in this paper. 58

To develop the prognostics-based health management strategy, 59

a probability calculation method is then introduced to obtain 60

the probability values allocated to different degradation states, 61

and a decision fusion approach is applied to calculate the con- 62

fidence factors to the offline-optimized fuzzy logic controllers 63

and to determine the parameters of the online operating con- 64

troller. 65

The reminder of the rest of this paper is as follows: Section 2 66

introduces an online prognostics method for the fuel cell based 67

on particle filtering with an analysis of the sources of uncer- 68

tainties. Section 3 presents the development of the proposed 69

prognostics-based EMS for a fuel cell HEV, while the simu- 70

lation results are compared and discussed in Section 4 before 71

concluding. 72

2. Online prognostics based on particle filtering 73

The online particle filtering prognostics method has been 74

proposed in this section to be combined with the health man- 75

agement strategy of the studied fuel cell HEV. It allows one to 76

track and to continuously estimate the state of health of the fuel 77

cell, and furthermore, to predict the RUL. 78

2.1. Particle filtering prognostics 79

2.1.1. Particle filtering 80

Particle filtering is essentially a nonlinear Bayesian tracking 81

approach that the unknown states from noisy observations 82

can be estimated with available prior knowledge. In a typical 83

Bayesian tracking problem, two models are required to de- 84

scribe the system: state model and measurement model. 85

86

State model: 87

xk = f (xk−1,uk,wk)↔ p(xk |xk−1) (1)

where the initial distribution of the states xk is modelled as 88

p(x0) and the state transition is based on a probabilistic model 89

p(xk |xk−1). uk is the command input and wk is process white 90

noise, non-necessarily Gaussian [17]. 91

92

Measurement model: 93

zk = h(xk−1, vk)↔ p(zk |xk) (2)

where the measurement zk is of a marginal distribution p(zk |xk) 94

and vk is the measurement white noise, non-necessarily Gaus- 95

sian [17]. 96

The state estimation is realized by recursively estimating the 97

state probability distribution function p(xk |z1:k) using a predic- 98

tion step and an update step: 99

Prediction step: 100

p(xk | z1:k−1) =

∫
p(xk | xk−1)p(xk−1 | z1:k−1)dxk−1 (3)

Update step: 101

2



p(xk | z1:k) =
p(zk | xk)p(xk | z1:k−1)

p(zk | z1:k−1)
(4)

where

p(zk | z1:k−1) =

∫
p(zk | xk)p(xk | z1:k−1)dxk (5)

In fact, the above Bayesian tracking equations are concep-1

tual. To analytically solve this problem, particle filtering is2

widely applied to give approximate solutions owing to its abil-3

ity to solve nonlinear and non-Gaussian problems. Particle fil-4

tering is implemented based on sequential importance sampling5

(SIS) technique, which is a Monte-Carlo method to calculate6

p(xk | z1:k) by sampling the states into particles and allocating7

weights to the particles. Details could be found in [18]. The8

steps for implementing SIS-type particle filtering are described9

as follows:10

1. In the first step (k = 1), n particles with an initial distribu-11

tion p(x0) are generated;12

2. Propagate the n particles from xk−1 to the next state xk us-13

ing (1) to calculate the probability density function;14

3. The weights associated to the particles are calculated by15

the likelihood of the state to the latest measurement zk:16

L(zk |xk, σvk ) =
1

√
2πσvk

exp(−
(zk − xk)2

2σ2
vk

) (6)

4. In order to avoid the dying away of the particles, a resam-17

pling process is performed to exclude small-weighted par-18

ticles by setting a given weight limit and replicate those19

large-weighted particles;20

5. The rebuilt posterior probability density function by re-21

sampling is, therefore, recursively transferred to the fol-22

lowing iteration as its prior probability density function;23

6. Step 2 to 5 are repeated until there is no more measure-24

ment.25

Prognostics require the state model to output new state esti-26

mates when the measurement is no longer available, and then to27

predict the future health state and the RULs. To adapt particle28

filtering for prognostics purpose, it needs a prediction phase in29

addition to the above-described state estimation process. When30

there is no measurement available, i.e., the prediction is started,31

the state xk is propagated to xk+1 without calculating the like-32

lihood of (6) and the parameters of the model are propagated33

with the noises.34

2.1.2. RUL estimation35

RUL is a term that indicates how long the system could re-36

main in use, it is calculated based on a pre-defined end-of-life37

(EOL) threshold λ. The estimated probability density function38

of the RUL at time k is:39

p̂(RUL ≤ l | z0:k) = p̂(xk+l ≥ λ | z0:k) (7)

