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obtained under constant operating conditions. Although they are devoted to estimating the health state of the fuel cell, the real driving conditions have not been considered. Moreover, prognostics itself cannot reach the goal of improving durability, i.e., post-prognostics decisions and mitigation actions are lacking [START_REF] Yue | Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies[END_REF].

To improve the durability of fuel cells in HEV applications, efforts have been made to develop health-conscious energy management strategies (EMSs) [START_REF] Yue | Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies[END_REF]. A deterministic dynamic programming strategy and a rule-based strategy have been developed in [START_REF] Kandidayeni | Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies[END_REF] to minimize the cost and at the same time, respect the operation limits to avoid degradation. Liu et al. have developed a multi-objective EMS to achieve optimal cost and fuel cell lifetime based on predicted vehicle speed and battery state of charge [START_REF] Liu | Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles[END_REF]. Moreover, an equivalent consumption minimization strategy has been developed in [START_REF] Li | Online adaptive equivalent consumption minimization strategy for fuel cell hybrid electric vehicle considering power sources degradation[END_REF], which considers the fuel cell degradation in the objective function. However, existing researches usually consider the fuel cell degradation by setting constraints or using fitting degradation models in the strategies, which are less accurate and cannot signify the real health state of the system. The developed fuel cell prognostics technologies are less applied to the energy management of HEV applications. Without an exact understanding of the current health state, the actions taken by the controller may be not appropriate and may even cause more damages to the system's health, shortening its lifetime [START_REF] Han | Investigation of fcvs durability under driving cycles using a model-based approach[END_REF].

To go further from prognostics to health management for fuel cell HEV applications, a prognostics-enabled decision-making (PDM) process has been proposed in [START_REF] Yue | Health-conscious energy management for fuel cell hybrid electric vehicles based on prognostics-enabled decisionmaking[END_REF], which uses the data provided by the prognostics step to reconfigure the mission of a fuel cell HEV depending on its health state. The decision is made by allocating confidence factors to different degradation states and fusing the parameters of fuzzy logic controllers based on the confidence factors to find the optimal power distribution between the fuel cell and the energy storage system in real time.

However, the confidence factors in [START_REF] Yue | Health-conscious energy management for fuel cell hybrid electric vehicles based on prognostics-enabled decisionmaking[END_REF] are obtained through a classification method based on a Gaussian-shaped fuzzy inference system, while only the median value of RUL predictions is used. Therefore, the classification results are less convinced if RUL uncertainties are not considered. To improve this deficiency, the uncertainties of the prognostic results are examined based on the particle filtering prognostics method in this paper. 58 To develop the prognostics-based health management strategy, 59 a probability calculation method is then introduced to obtain 60 the probability values allocated to different degradation states, 61 and a decision fusion approach is applied to calculate the con-62 fidence factors to the offline-optimized fuzzy logic controllers 63 and to determine the parameters of the online operating con-64 troller.

65

The reminder of the rest of this paper is as follows: Section 2 66 introduces an online prognostics method for the fuel cell based 67 on particle filtering with an analysis of the sources of uncer-68 tainties. Section 3 presents the development of the proposed 69 prognostics-based EMS for a fuel cell HEV, while the simu-70 lation results are compared and discussed in Section 4 before 71 concluding. 72 2. Online prognostics based on particle filtering

73

The online particle filtering prognostics method has been 74 proposed in this section to be combined with the health man-75 agement strategy of the studied fuel cell HEV. It allows one to 76 track and to continuously estimate the state of health of the fuel 77 cell, and furthermore, to predict the RUL. Particle filtering is essentially a nonlinear Bayesian tracking 81 approach that the unknown states from noisy observations 82 can be estimated with available prior knowledge. In a typical 83 Bayesian tracking problem, two models are required to de-84 scribe the system: state model and measurement model. 

87 x k = f (x k-1 , u k , w k ) ↔ p(x k |x k-1 ) (1) 
where the initial distribution of the states x k is modelled as 88 p(x 0 ) and the state transition is based on a probabilistic model 89 p(x k |x k-1 ). u k is the command input and w k is process white 90 noise, non-necessarily Gaussian [START_REF] Jouin | Particle filter-based prognostics: Review, discussion and perspectives[END_REF].

92

Measurement model:

93 z k = h(x k-1 , v k ) ↔ p(z k |x k ) (2)
where the measurement z k is of a marginal distribution p(z k |x k ) 94 and v k is the measurement white noise, non-necessarily Gaus-95 sian [START_REF] Jouin | Particle filter-based prognostics: Review, discussion and perspectives[END_REF].

