
HAL Id: hal-03221785
https://hal.science/hal-03221785

Submitted on 9 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Score Objects in OM#
Jean Bresson

To cite this version:
Jean Bresson. Score Objects in OM#. International Conference on Technologies for Music Notation
and Representation (TENOR’20/21), 2021, Hamburg / Online, Germany. �hal-03221785�

https://hal.science/hal-03221785
https://hal.archives-ouvertes.fr


SCORE OBJECTS IN OM#

Jean Bresson
Ableton, Berlin

STMS lab: Ircam, CNRS, Sorbonne Université, Paris1

jean.bresson@ircam.fr

ABSTRACT

This paper is an overview of the new score objects and
editors available in the OM# visual programming and
computer-assisted composition environment.

1. INTRODUCTION

OM# [1] 2 is a visual programming and computer-assisted
music composition environment derived from OpenMu-
sic [2]. As a computer-assisted composition environment,
its main purpose is to provide composers with program-
ming tools allowing them to implement models for the gen-
eration, transformation, representation or synthesis of mu-
sical material. The visual language is a comprehensive and
general-purpose graphical interface on Common Lisp, us-
ing the “patching” metaphor to assemble function calls and
data structures in functional graphs.

The possibility to manipulate and visualize musical data
structures within visual programs, using music notation in
particular, is a key element to make such environment an
effective compositional framework. Musical data contain-
ers and editors can be used as input, output, and for the
storage, display and manipulation of intermediate mate-
rial and results in compositional processes. They enable a
specific workflow that contributes to set computer-assisted
composition (CAC) beyond so-called “algorithmic compo-
sition” systems [3].

OM# was inially developed in the context of research
projects aiming at extending the possibilities of OpenMu-
sic in the domains of interaction, time structures and sound
spatialization [4, 5, 6]. The early prototypes of the visual
language – as presented for instance in [1] – did not yet
include any support for scores and “traditional” music no-
tation. We are now a few years later, and a fairly complete
score object framework is available (see Figure 1). 3 This
paper gives an overview of this framework.

1 This work was partially carried out while the author was at Ircam
STMS laboratory.

2 https://cac-t-u-s.github.io/om-sharp/
3 The project was also renamed OM# in the meantime since these early

prototypes.

Copyright: c©2021 Jean Bresson. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Figure 1. Score objects in an OM# visual program.

2. SCORE OBJECTS – BASICS

The updated score object framework in OM# inherits the
core functionality from OpenMusic/Patchwork [7], and is
structured hierarchically as follows:

A NOTE is defined by a pitch, a velocity and a duration,
as well as complementary information about MIDI channel
and port numbers.

A CHORD is a set of one or several NOTEs.
CHORD-SEQs and VOICEs are sequences of CHORDs,

where time-positions are represented respectively as abso-
lute onsets or as rhythmic proportions (see Section 3).

MULTI-SEQ and POLY are polyphonic objects which con-
tain superimposed CHORD-SEQs or VOICEs, respectively.

Figure 2 shows an overview of these different objects. 4

4 From the user interface point of view, CHORD, CHORD-SEQ and
VOICE objects’ read/write accessors gather pitches, velocities, durations,
etc. as separate lists of values, offering an orthogonal approach to this
underlying hierarchical structure.

mailto:jean.bresson@ircam.fr
https://cac-t-u-s.github.io/om-sharp/
http://creativecommons.org/licenses/by/3.0/


Figure 2. OM# main score objects.

3. RHYTHMIC STRUCTURES AND NOTATION

Each score object has an explicit or implicit onset, deter-
mining its time positioning relative to its container object.
CHORDs are the actual basic element (also called “timed-
item”) in OM#’s time representation framework [8].

In order to give account for rhythmic notation, the VOICE
object represents time structures using an additional layer
of MEASUREs and GROUPs, overlaid on top of the sequence
of chords (a GROUP contains nested sub-GROUPs, CHORDs,
or RESTs).

The temporal/horizontal spacing algorithm handles graph-
ical alignment between simultaneous events and symbols
in polyphonic scores, taking into account the constraints of
rhythmic structures (where horizontal space is not neces-
sarily proportional to durations), beaming, artificial spac-
ing introduced by bars, keys, alterations and other sym-
bols. It offers a few different scaling options, and an alter-
native “proportional” representation of rhythmic structures
(i.e. spacing proportionally to the actual duration of musi-
cal events) (see Figure 3).

From the user perspective, the rhythmic structure is ex-
pressed using a Rhythmic Tree (RT): a recursively nested
(duration (subdivisions)) pair (where each element in sub-
divisions is another RT) representing relative durations and
grouping in a compact textual format [9]. Rests are en-
coded by negative durations, and tied notes by float values.
The RT is then internally converted to onsets of the chord
sequence (considering a given tempo), and determines the
rhythmic layer of measures and nested GROUPs, displayed
with adequate beaming, tuplets, note heads and dots de-
pending on the given metrics.

Figure 3. Options for time-spacing of a VOICE: rhythmic
(top) vs. proportional (bottom).