It is updated based on new zk, k = kp + 1, ..., kp + l. The RUL40

uncertainty can be represented by the final distribution of the41

particles obtained when the failure threshold is reached [19].42

The pseudo-code of implementing the particle filtering prog-43

nostics method is presented in Algorithm 1.44

Algorithm 1 Particle filtering prognostics
Initialize xi

0,w0
i, v0

i, ui
0 with uniform distribution

Time step k = 1
while xi

k > λ and k ≤ kp, do
for i = 1, ..., n, do . SIS

Generate particles xi
k ∼ p(xi

k | x
i
k−1,wk−1

i, ui
k−1)

Allocate weight ωi
k = L(zi

k | x
i
k, v

i
k)

end for
Normalize weight ωi

k = ωi
k/
∑n

i=1 ω
i
k

Calculate the cumulative sum of the normalized weights
Qi

k |
n
i=1 = Cumsum(ωi

k |
n
i=1)

for i = 1, ..., n, do . Resampling
j = 1
Draw a random value ui ∼ U[0, 1)
while Qi

k < ui, do
j = j + 1

end while
Update state x j

k = x j
k

Update noises wk−1
j = wk−1

j, vk−1
j = vk−1

j

Update parameters u j
k = u j

k
end for
k = k + 1

end while
for i = 1, ..., n, do . Start prognostics from kp

while xi
k > λ, do

Propagate particles to the next time step xi
k =

f (xi
k−1,wk−1

i, ui
k−1)

k = k + 1
end while
Estimate R̂ULi

k = (k − kp) · ∆t
end for

2.2. Online prognostics implementation 45

2.2.1. Model selection 46

The degradation trend of the fuel cell degradation dataset 47

could be caught by various empirical models [19, 20, 21]. In 48

order to include more possibilities of variation, the 2nd order 49

exponential degradation model is chosen to track the fuel cell’s 50

performance and perform prognostics: 51

V(t) = b1 · exp(b2 · t) + b3 · exp(b4 · t) (8)

where b1, b2, b3 and b4 are the model parameters, b1 and b3 52

determine the initial state and b2 and b4 define the degradation 53

rate. Then, the state space model could be written as (9): 54

x1,k = x1,k−1 · exp(b2) + w1,k, w1,k ∼ N(0, σ2
w1)

x2,k = x2,k−1 · exp(b4) + w2,k, w2,k ∼ N(0, σ2
w2)

(9)

where x1,k and x2,k are two first-order independent Markov pro- 55

cesses and the present voltage state can be obtained from x1,k 56

and x2,k: 57

xk = b1 · x1,k + b3 · x2,k (10)

3



where b1, b2, b3 and b4 are also states to be transited. The1

measurement model is then written as:2

zk = xk + vk, vk ∼ N(0, σ2
v) (11)

where vk are supposed to be included in the measurement signal3

as the measurement noise. As the initial distributions of the4

parameters are unknown, uniform distributions is applied [22].5

The process noise variance is refined as σ2
w = 10−4 and same6

process noise is assigned to the unknown parameters (b1, b2,7

b3 and b4). The measurement noise vk is not considered as it8

is supposed to be contained in the input signals. Moreover, the9

number of particles is fixed as n = 2000.10

2.2.2. Data preprocessing11

During the system’s online operation, voltage disturbances12

are inevitable. The original signal is too noisy to implement13

prognostics. Thus, the data should be preprocessed to remove14

the peaks and filter the noises. To this end, a kernel smoother15

is applied. The estimated point f (t j) is calculated based on the16

weighted moving average:17

f (t j) =

∑n
i=1 si · u(t j)∑n

i=1 si
(12)

where
s = K(

t j − t
h

) (13)

h is the bandwidth and K is a Gaussian Kernel function written
as:

K(t) =
e
−t2

2

√
2π

(14)