96

The state estimation is realized by recursively estimating the 97 state probability distribution function p(x k |z 1:k ) using a predic-98 tion step and an update step: 99 Prediction step:

100 p(x k | z 1:k-1 ) = p(x k | x k-1 )p(x k-1 | z 1:k-1 )dx k-1 (3)
Update step:

101 p(x k | z 1:k ) = p(z k | x k )p(x k | z 1:k-1 ) p(z k | z 1:k-1 ) (4) 
where

p(z k | z 1:k-1 ) = p(z k | x k )p(x k | z 1:k-1 )dx k (5)
In fact, the above Bayesian tracking equations are conceptual. To analytically solve this problem, particle filtering is widely applied to give approximate solutions owing to its ability to solve nonlinear and non-Gaussian problems. Particle filtering is implemented based on sequential importance sampling (SIS) technique, which is a Monte-Carlo method to calculate p(x k | z 1:k ) by sampling the states into particles and allocating weights to the particles. Details could be found in [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[END_REF]. The steps for implementing SIS-type particle filtering are described as follows:

1. In the first step (k = 1), n particles with an initial distribution p(x 0 ) are generated;

2. Propagate the n particles from x k-1 to the next state x k using (1) to calculate the probability density function;

3. The weights associated to the particles are calculated by the likelihood of the state to the latest measurement z k :

L(z k |x k , σ v k ) = 1 √ 2πσ v k exp(- (z k -x k ) 2 2σ 2 v k ) (6) 
4. In order to avoid the dying away of the particles, a resampling process is performed to exclude small-weighted particles by setting a given weight limit and replicate those large-weighted particles;

5. The rebuilt posterior probability density function by resampling is, therefore, recursively transferred to the following iteration as its prior probability density function;

6.

Step 2 to 5 are repeated until there is no more measurement.

Prognostics require the state model to output new state estimates when the measurement is no longer available, and then to predict the future health state and the RULs. To adapt particle filtering for prognostics purpose, it needs a prediction phase in addition to the above-described state estimation process. When there is no measurement available, i.e., the prediction is started, the state x k is propagated to x k+1 without calculating the likelihood of (6) and the parameters of the model are propagated with the noises.

RUL estimation

RUL is a term that indicates how long the system could remain in use, it is calculated based on a pre-defined end-of-life (EOL) threshold λ. The estimated probability density function of the RUL at time k is:

p(RUL ≤ l | z 0:k ) = p(x k+l ≥ λ | z 0:k ) (7) 
It is updated based on new z k , k = k p + 1, ..., k p + l. The RUL uncertainty can be represented by the final distribution of the particles obtained when the failure threshold is reached [START_REF] Jouin | Prognostics of pem fuel cell in a particle filtering framework[END_REF].

The pseudo-code of implementing the particle filtering prognostics method is presented in Algorithm 1.

Algorithm 1 Particle filtering prognostics Initialize x i 0 , w 0 i , v 0 i , u i 0 with uniform distribution Time step k = 1 while x i k > λ and k ≤ k p , do for i = 1, ..., n, do SIS Generate particles

x i k ∼ p(x i k | x i k-1 , w k-1 i , u i k-1 ) Allocate weight ω i k = L(z i k | x i k , v i k ) end for Normalize weight ω i k = ω i k / n i=1 ω i k
Calculate the cumulative sum of the normalized weights

Q i k | n i=1 = Cumsum(ω i k | n i=1 ) for i = 1, ..., n, do Resampling j = 1 Draw a random value u i ∼ U[0, 1) while Q i k < u i , do j = j + 1 end while Update state x j k = x j k Update noises w k-1 j = w k-1 j , v k-1 j = v k-1 j Update parameters u j k = u j k end for k = k + 1 end while for i = 1, ..., n, do Start prognostics from k p while x i k > λ, do Propagate particles to the next time step x i k = f (x i k-1 , w k-1 i , u i k-1 ) k = k + 1 end while Estimate RUL i k = (k -k p ) • ∆t end for 2.2. Online prognostics implementation 45 2.2.1. Model selection 46
The degradation trend of the fuel cell degradation dataset 47 could be caught by various empirical models [START_REF] Jouin | Prognostics of pem fuel cell in a particle filtering framework[END_REF][START_REF] Zhang | An unscented kalman filter based approach for the health-monitoring and prognostics of a polymer electrolyte membrane fuel cell[END_REF][START_REF] Jouin | Prognostics of proton exchange membrane fuel cell stack in a particle filtering framework including characterization disturbances and voltage recovery[END_REF]. In 48 order to include more possibilities of variation, the 2nd order 49 exponential degradation model is chosen to track the fuel cell's 50 performance and perform prognostics: Then, the state space model could be written as (9):