OM# supports grace notes: a subdivision of 0 in a rhyth-
mic tree group is interpreted as a note shifted by a small
offset before or after the closest non-null subdivision in
that group (depending on the relative position in the list,
and on possible other grace notes aligned in a sequence
before or after the “main” note of the group) – see Fig-
ure 4. Grace notes are displayed and editable in CHORD,
VOICE and POLY editors.

Figure 4. Grace notes: Distribute chord pitches before
and after the beat. The group of subdivisions (0 0 1 0) in
the rhythm tree indicates that the first two notes are offset
before, and the last one after the beat position of the chord.

4. DISPLAY AND EDITING

OM# score rendering follows the SMuFL (Standard Mu-
sic Font Layout) specification 5 6 [10], and so theoreti-
cally can adapt to any SMuFL-compliant musical font. 7

5 https://www.smufl.org/
6 https://w3c.github.io/smufl/gitbook/
7 OM# currently uses the Bravura font.

https://www.smufl.org/
https://w3c.github.io/smufl/gitbook/


Smooth and continuous zooming in/out gesture and render-
ing is allowed by a precise positioning of musical glyphs
on the staves following this layout specification.

Various options for displaying musical parameters like
duration, velocity, MIDI channel and port using musical
symbols, numeric values, note heads, color and opacity al-
low complementing the basic score information (see Fig-
ure 5). Picking and editing these parameters is enabled at
the level of the NOTE, CHORD, and VOICEs.

Figure 5. Coloured and extended score display including
velocities and MIDI ports/channels.

5. EXTRAS

EXTRA objects are also inherited from the OpenMusic score
framework: they represent additional elements that can be
added to the score, although not used for actual (MIDI)
rendering. The EXTRA objects currently available include
texts, symbols (glyphs from the musical font), altered note
heads (e.g. square heads, etc. – also with any glyph from
the font), velocity symbols (marking the velocity for some
specific chords or notes in the score), as well as labelled
markers for score segmentation and annotation (see Sec-
tion 6). They can be attached to any element of the score
objects’ internal hierarchy (NOTEs, CHORDs, GROUPs, etc.)

In OM#, EXTRA objects can be set and manipulated as
lists (or lists of lists, etc.) directly through optional inputs
of the score object boxes (see Figure 6).

6. GROUPING AND SEGMENTATION

The time markers in score editors can be used for extract-
ing, processing, reordering or applying arbitrary functions
to delimited score segments, implementing a simple and
versatile version of the “segmentation framework” intro-
duced in [11]. Figure 7 illustrates an application of the
map-segments function used along with omquantify to
perform the piecewise rhythmic quantification 8 of a seg-
mented CHORD-SEQ object.

8 Conversion to VOICE by a translation of sequences of durations into
Rhytmic Trees.

Figure 6. EXTRAs: setting additional score components.
The first chord has an attached text and special note-heads,
the second chord has another attached symbol, and the
third chord has a labelled marker.

Figure 7. Segmentation and piecewise rhythmic quantifi-
cation using score markers and map-segments. Markers
can be added algorithmoically as “score extras” or manu-
ally in the editor. Score segments delimited with markers
are quantified one by one, and the results concatenated in
map-segments.

The score editor features additional utilities for grouping
score elements: selected groups identified by unique IDs
can be displayed or processed either internally (in the edi-



tor) or externally (in visual programs). They can also con-
stitute the basis for score analysis models: a basic pitch-
class set analysis comes inbuilt in the chord-seq editor as
a simple example, using the N-CERCLE object representa-
tion [12] for selected pitch sets (see Figure 8). 9

Figure 8. Grouping and analysis inside the CHORD-SEQ
editor: pitch-class set analysis.

7. PROGRAMMABLE EDITOR PARAMETERS

OM# score object boxes include optional inputs (and out-
puts) making it possible to set (and respectively, to read)
attributes which do not belong to the contained / generated
score object, but to the box and editor, and determine how
the score will be rendered in it. Such attributes include
the staves (G, F, GF, etc.), the scale (diatonic, 1/4th tones,
etc.), or the musical font size.

Figure 9 shows these parameters manipulated in an OM#
visual program.

Figure 9. Setting score display parameters in OM# visual
programs: staff configuration and (quarter-tone) scale.

8. SCORES AS REACTIVE INTERFACES

OM# features an embedded “reactive” extension, enabling
programs to run and update the score and other data con-
tainers and editors as a response to user interaction and
external incoming events [13].

Score objects in this context, in addition to dynamically
displaying updated states and result of visual programs,

9 Grouping and segmentation features presented in this section are
available since OM# v1.3.

can act as interactive controllers, propagating user inputs
in downstream data processing.

The NOTE object box is implemented as a slider UI box
(also called Interface Box) so that clicking and dragging on
it dynamically updates the pitch of the stored NOTE value
(according to the mouse position on the staves), as well as
any downstream-connected parts of the visual programs, if
adequate box connections are set reactive (see Figure 10).