Besides, during online operation, the signal measured at each18

time step is too voluminous, and using these data points to esti-19

mate the states requires huge storage memory, up to gigabytes20

to store the states, estimated parameters, and particle weights.21

This would not be actually allowed in industrial applications.22

Besides, too many points for state estimation will lead to over-23

fitting problems, resulting in the divergence of the model [23].24

Therefore, the measured signal should be reduced. Moreover,25

based on the hypotheses that the degradation of the fuel cell is26

only due to the ageing effects and no sudden damage happens27

during its operation, the degradation will not progress largely28

on short time scales, time scales longer than an hour should be29

suitable for industrial application [24, 25]. Therefore, in this30

study, to track the state of the system and to perform prognos-31

tics, the data is reduced at one point per hour.32

2.2.3. Prognostics result demonstration33

Figure 1 shows an example of the online estimation and prog-34

nostics result of the fuel cell degradation at prediction time35

tλ = 500th hour. The fuel cell is assumed to reach its EOL36

at a predefined threshold (D f c−degrade = 10%). The predicted37

RUL is [84 143 284] hours with a confidence interval (CI) of38

[5% 50% 95%] whereas the true RUL is 159 hours.39

The estimated voltage drawn in Figure 1 is the successive40

positions of the top of the particles distribution [19]. According41

0 100 200 300 400 500 600 700 800
Time(hour)

42

44

46

48

50

52

S
ta

ck
 v

ol
ta

ge
(V

)

Start prediction

Threshold

Measured stack voltage
PF prediction
Confidence Interval

Figure 1: Fuel cell prognostics result

to (7), the distribution of the predicted RULs is represented by 42

the distribution of the particles when reaching failure threshold, 43

as shown in Figure 2. 44
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Figure 2: Predicted RUL distribution

2.3. Prognostics uncertainties 45

In fact, implementing online prognostics needs to contend 46

with multiple sources of uncertainties. Generally, it is impos- 47

sible to eliminate all the uncertainties no matter what kind of 48

prognostics method is used. The sources of prognostics uncer- 49

tainties are discussed in details: 50

• Model uncertainties: It is due to the lack of an accurate 51

analytical model for the degrading fuel cell system. As 52

the system is dynamic and sensible to the operation condi- 53

tions, it is nonviable to find a model that covers all possible 54

variables. 55

• Input uncertainties: It refers to the sensors that are used 56

to monitor the system. The measurements of sensors come 57

with a variety of noises due to electrical interference, dig- 58

itization error, sensor bias, dead-band, backlash and re- 59

sponse non-linearity, etc [26]. 60

• Measurement uncertainties: All measurements are sub- 61

ject to uncertainties, which is a quantification of the doubt 62

about the measurement results. Noisy measurements may 63

4



due to electrical, mechanical, or even thermal condition1

variations.2

• External uncertainties: It contains the uncertainties com-3

ing from the operation conditions and environment. Dur-4

ing online operation, the operation conditions are dynamic5

and random and the future loading conditions and envi-6

ronment always remain unknown. It is another inevitable7

source of uncertainties.8

When it comes to the particle filtering prognostics, the un-9

certainties of the learning phase is provided by all the above-10

mentioned uncertainties and can be indicated by the distribution11

of the particles. Then, the uncertainties of the prediction phase12

account for all the previously quantified uncertainties, which13

are used to predict the future states and their uncertainties, as14

well as the RULs and their uncertainties. The future states and15

their uncertainties are calculated by propagation using the pre-16

diction model, while the calculation of the RULs and their un-17

certainties depend also on the threshold function, which is used18

to indicate the EOL.19

3. Prognostics-based health management strategy20

A health management strategy is proposed in this section,21

in which the power distribution between the fuel cell and the22

battery is performed using fuzzy logic control (FLC), which is23

optimized by genetic algorithm (GA), and a PDM process con-24

sidering RUL uncertainty is designed to redistribute the power25

between different power sources in the studied fuel cell HEV.26

3.1. System description27

The studied fuel cel HEV is build in MATLAB R©/Simulink R©
28

environment and the structure is shown in Figure 3. A29

proportional-integral (PI) speed controller is used to track the30

reference speed in the propulsion system, which is modelled31

based on the literature [27]. The power train consists of a 16kW32

PEM fuel cell stack and a 80V , 40Ah lithium-ion battery pack,33

which are used to provide the demanded power profile. All34

components are connected by current and voltage signals using35

a feedback loop. An EMS is then designed to split the power36

between the fuel cell and the battery based on the speed of the37

vehicle and the battery’s state of charge (SOC). In order to be38

health-conscious, it is designed also depending on the fuel cell39

health state. The models of the fuel cell and the battery are40

detailed as follows.41

3.1.1. Fuel cell modelling42

The fuel cell in the studied vehicle is regarded as a voltage43

source based on the following current-controlled model, which44

is deduced from its polarization curve given in [27]. The fitting45

result is written as:46

V f c = f (i f c) = α1 · i3f c + α2 · i2f c + α3 · i f c + α4 (15)

