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• Quantum analogue of the discrete Fourier transform

• Complexity: O(n 2 ) (against O(n2 n ))
Mermin's polynomials 

M 1 = a 1 ∀n ≥ 2, M n = 1 2 M n-1 ⊗ (a n + a n ) + 1 2 M n-1 ⊗ (a n -a n ) (a i )

QFT evaluation

q : |ϕ → max M n ϕ|M n |ϕ is a measure of entanglement.

Evaluation method: for each state |ϕ k , find M n such that ϕ k | M n |ϕ k is maximal. The corresponding experimental approximation q of q allows us to distinguish between three types of QFT runs in our experiments with n = 4: 0 2 4 6 8 10 12 0.8 1 1.2 1.4 1.6 1.8 2 1 k q(k) Entangled states and variable measure (here for (l, r) = (9, 1)).

Entangled states and constant measure (here for (l, r) = (2, 2)).
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Separable states (here for (l, r) = (8, 5)).

One can also check some key points such as the fact that entanglement evaluation doesn't change during LOCC operations (H gates in this case).

Generally performed on periodic states defined by: ϕ l,r = 1

√ A A-1 i=0 |l + ir
Example: With (a 1 , a 2 , a 1 , a 2 ) = (Z, X, (Z + X)/ √ 2, (Z -X)/ √ 2), M 2 corresponds to the operator used for Bell inequalities.

  and (a i ) are one-qubit observables with eigenvalues in {-1, 1} ϕ|M n |ϕ > 1 implies that |ϕ is non-local. Grover's algorithm evaluation Proposition ([JH19]): • The states in Grover's algorithm are |ϕ k = α k |x 0 + β k |+ ⊗n , with (α 0 , β 0 ) = (0, 1) and (α k opt , β k opt ) ≈ (1, 0). • For k close to k opt /2, |ϕ k comes close to a state |ϕ ent = (|x 0 + |+ ⊗n )/K maximizing ϕ|M n |ϕ .Evaluation method: find M n such that ϕ ent |M n |ϕ ent is maximal.Computing ϕ k |M n |ϕ k for every k with this M n positively answers the following question: "Is Grover's algorithm using entanglement to achieve quantum speedup?
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