51 V(t) = b 1 • exp(b 2 • t) + b 3 • exp(b 4 • t) (8) 
54 x 1,k = x 1,k-1 • exp(b 2 ) + w 1,k , w 1,k ∼ N(0, σ 2 w1 ) x 2,k = x 2,k-1 • exp(b 4 ) + w 2,k , w 2,k ∼ N(0, σ 2 w2 ) (9) 
where x 1,k and x 2,k are two first-order independent Markov pro-55 cesses and the present voltage state can be obtained from x 1,k 56 and x 2,k :

57 x k = b 1 • x 1,k + b 3 • x 2,k (10) 
where b 1 , b 2 , b 3 and b 4 are also states to be transited. The measurement model is then written as:

z k = x k + v k , v k ∼ N(0, σ 2 v ) (11) 
where v k are supposed to be included in the measurement signal as the measurement noise. As the initial distributions of the parameters are unknown, uniform distributions is applied [START_REF] An | A tutorial for model-based prognostics algorithms based on matlab code[END_REF].

The process noise variance is refined as σ 2 w = 10 -4 and same process noise is assigned to the unknown parameters (b 1 , b 2 , b 3 and b 4 ). The measurement noise v k is not considered as it is supposed to be contained in the input signals. Moreover, the number of particles is fixed as n = 2000.

Data preprocessing

During the system's online operation, voltage disturbances are inevitable. The original signal is too noisy to implement prognostics. Thus, the data should be preprocessed to remove the peaks and filter the noises. To this end, a kernel smoother is applied. The estimated point f (t j ) is calculated based on the weighted moving average:

f (t j ) = n i=1 s i • u(t j ) n i=1 s i (12) 
where

s = K( t j -t h ) (13) 
h is the bandwidth and K is a Gaussian Kernel function written as:

K(t) = e -t 2 2 √ 2π (14) 
Besides, during online operation, the signal measured at each time step is too voluminous, and using these data points to estimate the states requires huge storage memory, up to gigabytes to store the states, estimated parameters, and particle weights.

This would not be actually allowed in industrial applications.

Besides, too many points for state estimation will lead to overfitting problems, resulting in the divergence of the model [START_REF] Jouin | Combined predictions for prognostics and predictive control of transportation pemfc[END_REF].

Therefore, the measured signal should be reduced. Moreover, based on the hypotheses that the degradation of the fuel cell is only due to the ageing effects and no sudden damage happens during its operation, the degradation will not progress largely on short time scales, time scales longer than an hour should be suitable for industrial application [START_REF] Jouin | Estimating the endof-life of pem fuel cells: Guidelines and metrics[END_REF][START_REF] Saxena | Metrics for evaluating performance of prognostic techniques[END_REF]. Therefore, in this study, to track the state of the system and to perform prognostics, the data is reduced at one point per hour. The estimated voltage drawn in Figure 1 is the successive positions of the top of the particles distribution [START_REF] Jouin | Prognostics of pem fuel cell in a particle filtering framework[END_REF]. According analytical model for the degrading fuel cell system. As 52 the system is dynamic and sensible to the operation condi-53 tions, it is nonviable to find a model that covers all possible 54 variables.

Prognostics result demonstration

55

• Input uncertainties: It refers to the sensors that are used 56 to monitor the system. The measurements of sensors come 57 with a variety of noises due to electrical interference, dig-58 itization error, sensor bias, dead-band, backlash and re-59 sponse non-linearity, etc [START_REF] Saha | Uncertainty management for diagnostics and prognostics of batteries using bayesian techniques[END_REF]. 

Prognostics-based health management strategy

A health management strategy is proposed in this section, in which the power distribution between the fuel cell and the battery is performed using fuzzy logic control (FLC), which is optimized by genetic algorithm (GA), and a PDM process considering RUL uncertainty is designed to redistribute the power between different power sources in the studied fuel cell HEV.