The fitting factors are α1 = −6.7791e − 07, α2 = 0.00044927,47

α3 = −0.11913 and α4 = 59.124.48
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Figure 3: Structure of the studied fuel cell HEV

The performance degradation of the fuel cell is considered on 49

the stack level, which can be indicated by the loss of its stack 50

voltage no matter what degradation is happening on the cell or 51

the component level. Here, the degraded voltage of the fuel cell 52

is modelled based on its operation points and on/off switches 53

[28, 29], written as: 54

V f c−degrade = Vini · D f c−degrade = Vini · (D f c + Don/o f f ) (16)

where 55

D f c = δ0

∫
(1 +

α(P f c − Pnom)2

P2
nom

)dt (17)

Don/o f f =


∑

∆switch, if P f c,t ≥ 0 ∧ P f c,t−1 < 0
0, otherwise

(18)

In (17) and (18), Vini is the initial available fuel cell supplied 56

voltage, Pnom is the nominal fuel cell power and Pnom = 6000W, 57

which is regarded as the maximum efficiency operation point, 58

α and δ0 are the load coefficients and ∆switch is the voltage loss 59

coefficient for fuel cell’s once switch. The coefficients are fitted 60

based on the historical datasets presented in [30]. 61

3.1.2. Battery modelling 62

An electrical equivalent circuit model is used to represent 63

the battery’s behaviour, which describes the battery operating 64

characteristics using a RC circuit network. The output battery 65

voltage is calculated by: 66 ˙uCc = −
uCc

RcCc
+

ibat

Cc

Vbat = u0 − uCc − ibatRs

(19)

where u0, Rs, Rc and Cc are estimated based on experimental 67

data [27]. As there is no sensor that could read SOC directly, 68

SOC is estimated here by ampere-hour counting (Coulomb 69

counting) method, expressed as: 70

5



S OCt = S OCt0 + η

∫ t

t0

iτ
Qmax

dτ (20)

where η denotes the coulombic efficiency (η = 0.95 when1

charging and η = 1 when discharging), iτ is the battery cur-2

rent at time instant τ (iτ > 0 when charging and iτ < 0 when3

discharging), and Qmax is the maximum available capacity of4

the battery.5

In this study, the battery used in the fuel cell HEV is assumed6

to have a much longer lifetime than the fuel cell so that the7

battery degradation cost and the interaction between the battery8

and the fuel cell are not considered.9

3.2. Energy management based on GA-optimized FLC10

EMS is a strategy to be designed in hybrid vehicles, which11

defines the amount of power that must be produced by differ-12

ent power sources. The objectives of EMS could be consump-13

tion minimization, power source degradation mitigation, driv-14

ing performance improvement, etc. Sometimes, these objec-15

tives may be conflicted with each other. In this study, the ob-16

jective of the proposed EMS controller is to find a trade-off be-17

tween increasing the system lifetime and saving the hydrogen18

consumption.19

3.2.1. FLC design20

The baseline strategy is a fuzzy rule-based strategy as it can21

easily be implemented in real time without huge computation22

burdens. The input of the FLC is the SOC of the battery and23

the output is the reference current of the fuel cell. The FLC is24

designed by considering the following objectives:25

1. The range of SOC of the battery should be limited to26

ensure that the battery pack can provide enough power27

for transient power demand and at the same time, remain28

enough capability for regenerative braking;29

2. The fuel cell is preferred to work around its highest effi-30

ciency point, Pnom, to save hydrogen consumption;31

In this respect, the SOC of the battery is controlled to 75% as32

its optimal operation point and the corresponding output is the33

optimal i f c. The control rules are written as:34

1. If the SOC is low, then the fuel cell runs at i f c−high;35

2. If the SOC is medium, then the fuel cell runs at i f c−med;36

3. If the SOC is high, then the fuel cell runs at i f c−low.37

Details of the FLC implementation could be found in the au-38

thors’ previous work [16].39

3.2.2. Offline GA optimization40

Although the FLC is easy to implement in real time, it can41

hardly reach the optimal solution if the MFs are designed with-42

out combining any optimization procedure [11]. To encounter43

with this problem, in this study, the parameters of the MFs of44

the output i f c are tuned by offline GA optimization method.45

GA is well adaptive to the optimization of FLCs, in which all46

the parameters of MFs are coded in one chromosome and they47

are selected, crossed and mutated to find an optimal solution 48

to a defined objective function. Here, the objective function 49

is a weighted polynomial function including fuel cell degraded 50

voltage D f c−degrade, SOC range ∆S OC and hydrogen fuel con- 51

sumption mH2 : 52

Ob jFun = −w1 · D f c−degrade − w2 · ∆S OC − w2 · mH2 (21)

