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Learnable Empirical Mode Decomposition based on Mathematical Morphology *

Santiago Velasco-Forerof, R. Pagest, and Jesus Angulo §

Abstract. Empirical mode decomposition (EMD) is a fully data driven method for multiscale decomposing
signals into a set of components known as intrinsic mode functions. EMD is based on lower and
upper envelopes of the signal in an iterated decomposition scheme. In this paper, we put forward a
simple yet effective method to learn EMD from data by means of morphological operators. We pro-
pose an end-to-end framework by incorporating morphological EMD operators into deeply learned
representations, trained using standard backpropagation principle and gradient descent-based opti-
mization algorithms. Three generalizations of morphological EMD are proposed: a) by varying the
family of structuring functions, b) by varying the pair of morphological operators used to calculate
the envelopes, and c) by considering a convex sum of envelopes instead of the mean point used
in classical EMD. We discuss in particular the invariances that are induced by the morphological
EMD representation. Experimental results on supervised classification of hyperspectral images by
1D convolutional networks demonstrate the interest of our method.

Key words. Deep Learning, Mathematical morphology, Hyperspectral image processing

AMS subject classifications. 68U10, 94A12, 68T07

1. Introduction. Deep convolutional neural networks (DCNN) provide state-of-the-art
results in many tasks for signal and image classification [4]. The DCNN architectures com-
bine low complexity signal/image operators, like convolution with small kernels or pooling
estimation, with the ability to optimize the corresponding weights of the operators in evolved
and hierarchical networks. Traditional models for signal/image representation and associated
feature extraction are generally not compatible with the DCNN paradigm. The main limita-
tion is the incompatibility of the backpropagation principle used to train the parameters of
the neural networks by gradient descent algorithms. In the case of traditional signal/image
processing, the interpretability of the operators and features is often straightforward. We
focus here in particular in the Empirical Mode Decomposition (EMD) [24], which is a simple
and powerful technique used to represent the features of a signal (without any assumption on
its frequency content) from a geometric viewpoint, basically using lower and upper envelopes
of the signal in an iterated decomposition. The two main ingredients of EMD: detection of
local extrema and the interpolation between them, are not naturally formulated in the neural
network paradigm. Inspired by the work of Diop and co-workers [12, 11, 13], we revisit EMD
using morphological operators to deal with lower/upper envelopes. Additionally, we propose
three generalizations: a) by varying the family of structuring functions, b) by varying the pair
of morphological operators used to calculate the envelopes, and c) by considering a convex
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2 S. VELASCO-FORERO, R. PAGES AND J. ANGULO

sum of envelopes instead of the mean point used in classical EMD. All the parameters of our
proposition can be learnt using backpropagation and gradient descent techniques and therefore
the associated morphological EMD can be integrated into standard DCNN representations for
end-to-end learning. The integration of morphological operators into DCNN pipelines is an
active research area. First attempts were based on approximation of dilation and erosion using
standard convolution [33]. More recently, straightforward approaches of dilation and erosion
optimization have been explored [14, 34, 38]. However, plugging morphological operators into
standard networks is far from being trivial from the optimization based on backpropagation
of gradients through all layers by the chain rule. Max-plus operators are indeed differentiable
only on a local and specific domain. Here we focus on standard gradient descent strategies
and we provide a better understanding of how the gradient of morphological operators, in
particular those associated to parametric structuring functions, is defined. Additionally, we
show that our morphological EMD induces the invariance to additive shift in standard DCNN.
To the best of our knowledge, these technical aspects have not been previously discussed in
the field of morphological deep neural networks.

1.1. Related work. In what follows we review the state-of-the-art that is most relevant
for the proposed morphological EMD.