System description

The studied fuel cel HEV is build in MATLAB R /Simulink R environment and the structure is shown in Figure 3. A proportional-integral (PI) speed controller is used to track the reference speed in the propulsion system, which is modelled based on the literature [START_REF] Depature | Ieee vts motor vehicles challenge 2017 -energy management of a fuel cell/battery vehicle[END_REF]. The power train consists of a 16kW PEM fuel cell stack and a 80V, 40Ah lithium-ion battery pack, which are used to provide the demanded power profile. All components are connected by current and voltage signals using a feedback loop. An EMS is then designed to split the power between the fuel cell and the battery based on the speed of the vehicle and the battery's state of charge (SOC). In order to be health-conscious, it is designed also depending on the fuel cell health state. The models of the fuel cell and the battery are detailed as follows.

Fuel cell modelling

The fuel cell in the studied vehicle is regarded as a voltage source based on the following current-controlled model, which is deduced from its polarization curve given in [START_REF] Depature | Ieee vts motor vehicles challenge 2017 -energy management of a fuel cell/battery vehicle[END_REF]. The fitting result is written as:

V f c = f (i f c ) = α 1 • i 3 f c + α 2 • i 2 f c + α 3 • i f c + α 4 ( 15 
)
The fitting factors are α 1 = -6.7791e -07, α 2 = 0.00044927, α 3 = -0.11913 and α 4 = 59.124. The performance degradation of the fuel cell is considered on 49 the stack level, which can be indicated by the loss of its stack 50 voltage no matter what degradation is happening on the cell or 51 the component level. Here, the degraded voltage of the fuel cell 52 is modelled based on its operation points and on/off switches 53 [START_REF] Chen | Lifetime prediction and the economic lifetime of proton exchange membrane fuel cells[END_REF][START_REF] Fletcher | An energy management strategy to concurrently optimise fuel consumption and pem fuel cell lifetime in a hybrid vehicle[END_REF], written as:

54 V f c-degrade = V ini • D f c-degrade = V ini • (D f c + D on/o f f ) (16)
where

55 D f c = δ 0 (1 + α(P f c -P nom ) 2 P 2 nom )dt (17) 
D on/o f f =        ∆ switch , if P f c,t ≥ 0 ∧ P f c,t-1 < 0 0, otherwise (18) 
In ( 17) and ( 18), V ini is the initial available fuel cell supplied 56 voltage, P nom is the nominal fuel cell power and P nom = 6000W, 57 which is regarded as the maximum efficiency operation point, 58 α and δ 0 are the load coefficients and ∆ switch is the voltage loss 59 coefficient for fuel cell's once switch. The coefficients are fitted 60 based on the historical datasets presented in [START_REF] Gouriveau | Ieee phm 2014 data challenge: Outline, experiments, scoring of results, winners[END_REF]. An electrical equivalent circuit model is used to represent 63 the battery's behaviour, which describes the battery operating 64 characteristics using a RC circuit network. The output battery 65 voltage is calculated by:

66            u C c = - u C c R c C c + i bat C c V bat = u 0 -u C c -i bat R s (19)
where u 0 , R s , R c and C c are estimated based on experimental 67 data [START_REF] Depature | Ieee vts motor vehicles challenge 2017 -energy management of a fuel cell/battery vehicle[END_REF]. As there is no sensor that could read SOC directly, 68 SOC is estimated here by ampere-hour counting (Coulomb 69 counting) method, expressed as:

70 S OC t = S OC t 0 + η t t 0 i τ Q max dτ (20) 
where η denotes the coulombic efficiency (η = 0.95 when 1 charging and η = 1 when discharging), i τ is the battery cur-2 rent at time instant τ (i τ > 0 when charging and i τ < 0 when 3 discharging), and Q max is the maximum available capacity of 4 the battery.

5

In this study, the battery used in the fuel cell HEV is assumed

6
to have a much longer lifetime than the fuel cell so that the 7 battery degradation cost and the interaction between the battery 8 and the fuel cell are not considered. 

45

GA is well adaptive to the optimization of FLCs, in which all 46 the parameters of MFs are coded in one chromosome and they 47 are selected, crossed and mutated to find an optimal solution to a defined objective function. Here, the objective function is a weighted polynomial function including fuel cell degraded voltage D f c-degrade , SOC range ∆S OC and hydrogen fuel consumption m H 2 :

Ob jFun = -w 1 • D f c-degrade -w 2 • ∆S OC -w 2 • m H 2 (21)
with

∆S OC = f (1 + (S OC bat -S OC init ) 2 S OC 2 init )dt (22) 
where w 1 , w 2 and w 3 are the weighting factors. The optimization is implemented on a repeated WLTC Class 2 driving cycle and the optimized MFs under different degradation states (D f c-degrade is 0%, 3%, 6% and 9% of the initial stack voltage value) have been plotted in Figure 4. The first line is the MFs of the input SOC, the second line is MFs of the optimised fuel cell reference current and the last line is the evolution of the values of the objective function (calculated by ( 21) and ( 22)).