with

∆S OC =

∫
f (1 +

(S OCbat − S OCinit)2

S OC2
init

)dt (22)

where w1, w2 and w3 are the weighting factors. The optimiza- 53

tion is implemented on a repeated WLTC Class 2 driving cy- 54

cle and the optimized MFs under different degradation states 55

(D f c−degrade is 0%, 3%, 6% and 9% of the initial stack voltage 56

value) have been plotted in Figure 4. The first line is the MFs of 57

the input SOC, the second line is MFs of the optimised fuel cell 58

reference current and the last line is the evolution of the values 59

of the objective function (calculated by (21) and (22)). 60

3.3. Prognostics-based health management based on PDM 61

A PDM process is proposed in this section to fulfill the health 62

management for the long term operation of the studied fuel cell 63

HEV. A decision fusion algorithm is applied to consider the 64

prognostics uncertainty when determining the parameters of the 65

online FLC. 66

3.3.1. Proposed PDM process 67

A PDM process is to select system actions based on the pre- 68

dictions of future system health states [31]. Speaking about 69

PDM in HEV applications, PDM process turns out to be a part 70

of EMS. The proposed prognostics-based health management 71

strategy uses the predictive nature of the prognostics process to 72

obtain the current health state of the fuel cell and conducts en- 73

ergy management though FLC, which is automatically adapted 74

to the current health state. 75

According to Section 2, the prognostics algorithm is able to 76

estimate the future states based on the previous degradation 77

trend at each desired time instant. However, the degradation 78

of power sources is a long-term procedure and it is redundant 79

to predict their RULs on short time scales, which will lead to 80

huge computation burdens and insufficient memory. Some re- 81

searchers propose to define the time instants in order to indi- 82

cate when to start performing the prognostics. According to 83

[24], prognostics can be triggered by monitoring the health in- 84

dicator. When it comes to implementing EMS, the key point is 85

to select control actions that are suitable for the current health 86

state. The above described health-conscious fuzzy logic control 87

strategy tuned by offline GA optimization may be not feasible 88

and impossible to execute in real time as the FLC cannot be 89

tuned at each time instant and at each degradation state. There- 90

fore, a solution is proposed in this paper, as shown in Figure 5. 91

The idea is to optimize a limited number of FLCs under differ- 92

ent degradation states and when RULs are obtained through the 93

online prognostics server, corresponding probabilities to these 94
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Figure 4: Optimization results under different degradation states (V f c−degrade = 0%/3%/6%/9% · Vinit from left to right)