1.1.1. Empirical Mode Decomposition. EMD is an algorithm introduced by Huang et al.
[24] for analysing linear and non-stationary time series. It is a way to decompose a signal in or-
der to obtain instantaneous frequency data. In this original version of the EMD is an iterative
process which decomposes real signals f into simpler signals (modes), f(z) = Zf‘i 1 Pj(z),
where each mono-component signal ® should be written in the form ®(x) = r(x)cos(fz),
where the amplitude and phase are both physically and mathematically meaningful [49]. Un-
like some other common transforms like the Fourier transform for example, the EMD was
built as an algorithm and lacks theoretical background then. The problem of EMD to rep-
resent a signal as a sum of amplitude modulation (AM) and frequency modulation (FM)
components at multiple scales was first proposed in [32] where the problem of finding the
AM-FM components and their envelopes was solved using multiscale Gabor filters and non-
linear Teager-Kaiser Energy Operators via an Energy Separation Algorithm (ESA). In the
original EMD, there is no parametric family of filters used to estimate the envelopes.

From an algorithmic point of view, the EMD is obtained following the iterative process
[24]:

1. Find all the local extrema of the function f.

2. Interpolate all the local maxima together to get the function f (upper envelope), and

all the local minima together to get the function f (lower envelope)
3. Calculate the local mean as the average of the both interpolations; the obtained func-
tion is called Intrinsic Mode Function:

IMF() = 5 (F() + (=)

4. Tterate this process (that is called the sifting process) on the residual, i.e.,
r(z) = f(z) — IMF(x)

until a selected tolerance criterion is respected.

This manuscript is for review purposes only.
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LEARNABLE EMPIRICAL MODE DECOMPOSITION BASED ON MATHEMATICAL MORPHOLOGY 3

Thus, the original signal is decomposed as:
(1.1) f@) = IMFy(z) + r(x)
k=1

where I M Fj, is the k-th intrinsic mode function and r is the last residual. The EMD can be
efficiently applied to 1D-signals. However the selection of interpolation method for the second
step gives a wide variety of possibilities, from the original formulation using cubic splines [24],
passing by sparse filtering [23], filtering from wavelet based decomposition [15] and partial
differential equation based formulations [10].

The EMD method can be justified only under certain very restrictive assumptions that
are seldom satisfied by practical data. The EMD method is also known to be very sensitive
to noisy data. Recently, a compendium of practical advice for EMD in real life examples
has been presented in [51]. Some works extend EMD to 2D [12, 50, 11] and 3D images [19].
However, the main limitations of EMD for both 2D and 3D are both the choice of maxima
and minima detector, and the choice of the interpolation algorithm.

An alternative characterisation of the EMD computation was introduced by Diop et al. in
[12, 13] according to the definition of local mean, i.e., the sifting process is fully determined
by the sequence (hy,)nen defined by :

{ hnt1 = hyp — @(hy) = (Id — @) hy,
ho = f
where ®(h,,) = Lofhn and hy (vesp. hy) denotes a continuous interpolation of the maxima
(resp. minima) of h,,.

In the following subsection, we formulated an EMD by means of dilation and erosion
operators.

(1.2)

1.1.2. Dilation/Erosion. We study here functions f : E — R, where R it allowed to be
extended-real-valued, i.e., to take values in R = [—00,0]. Accordingly, the set of all such
functions is denoted by F(E,R). We will use the two basic morphological operators dilation

and erosion, which correspond respectively to the convolution in the (max, +) algebra and its
dual.

Definition 1.1. In mathematical morphology [48], the dilation (sup-convolution) dsg(f) of
f is given by:

(1.3) 6se(f)(z) == sup {f(y) + SE(x —y)} = sup {f(z —w) + SE(w)}

where SE € F(E,R) is the (additive) structuring function which determines the effect of the
operator. Here the inf-addition rule oo — 0o = 00 is to be used in case of conflicting infinities.
sup f and inf f refer to the supremum (least upper bound) and infimum (greatest lower bound)
of f. In the discrete case where the function is a finite set of points, max and min are used.