Prognostics-based health management based on PDM

A PDM process is proposed in this section to fulfill the health management for the long term operation of the studied fuel cell HEV. A decision fusion algorithm is applied to consider the prognostics uncertainty when determining the parameters of the online FLC.

Proposed PDM process

A PDM process is to select system actions based on the predictions of future system health states [START_REF] Balaban | A modeling framework for prognostic decision making and its application to uav mission planning[END_REF]. Speaking about PDM in HEV applications, PDM process turns out to be a part of EMS. The proposed prognostics-based health management strategy uses the predictive nature of the prognostics process to obtain the current health state of the fuel cell and conducts energy management though FLC, which is automatically adapted to the current health state.

According to Section 2, the prognostics algorithm is able to estimate the future states based on the previous degradation trend at each desired time instant. However, the degradation of power sources is a long-term procedure and it is redundant to predict their RULs on short time scales, which will lead to huge computation burdens and insufficient memory. Some researchers propose to define the time instants in order to indicate when to start performing the prognostics. According to [START_REF] Jouin | Estimating the endof-life of pem fuel cells: Guidelines and metrics[END_REF], prognostics can be triggered by monitoring the health indicator. When it comes to implementing EMS, the key point is to select control actions that are suitable for the current health state. The above described health-conscious fuzzy logic control strategy tuned by offline GA optimization may be not feasible and impossible to execute in real time as the FLC cannot be tuned at each time instant and at each degradation state. Therefore, a solution is proposed in this paper, as shown in Figure 5. The idea is to optimize a limited number of FLCs under different degradation states and when RULs are obtained through the online prognostics server, corresponding probabilities to these Suppose that during the online prognostics process, RUL min = 0 hour and RUL max = RUL CI=50% + t λ hours, different widths of bins (WOB) are defined and the corresponding probability values of the RUL prediction results in Figure 2 are calculated and listed in Table 1.

The calculation of probability is a necessary step for decision making. Online prognostics at the module level is used to assess in real time the fuel cell's health state and estimate its RUL, while during the decision-making process, the system must be auto-reconfigured depending on the health state to operate with the expected performance. The probability indicates the possibility of the fuel cell falling in a certain degradation state, which should be considered when determining the confidence factors of FLCs that have been optimized offline under certain degradation states, described in the next part of this section. 

Decision fusion based on probability

The parameters of the online used FLC could be obtained Using the basic probability assignments calculated from the online prognostics process, one can combine the evidence from different degradation states and calculate the belief measure value that takes into account all possible states according to Dempster-Shafer theory:

Bel(A) = B⊆A m(B) (23) 
To understand this equation, it is done in a geometrical way.

As seen in Figure 7, they are the MFs of "i f c =high" extracted from Figure 4.

To calculate the belief measure value of each side, one should longitudinally compare the range of the four S1 and four S2 of the MFs. As indicated by [START_REF] Jouin | Combined predictions for prognostics and predictive control of transportation pemfc[END_REF], a combined belief measure value is obtained if the range of one side is the subset of the range of another side. For example, S2 of the MF of "i f c =high" in FLC1 has a larger range "a" that contains the range of S2 in FLC2 and FLC3, "b" and "c", respectively, so that the belief measure value of it is determined as P1+P2+P3. To be noted, as x 43 >

x 13 , the range "a" does not contain range "d", therefore, the probability P4 is not taken into account. Other belief measure values for each side of each MFs are obtained using the same method. Then, to obtain the basic belief assignment m(A) for the MF 42 of one case, a Möbius transformation is used given the belief 43 measure value of each side [START_REF] Liu | Classic Works of the Dempster-Shafer Theory of Belief Functions: An Introduction[END_REF]:

44 m(A) = B⊆A (-1) |A-B| Bel(B) (24) 
This equation is simplified as [START_REF] Saxena | Metrics for evaluating performance of prognostic techniques[END_REF] by neglecting the term 45 (-1) |A-B| . This is because the cardinality of A-B is uncountable 46 and insignificant [START_REF] Zhou | Online energy management strategy of fuel cell hybrid electric vehicles based on data fusion approach[END_REF].