degradation states are calculated based on the results of prog-1

nostics. Then, a decision fusion method is applied to calculate2

the confidence factors to the offline optimized FLCs and refine3

the parameters of the online used FLC.4

Figure 5: Proposed structure of PDM for developing a health-conscious EMS

3.3.2. Probability calculation5

In this study, all the pre-mentioned uncertainty factors in Sec-6

tion 2.3 are assumed to follow a Gaussian distribution (that is,7

additive Gaussian white noise) so that the prognostics uncer-8

tainty is additive and the output RUL also follows a Gaussian9

distribution. It can be expressed by the distribution of particles.10

The idea of considering prognostics uncertainty during the11

PDM process is to partition the possible solutions into bins. For12

example, the RUL distribution plot in Figure 2 has been parti-13

tioned into bins with a width of approximately 20 hours. Sup-14

pose that the decision to be made is to determine the probabil-15

ities of the prognostics results to a limited number of degrada-16

tion cases, therefore, the number of particles indicating differ- 17

ent RUL values can be recorded in different cases, represented 18

by bins. By normalizing the bin counts with a sum of 1, each 19

bin count represents the probability that an observed RUL falls 20

within that bin, as shown in Figure 6. 21

Figure 6: Probability calculation based on RUL uncertainty

Suppose that during the online prognostics process, 22

RULmin = 0 hour and RULmax = RULCI=50% + tλ hours, dif- 23

ferent widths of bins (WOB) are defined and the corresponding 24

probability values of the RUL prediction results in Figure 2 are 25

calculated and listed in Table 1. 26

The calculation of probability is a necessary step for decision 27

making. Online prognostics at the module level is used to as- 28

sess in real time the fuel cell’s health state and estimate its RUL, 29

while during the decision-making process, the system must be 30

auto-reconfigured depending on the health state to operate with 31

the expected performance. The probability indicates the possi- 32

bility of the fuel cell falling in a certain degradation state, which 33

should be considered when determining the confidence factors 34

of FLCs that have been optimized offline under certain degra- 35

dation states, described in the next part of this section. 36

7



Table 1: Probability calculation under different widths of bins (WOB)

WOB = 0.5 · RULmax
P1 P2

0.9879 0.0121

WOB = 0.4 · RULmax
P1 P2 P3

0.3208 0.6727 0.0065

WOB = 0.3 · RULmax
P1 P2 P3 P4
0 0.9407 0.0558 0.0035

WOB = 0.2 · RULmax
P1 P2 P3 P4 P5

0.3208 0.6199 0.0528 0.0050 0.0015

WOB = 0.1 · RULmax
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
0 0.3208 0.4158 0.2041 0.0473 0.0055 0.0030 0.0020 0.0010 0.0005

3.3.3. Decision fusion based on probability1

The parameters of the online used FLC could be obtained2

through a decision fusion method based on probability calcu-3

lation. The implementation of decision fusion is in light of the4

Dempster-Shafer theory. The Dempster-Shafer theory is a com-5

monly used mathematical decision fusion method introduced6

by Dempster and Shafer [32, 33]. Different from the Bayesian7

method, Dempster-Shafer theory justifies the use of combined8

evidence from different measures.9

To combine Dempster-Shafer theory to our problem, the use10

of Dempster-Shafer theory to fuse offline optimization results is11

firstly justified. Numbering the four optimized FLCs in Figure12

4 as FLC1, FLC2, FLC3, and FLC4, one may know that FLC113

is optimized as the optimal solution when D f c−degrade = 0, how-14

ever, we don’t know if it can also generate good results when15

D f c−degrade = 3%. If the range of the MFs of FLC1 contains16

the range of the MFs of FLC2, it means that FLC1 can work17

well even when D f c−degrade = 3%. To include this situation,18

when generating the online used FLC, we need to consider not19

only the FLC parameters for each degradation state but also the20

relationship between the different FLCs.21

Using the basic probability assignments calculated from the22

online prognostics process, one can combine the evidence from23

different degradation states and calculate the belief measure24

value that takes into account all possible states according to25

Dempster-Shafer theory:26

Bel(A) =
∑
B⊆A

m(B) (23)

To understand this equation, it is done in a geometrical way.27

As seen in Figure 7, they are the MFs of ”i f c=high” extracted28

from Figure 4.29

To calculate the belief measure value of each side, one should30

longitudinally compare the range of the four S1 and four S2 of31

the MFs. As indicated by (23), a combined belief measure value32

is obtained if the range of one side is the subset of the range of33

another side. For example, S2 of the MF of ”i f c=high” in FLC134

has a larger range ”a” that contains the range of S2 in FLC235

and FLC3, ”b” and ”c”, respectively, so that the belief measure36

value of it is determined as P1+P2+P3. To be noted, as x43 >37

x13, the range ”a” does not contain range ”d”, therefore, the38

probability P4 is not taken into account. Other belief measure39

values for each side of each MFs are obtained using the same40

method.41

S1 S2

𝒙𝟏𝟏

𝒙𝟏𝟐

𝒙𝟏𝟑

S2S1 

𝒙𝟐𝟏

𝒙𝟐𝟐

𝒙𝟐𝟑

S1 S2

𝒙𝟑𝟐

𝒙𝟑𝟑𝒙𝟑𝟏

S2S1 

𝒙𝟒𝟏

𝒙𝟒𝟐

𝒙𝟒𝟑

a

b

c

d

‘high’ ifc, Dfc-degrade=0

‘high’ ifc, Dfc-degrade=3%

‘high’ ifc, Dfc-degrade=6%

‘high’ ifc, Dfc-degrade=9%

Figure 7: Optimized ’high’ I f c MFs under different degradation cases

Then, to obtain the basic belief assignment m(A) for the MF 42

of one case, a Möbius transformation is used given the belief 43

measure value of each side [34]: 44

m(A) =
∑
B⊆A

(−1)|A−B|Bel(B) (24)