The erosion [48] esg(f), known as inf-convolution in convex analysis [36], is the adjoint
operator to the dilation (1.3), and it is defined as

(14)  esu(f)(z) = —dgp(=f)(z) = Jnf. {f(y) = SE(y —2)} = inf {f(w - 2) - SE(w)}

This manuscript is for review purposes only.
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Observed signal EMD MEMD

[ 10 15 20 25 20 [} 50 100 150 200 20 00 [} 50 100 150 200 20 200

Observed signal EMD

00

0s 10 15 Zo 25 30 0 50 100 150 200 0 300 ] 0 100 150 200 20 300

Figure 1. First Row: Noise-free ezample a) f(x) = 2z+1+cos(20z)+cos(60z), b) Classical EMD ¢) MEMD
with flat structuring functions. Second Row: Noisy example a) f(z) = 2z + 1+ cos(20x) + cos(60x) + N (0, %),
b) Classical EMD ¢) MEMD with flat structuring functions.

108 where the transposed structuring function is SE(z) = SE(—z).

Remark 1.2. Vf, g € F(E,R)
1.
2.

109
110
111
112
113
114
115
116
117
118
119
120
121

122
123

The operators (1.3) and (1.4) are translation invariant.

(1.3) and (1.4) correspond to one another through the duality relation dsg(f)(z) <
g(x) <= f(z) <esg(g)(z), called adjunction [16].

An operator € is called increasing if f(z) > g(x) = &£(f)(x) > &(g)(x) Va. The dilation
(1.3) and erosion (1.4) are increasing for all SE.

. An operator ¢ is called extensive (resp. antiextensive) if £(f)(x) > f(x) (resp.

E(f)(x) < f(x)), V. The dilation (1.3) (resp. erosion (1.4)) is extensive (resp. antiex-
tensive) if and only if SE(0) > 0, i.e., the structuring function evaluated at the origin
is non-negative.

- ese(f)(z) < f(z) < ds(f)(z) if and only if SE(0) > 0.
. 0sp (resp. esg) does not introduce any local maxima (resp. local minima) if SE < 0

and SE(0) = 0. In this case, we say that SE is centered.

Proof. (1) and (2) are classical results from [48]. As explained in [21] and [31], the adjunc-
tion is related to a well-known concept in group and lattice theory, the Galois connection. (3)
124 and (6) are easy to prove directly from the definition of the operators. It has been also proved
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LEARNABLE EMPIRICAL MODE DECOMPOSITION BASED ON MATHEMATICAL MORPHOLOGY 5

in the original paper of inf-convolution (Proposition 6.d) in [36]. (4) Vf,dse(x) > f(x) =
Vf,sup (f(z —w) + SE(w) — f(x))(x) > 0 = SE(0) > 0. Now, sup f(z — w) + SE(w) >
f(z)+SE(0), if SE(0) > 0 = sup f(x —w)+SE(w) > f(z). From (3) and (4) is easy to prove
(5). [ |
The most commonly studied framework for dilation/erosion of functions is based on flat struc-

turing functions, where structuring elements are viewed as shapes. More precisely, given the
structuring element B C F, its associated structuring function is

0 ifye B
—oo if y € B¢

(15) 5 = {

Hence, the flat dilation dp(f) and flat erosion ep(f) can be computed respectively by the
moving local maxima and minima filters. The shape of B is often a disk of radius A, denoted
by B..

0 if JJw| <A
—oo if |Jw] > A

(16) Baw) = {

A Morphological Empirical Mode Decomposition (MEMD) where the pair (h, k) correspond
to (eB,,dB,) has been proposed in [13].

Definition 1.3. The Flat Morphological Empirical Mode [13] is defined as

(f) (@) + e, (f)(=)
2

(L.7) Do (f) () = OB

The operator (1.7) was proposed to generate an EMD based on solving a morphological PDE
[13]. As a manner of example, EMD and MEMD are shown for a mono-component signal in
the first row of Figure 1. In the second row of Figure 1, we illustrated how the addition of
noisy perturbed more the results of classical EMD than the proposed morphological one.