47 m(A) = B⊆A Bel(B) (25) 
As an MF consists of two sides, the assigned probability to 48 the MF is calculated by the weighted arithmetic mean of the 49 side belief measure values [START_REF] Yue | Health-conscious energy management for fuel cell hybrid electric vehicles based on prognostics-enabled decisionmaking[END_REF]. Then, the parameters of the 50 online used FLC could be determined and adapted to the current health state.

Result discussion

Comparison analysis

The health management strategy is coded in the EMS module of the simulated fuel cell HEV model (Figure 3). Further analysis of how the WOBs of probability calculation will have an influence on the system performance is discussed by defining different WOBs. More simulations are executed with WOB = 0.5 • RUL max , 0.4 • RUL max , 0.3 • RUL max , 0.2 • RUL max and 0.1•RUL max , respectively. The prognostics process is triggered with the fuel cell degradation interval ∆D f c-degrade equal to 3%, as it has been proved to have the best performance, presented in Section 4.2.

The comparison of life improvement is listed in Table 3. It shows that the strategy with WOB of probability calculation that equals 0.4 • RUL max has reached the best performance. The durability of the fuel cell has been improved by 95.4%. However, the EMS with WOB of 0.5 can only improve the lifetime by 19.5%. This is because the FLC formulated based on the probability calculation with WOB = 0.5 • RUL max cannot take into account the high degradation state. Besides, the EMS with smaller WOBs (WOB = 0.1 • RUL max , WOB = 0.2 • RUL max ) are less satisfied due to the uncertainty in the prognostics results. Once the uncertainty is accumulated to a high level, the refined FLC cannot generate the best results. Once again, the hourly consumed hydrogen are compared. The strategy that reached the best lifetime improvement can also avoid high hydrogen consumption. According to the above analysis, when selecting the parameters, i.e. the prognostics occurrence frequency and the WOB of probability calculation, to define the online prognostics-based health management strategy, it is important to improve the prediction performance of the prognostics method and to define the necessary points for reconfiguration according to the characteristics of the system. 

Conclusion

  AbbreviationsEMS energy management strategy FLC fuzzy logic controller GA genetic algorithm HEV hybrid electric vehicle MF membership function PDM prognostics-enabled decision-making PEM proton exchange membrane PHM prognostics and health management S OC state of charge S OH state of health WOB width of bin Symbols i bat battery current

where b 1 ,

 1 b 2 , b 3 and b 4 are the model parameters, b 1 and b 3 52 determine the initial state and b 2 and b 4 define the degradation 53 rate.

Figure 1

 1 Figure 1 shows an example of the online estimation and prognostics result of the fuel cell degradation at prediction time t λ = 500th hour. The fuel cell is assumed to reach its EOL at a predefined threshold (D f c-degrade = 10%). The predicted RUL is [84 143 284] hours with a confidence interval (CI) of [5% 50% 95%] whereas the true RUL is 159 hours.
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  Measurement uncertainties: All measurements are sub-61 ject to uncertainties, which is a quantification of the doubt 62 about the measurement results. Noisy measurements may 63 due to electrical, mechanical, or even thermal condition variations. External uncertainties: It contains the uncertainties coming from the operation conditions and environment. During online operation, the operation conditions are dynamic and random and the future loading conditions and environment always remain unknown. It is another inevitable source of uncertainties. When it comes to the particle filtering prognostics, the uncertainties of the learning phase is provided by all the abovementioned uncertainties and can be indicated by the distribution of the particles. Then, the uncertainties of the prediction phase account for all the previously quantified uncertainties, which are used to predict the future states and their uncertainties, as well as the RULs and their uncertainties. The future states and their uncertainties are calculated by propagation using the prediction model, while the calculation of the RULs and their uncertainties depend also on the threshold function, which is used to indicate the EOL.

Figure 3 :