This equation is simplified as (25) by neglecting the term 45

(−1)|A−B|. This is because the cardinality of A−B is uncountable 46

and insignificant [35]. 47

m(A) =
∑
B⊆A

Bel(B) (25)

As an MF consists of two sides, the assigned probability to 48

the MF is calculated by the weighted arithmetic mean of the 49

side belief measure values [16]. Then, the parameters of the 50
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online used FLC could be determined and adapted to the current1

health state.2

4. Result discussion3

4.1. Comparison analysis4

The health management strategy is coded in the EMS mod-5

ule of the simulated fuel cell HEV model (Figure 3). The sim-6

ulation is run on a repeated WLTC class 2 driving cycle up7

to thousands of hours. At first, two scenarios have been pro-8

posed to justify the effectiveness of the proposed strategy. In9

the first test, the FLC optimized under no degradation state10

(D f c−degrade = 0%) is used all along with the simulation until11

the fuel cell reaches its EOL. Then in the second test, the param-12

eters of the online used FLC are refined according to the prog-13

nostics results considering uncertainty. The WOB is defined as14

0.3 ·RULmax and the prognostics is triggered once D f c−degrade15

falls by 1%. The simulation stops when the fuel cell reaches16

the same EOL value. The evolution of the power distribution is17

plotted in Figure 8, in which the fuel cell operates smoothly and18

the battery provides all the dynamics in the demanded power.19
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Figure 8: Power distribution between fuel cell and battery

However, as the fuel cell degrades, the developed EMS based20

on optimized FLC without considering degradation will lose its21

optimality. The fuel cell can no longer operate with the least22

dynamics, as shown in Figure 9. Large variations could be ob-23

served in the fuel cell power from the 200th hour, which con-24

tributes to its further degradation.25

The proposed prognostics-based health management strategy26

in this paper has conducted to encounter this problem. The27

health state of the fuel cell is considered in the EMS through28

online prognostics and the FLC parameters are adapted online.29

The demanded power can, therefore, be redistributed between30

the fuel cell and the battery to avoid large variations in the fuel31

cell provided power, as shown in Figure 10.32

To compare the durability, the evolution of the fuel cell stack33

voltage and the battery SOC are compared in Figure 11 and Fig-34

ure 12. The fuel cell has reached its EOL at 763 hours using the35

EMS without prognostics, while the prognostics-based EMS36

has prolonged the fuel cell lifetime to 957 hours, by 25.5% ap-37

proximately. Besides, compared to prognostics-based EMS, the38
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Figure 9: Fuel cell power at 0 hour and 200th hour using EMS without prog-
nostics
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Figure 10: Fuel cell power at 0 hour and 200th hour using prognostics-based
health management strategy

EMS without tuning the FLC parameters cannot maintain the 39

SOC of the battery. Battery SOC has dropped to a lower value 40

along with the time, which also contributes to battery degrada- 41

tion, as shown in Figure 12. 42

4.2. Discussion on prognostics occurrence frequency 43

To further investigate the influence of prognostics occur- 44

rence, more scenarios with prognostics happening at different 45

frequencies are designed, while the WOB remains at the same. 46

The prognostics process is triggered by monitoring the fuel cell 47

degradation with the degradation interval ∆D f c−degrade equal 48
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Figure 11: Evolution of the measured fuel cell stack voltage
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Figure 12: Evolution of the measured battery SOC