Figure 10. Using the NOTE box as input controller (slider)
to interactively parametrize and fine-tune a visual program
(here, a sine-wave generation algorithm). Reactive in-
lets/outlets and patch-cords are highlighted in red.

The interaction with score objects enabled with this reac-
tive model is close to the one experienced by users in Max
[14] (in particluar using the bach framework [15]), with the
main differences that: (1) Reactive data-flow is simulated –
while evens and notifications are “pushed” in the data-flow
graph, the execution implements a pull-based model; and
(2) Graphs are only locally reactive (where connections be-
tween boxes are explicitly set so), which allows the user
to control the computation load and frequency in response
to changes, and to mix reactive data flow with pull-based
evaluation of the visual programs.

9. CONCLUSION

The score representation and editing features presented in
this paper contribute to make of OM# an operational and
effective framework for computer-assisted music compo-
sition today.

The more tangible improvements of this framework are
at the level of display and interaction with score elements,
facilitated by a renewed rendering framework. The inclu-
sion of editor parameters in visual programming is also a
new concept permitted in OM#, and the representation of
grace notes is another notable increment.

However, some of these features are still incomplete and
constitute the object of future work: at the time of this writ-
ing, rhythmic structure editing is still limited (as compared
to OpenMusic, for instance), as well as support for tempo
changes and variations or micro-tonality beyond 1/4 and
1/8th tones.



10. REFERENCES

[1] J. Bresson, D. Bouche, T. Carpentier, D. Schwarz, and
J. Garcia, “Next-generation Computer-aided Compo-
sition Environment: A New Implementation of Open-
Music,” in Proceedings of the International Computer
Music Conference (ICMC), Shanghai, China, 2017.

[2] J. Bresson, C. Agon, and G. Assayag, “OpenMusic. Vi-
sual Programming Environment for Music Composi-
tion, Analysis and Research,” in ACM MultiMedia’11
(OpenSource Software Competition), Scottsdale, USA,
2011.

[3] G. Assayag, “Computer Assisted Composition Today,”
in 1st Symposium on Music and Computers, Corfu,
Greece, 1998.

[4] D. Bouche, J. Nika, A. Chechile, and J. Bresson,
“Computer-aided Composition of Musical Processes,”
Journal of New Music Research, vol. 46, no. 1, 2017.

[5] J. Bresson, J. MacCallum, and A. Freed, “o.OM:
Structured-Functional Communication between Com-
puter Music Systems using OSC and Odot,” in FARM:
Workshop on Functional Art, Music, Modeling & De-
sign – Proceedings of the ACM SIGPLAN International
Conference on Functional Programming (ICFP), Nara,
Japan, 2016.

[6] J. Garcia, T. Carpentier, and J. Bresson, “Interactive-
Compositional Authoring of Sound Spatialization,”
Journal of New Music Research, vol. 46, no. 1, 2017.

[7] G. Assayag, C. Rueda, M. Laurson, C. Agon, and
O. Delerue, “Computer Assisted Composition at IR-
CAM: From PatchWork to OpenMusic,” Computer
Music Journal, vol. 23, no. 3, 1999.

[8] J. Garcia, D. Bouche, and J. Bresson, “Timed Se-
quences: A Framework for Computer-Aided Compo-
sition with Temporal Structures,” in Proceedings of
the International Conference on Technologies for Mu-
sic Notation and Representation (TENOR), A Coruña,
Spain, 2017.

[9] C. Agon, K. Haddad, and G. Assayag, “Representa-
tion and Rendering of Rhythmic Structures,” in Second
International Conference on Web Delivering of Music,
Darmstadt, Germany, 2002.

[10] D. Spreadbury and R. Piéchaud, “Standard Music Font
Layout (SMuFL),” in Proceedings of the International
Conference on Technologies for Music Notation and
Representation (TENOR), Paris, France, 2015.

[11] J. Bresson and C. Pérez-Sancho, “New Framework for
Score Segmentation and Analysis in OpenMusic,” in
Proceedings of the Sound and Music Computing con-
ference (SMC), Copenhagen, Denmark, 2012.

[12] M. Andreatta and C. Agon, “Implementing Algebraic
Methods in OpenMusic,” in Proceedings of the Inter-
national Computer Music Conference (ICMC), Singa-
pore, 2003.

[13] J. Bresson and J.-L. Giavitto, “A Reactive Extension of
the OpenMusic Visual Programming Language,” Jour-
nal of Visual Languages and Computing, vol. 25, no. 4,
2014.

[14] M. Puckette, “Combining Event and Signal Processing
in the MAX Graphical Programming Environment,”
Computer Music Journal, vol. 15, no. 3, 1991.

[15] A. Agostini and D. Ghisi, “A Max Library for Musical
Notation and Computer-Aided Composition,” Com-
puter Music Journal, vol. 39, no. 2, 2015.


	 1. Introduction
	 2. Score objects – Basics
	 3. Rhythmic structures and notation
	 4. Display and editing
	 5. Extras
	 6. Grouping and Segmentation
	 7. Programmable editor parameters
	 8. Scores as reactive interfaces
	 9. Conclusion
	 10. References