 3 Figure 3: Structure of the studied fuel cell HEV
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 2203435 Energy management based on GA-optimized FLC 10 EMS is a strategy to be designed in hybrid vehicles, which 11 defines the amount of power that must be produced by differ-12 ent power sources. The objectives of EMS could be consump-13 tion minimization, power source degradation mitigation, driv-14 ing performance improvement, etc. Sometimes, these objec-15 tives may be conflicted with each other. In this study, the ob-16 jective of the proposed EMS controller is to find a trade-off be-17 tween increasing the system lifetime and saving the hydrogen baseline strategy is a fuzzy rule-based strategy as it can 21 easily be implemented in real time without huge computation 22 burdens. The input of the FLC is the SOC of the battery and 23 the output is the reference current of the fuel cell. The FLC is 24 designed by considering the following objectives: 1. The range of SOC of the battery should be limited to 26 ensure that the battery pack can provide enough power 27 for transient power demand and at the same time, remain 28 enough capability for regenerative braking; 29 2. The fuel cell is preferred to work around its highest effi-30 ciency point, P nom , to save hydrogen consumption; 31In this respect, the SOC of the battery is controlled to 75% as 32 its optimal operation point and the corresponding output is the 33 optimal i f c . The control rules are written as: If the SOC is low, then the fuel cell runs at i f c-high ; If the SOC is medium, then the fuel cell runs at i f c-med ; 36 3. If the SOC is high, then the fuel cell runs at i f c-low . 37 Details of the FLC implementation could be found in the au-38 thors' previous work[START_REF] Yue | Health-conscious energy management for fuel cell hybrid electric vehicles based on prognostics-enabled decisionmaking[END_REF].

40

  Although the FLC is easy to implement in real time, it can hardly reach the optimal solution if the MFs are designed with-42 out combining any optimization procedure[START_REF] Yue | Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies[END_REF]. To encounter 43 with this problem, in this study, the parameters of the MFs of 44 the output i f c are tuned by offline GA optimization method.

Figure 4 :Figure 5 :

 45 Figure 4: Optimization results under different degradation states (V f c-degrade = 0%/3%/6%/9% • V init from left to right)

Figure 6 :

 6 Figure 6: Probability calculation based on RUL uncertainty

  through a decision fusion method based on probability calculation. The implementation of decision fusion is in light of the Dempster-Shafer theory. The Dempster-Shafer theory is a commonly used mathematical decision fusion method introduced by Dempster and Shafer [32, 33]. Different from the Bayesian method, Dempster-Shafer theory justifies the use of combined evidence from different measures. To combine Dempster-Shafer theory to our problem, the use of Dempster-Shafer theory to fuse offline optimization results is firstly justified. Numbering the four optimized FLCs in Figure 4 as FLC1, FLC2, FLC3, and FLC4, one may know that FLC1 is optimized as the optimal solution when D f c-degrade = 0, however, we don't know if it can also generate good results when D f c-degrade = 3%. If the range of the MFs of FLC1 contains the range of the MFs of FLC2, it means that FLC1 can work well even when D f c-degrade = 3%. To include this situation, when generating the online used FLC, we need to consider not only the FLC parameters for each degradation state but also the relationship between the different FLCs.

  Figure 7: Optimized 'high' I f c MFs under different degradation cases

  The simulation is run on a repeated WLTC class 2 driving cycle up to thousands of hours. At first, two scenarios have been proposed to justify the effectiveness of the proposed strategy. In the first test, the FLC optimized under no degradation state (D f c-degrade = 0%) is used all along with the simulation until the fuel cell reaches its EOL. Then in the second test, the parameters of the online used FLC are refined according to the prognostics results considering uncertainty. The WOB is defined as 0.3 •RUL max and the prognostics is triggered once D f c-degrade falls by 1%. The simulation stops when the fuel cell reaches the same EOL value. The evolution of the power distribution is plotted in Figure 8, in which the fuel cell operates smoothly and the battery provides all the dynamics in the demanded power.

Figure 8 :Figure 9 :Figure 10 :

 8910 Figure 8: Power distribution between fuel cell and battery
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1

  This paper has contributed to developing an enhanced on-2 line prognostics-based health management strategy consider-3 ing prognostics uncertainty for fuel cell HEVs. The strategy 4 is realised based on a GA-optimized FLC. A PDM process has 5 been proposed, which refines the parameters of the FLC us-6 ing a decision fusion method based on RUL probability cal-7 culation. Results showed that by taking into consideration the 8 health states, the proposed prognostics-based health manage-9 ment strategy has effectively stabilized the fuel cell operation 10 and maintained the battery SOC, which helped to mitigate the 11 degradation of the power sources by up to 95% without sacri-12 ficing the hydrogen consumption. Moreover, variations on the 13 prognostics occurrence frequency and the calculation of proba-14 bility have also been examined and results showed that proper 15 parameters of the strategy could help to improve the EMS per-16 formance. For the perspectives, further researches on hybrid 17 system dynamic degradation monitoring and experimental val-18 idation are expected in the future.
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  ), the distribution of the predicted RULs is represented by 42 the distribution of the particles when reaching failure threshold, 43 as shown in Figure2.In fact, implementing online prognostics needs to contend 46 with multiple sources of uncertainties. Generally, it is impos-47 sible to eliminate all the uncertainties no matter what kind of 48 prognostics method is used. The sources of prognostics uncer-49 tainties are discussed in details: It is due to the lack of an accurate 51
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					Figure 2: Predicted RUL distribution
	2.3. Prognostics uncertainties				45