to 1%, 2%, 3%, 4% and 5%, while the WOB remaining as1

0.3 · RULmax.2

The comparison of life improvement is listed in Table 2.3

Compared to the EMS without prognostics, the proposed4

prognostics-based health management strategy improves the5

lifetime of the fuel cell with a minimum value of 42.6% and6

the strategy with ∆D f c = 3% has reached the longest lifetime,7

84.6% longer than the EMS without prognostics. Obviously,8

it doesn’t mean that frequent prognostics can lead to better9

performance of the fuel cell durability. Frequent prognostics10

(∆D f c = 1%, 2%) have even worse performance than less fre-11

quent prognostics (∆D f c = 3%, 4%, 5%). This is because when12

the prognostics horizon is large, the prognostics accuracy can-13

not be guaranteed due to the lack of learning data. When the14

uncertainty accumulates, the probability calculation will also15

be influenced so that one cannot reach the optimal parameters16

of the online used FLC. However, when the frequency becomes17

lower, i.e., fewer prognostics are implemented, the performance18

becomes worse, as well. This is due to the reason that the degra-19

dation of the fuel cell hasn’t been fully considered in the strat-20

egy. If we compare the hourly hydrogen consumption, the result21

does not vary a lot as our objective function is defined to find a22

trade-off between degradation mitigation and saving consump-23

tion. The EMS without prognostics consumes less because the24

SOC of the battery drops to a lower value.25

Table 2: Lifetime improvement comparison with different prognostics occur-
rence frequency

Prognostics frequency
(WOB= 0.3 · RULmax)

Lifetime im-
provement

mH2 (g/hour)

EMS without prognostics - 41.2
∆Dfc=1% 25.5% 42.0
∆Dfc=2% 58.2% 41.9
∆Dfc=3% 84.6% 41.9
∆Dfc=4% 80.0% 41.9
∆Dfc=5% 54.7% 41.7

4.3. Discussion on WOB of probability calculation 26

Further analysis of how the WOBs of probability calculation 27

will have an influence on the system performance is discussed 28

by defining different WOBs. More simulations are executed 29

with WOB = 0.5 · RULmax, 0.4 · RULmax , 0.3 · RULmax, 0.2 · 30

RULmax and 0.1·RULmax, respectively. The prognostics process 31

is triggered with the fuel cell degradation interval ∆D f c−degrade 32

equal to 3%, as it has been proved to have the best performance, 33

presented in Section 4.2. 34

The comparison of life improvement is listed in Table 3. It 35

shows that the strategy with WOB of probability calculation 36

that equals 0.4 ·RULmax has reached the best performance. The 37

durability of the fuel cell has been improved by 95.4%. How- 38

ever, the EMS with WOB of 0.5 can only improve the lifetime 39

by 19.5%. This is because the FLC formulated based on the 40

probability calculation with WOB = 0.5 · RULmax cannot take 41

into account the high degradation state. Besides, the EMS with 42

smaller WOBs (WOB = 0.1 · RULmax, WOB = 0.2 · RULmax) 43

are less satisfied due to the uncertainty in the prognostics re- 44

sults. Once the uncertainty is accumulated to a high level, the 45

refined FLC cannot generate the best results. Once again, the 46

hourly consumed hydrogen are compared. The strategy that 47

reached the best lifetime improvement can also avoid high hy- 48

drogen consumption. 49

Table 3: Lifetime improvement comparison with different WOBs

WOB (∆Dfc=3%) Lifetime im-
provement

mH2 (g/hour)

EMS without prognostics - 41.2
WOB = 0.1 · RULmax 61.7% 41.8
WOB = 0.2 · RULmax 60.8% 41.8
WOB = 0.3 · RULmax 87.3% 41.9
WOB = 0.4 · RULmax 95.4% 41.9
WOB = 0.5 · RULmax 19.5% 41.6

According to the above analysis, when selecting the parame- 50

ters, i.e. the prognostics occurrence frequency and the WOB of 51

probability calculation, to define the online prognostics-based 52

health management strategy, it is important to improve the pre- 53

diction performance of the prognostics method and to define the 54

necessary points for reconfiguration according to the character- 55

istics of the system. 56

10



5. Conclusion1

This paper has contributed to developing an enhanced on-2

line prognostics-based health management strategy consider-3

ing prognostics uncertainty for fuel cell HEVs. The strategy4

is realised based on a GA-optimized FLC. A PDM process has5

been proposed, which refines the parameters of the FLC us-6

ing a decision fusion method based on RUL probability cal-7

culation. Results showed that by taking into consideration the8

health states, the proposed prognostics-based health manage-9

ment strategy has effectively stabilized the fuel cell operation10

and maintained the battery SOC, which helped to mitigate the11

degradation of the power sources by up to 95% without sacri-12

ficing the hydrogen consumption. Moreover, variations on the13

prognostics occurrence frequency and the calculation of proba-14

bility have also been examined and results showed that proper15

parameters of the strategy could help to improve the EMS per-16

formance. For the perspectives, further researches on hybrid17

system dynamic degradation monitoring and experimental val-18

idation are expected in the future.19
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