50

• Model uncertainties:

Table 1 :

 1 Probability calculation under different widths of bins (WOB)

	WOB = 0.5 • RUL max			P1 0.9879					P2 0.0121		
	WOB = 0.4 • RUL max			P1 0.3208			P2 0.6727		P3 0.0065
	WOB = 0.3 • RUL max		P1 0			P2 0.9407			P3 0.0558		P4 0.0035
	WOB = 0.2 • RUL max		P1 0.3208	P2 0.6199	P3 0.0528	P4 0.0050	P5 0.0015
	WOB = 0.1 • RUL max	P1 0	P2 0.3208	P3 0.4158	P4 0.2041	P5 0.0473	P6 0.0055	P7 0.0030	P8 0.0020	P9 0.0010	P10 0.0005

  44 rence, more scenarios with prognostics happening at different 45 frequencies are designed, while the WOB remains at the same.46 The prognostics process is triggered by monitoring the fuel cell 47 degradation with the degradation interval ∆D f c-degrade equal 48

				51		
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				Figure 11: Evolution of the measured fuel cell stack voltage
				1		
			0.8		
		Battery SOC(V)	0.4 0.6		
			0.2			EMS without prognostics
							prognostics-based EMS
				0		
				0	200	400	600	800	1000
						Time(hour)
				Figure 12: Evolution of the measured battery SOC
	1	to 1%, 2%, 3%, 4% and 5%, while the WOB remaining as
		0.3 • RUL max .		
	8					
	9	it doesn't mean that frequent prognostics can lead to better
	10	performance of the fuel cell durability. Frequent prognostics
	11	(∆D f c = 1%, 2%) have even worse performance than less fre-
	12	quent prognostics (∆D f c = 3%, 4%, 5%). This is because when
	13	the prognostics horizon is large, the prognostics accuracy can-
	14	not be guaranteed due to the lack of learning data. When the
		uncertainty accumulates, the probability calculation will also
	16	be influenced so that one cannot reach the optimal parameters
	17	of the online used FLC. However, when the frequency becomes
	18	lower, i.e., fewer prognostics are implemented, the performance
	19	becomes worse, as well. This is due to the reason that the degra-	4.2. Discussion on prognostics occurrence frequency
		dation of the fuel cell hasn't been fully considered in the strat-

43

To further investigate the influence of prognostics occur-

2

The comparison of life improvement is listed in Table

2

. 3 Compared to the EMS without prognostics, the proposed 4 prognostics-based health management strategy improves the 5 lifetime of the fuel cell with a minimum value of 42.6% and 6 the strategy with ∆D f c = 3% has reached the longest lifetime, 7 84.6% longer than the EMS without prognostics. Obviously, 20 egy. If we compare the hourly hydrogen consumption, the result 21 does not vary a lot as our objective function is defined to find a 22 trade-off between degradation mitigation and saving consump-23 tion. The EMS without prognostics consumes less because the 24 SOC of the battery drops to a lower value.

Table 2 :

 2 Lifetime improvement comparison with different prognostics occurrence frequency

	Prognostics	frequency	Lifetime im-	m H 2 (g/hour)
	(WOB= 0.3 • RUL max )	provement	
	EMS without prognostics	-	41.2
	∆Dfc=1%		25.5%	42.0
	∆Dfc=2%		58.2%	41.9
	∆Dfc=3%		84.6%	41.9
	∆Dfc=4%		80.0%	41.9
	∆Dfc=5%		54.7%	41.7
	4.3. Discussion on WOB of probability calculation

Table 3 :

 3 Lifetime improvement comparison with different WOBs

	WOB (∆Dfc=3%)	Lifetime im-	m H 2 (g/hour)
		provement	
	EMS without prognostics	-	41.2
	WOB = 0.1 • RUL max	61.7%	41.8
	WOB = 0.2 • RUL max	60.8%	41.8
	WOB = 0.3 • RUL max	87.3%	41.9
	WOB = 0.4 • RUL max	95.4%	41.9
	WOB = 0.5 • RUL max	19.5%	41.6