Remark 1.4. Note that using (1.7) twice, the first residual (1.2) is 2(f — ®A(f)) = (f —
O, () + (f —eB,(f)) = 2f — 0B, (f) — e, (f). This expression, up to a minus sign, cor-
responds just to the so-called morphological Laplace operator [5/], and therefore provides an
interpretation of the EMD as an iterated second-order derivative decomposition of the function

f.

1.2. Our proposal. The main motivation of this paper is to define EMD learnable in the
sense of neural networks approaches. Note that last property in Remark 1.2 together with
the extensivity/antiextensivity (i.e., upper/lower envelopes) imply that the pair of operators
(esg, 0sg) are candidate functions for (h,h) in (1.2). Accordingly, we proposed a simple
generalization by considering non-flat structuring functions.

Definition 1.5. The Morphological Empirical Mode (MEM) is defined as

_ 55E(f)($) + 5SE(f)(:U)
2

(1.8) . 5.58(f)

This operator can be formulated in any dimension (from 1D to nD signals) and avoid using
an interpolation method which is the bottleneck of the original definition of EMD.

This manuscript is for review purposes only.
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6 S. VELASCO-FORERO, R. PAGES AND J. ANGULO

1.3. Contributions of the paper. In what follows we study,

e A formulation of EMD based on pairs of morphological operators in a general case.

e The proposition of a parametric morphological empirical mode whose sifting process
is invariant to additive intensity shifts.

e A approach to learn the structuring functions of a morphological operator in a deep
learning framework.

e A convex sum of envelopes instead of mean points to learn morphological EMD.

e A number of numerical experiments for hyperspectral signal classification to illustrate
the relevance of our proposal.

1.4. Organization of the paper. The rest of the paper is organised as follows. In sec-
tion 2, we review the general definition of Empirical Mode Decomposition approach to decom-
pose signals and we introduce how morphological extensive/antiextensive filters are naturally
adapted to implement a MEMD computation. We consider different possibilities in the choice
of structuring functions and the pair of lower and upper envelopes. Additionally, an a-MEM
is proposed as a generalization of the mean of envelopes. Section 3 is devoted to the imple-
mentation of morphological EMD operators as layers in a neural network pipeline. Section 4
presents the experimental results of hyperspectral image classification using DCNNs which
integrate morphological EMD layers. Conclusions and perspectives are discussed in section 5.

2. Morphological Empirical Mode and its variants. In this section, three kinds of gen-
eralization will be explored: a) different types of structuring functions, b) different pairs of
functions to compute the lower and upper envelopes, and c) a convex sum of lower and upper
envelopes.

2.1. Varying the structuring function. In this subsection, firstly we will study a paramet-
ric family of symmetric quadratic shape structuring functions. Secondly, similarly to classical
CNNs, the structuring function plays a similar role to the kernel in standard convolution.
Accordingly a structuring function without any parametric constraint is also considered.

2.1.1. Quadratic MEM. From the theory of morphological scale-spaces, the most useful
nonflat structuring functions are those which depend on a scale parameter [22, 47]. The only
separable and rotationally invariant structuring functions is the called quadratic structuring
function[52]:

=l

1) n) =~

such that the corresponding dilation and erosion are equal to the Lax—Oleinik operators or
viscosity solutions of the standard Hamilton—Jacobi PDE, also known as morphological PDE:
ug(t, ) F|lue(t, 2)||> = 0, (t,2) € (0,4+00) x E; u(0,7) = f(z), » € E. It plays also a canonical
role in the definition of dilation and erosion on Riemannian manifolds [2] and their behaviour
with respect to the maxima/minima is well understood [26]. The morphological PDE was
proposed and analyzed using 2D boundary propagation in [53] and further analyzed using the
morphological slope transform in [20].

This manuscript is for review purposes only.
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Figure 2. The blue points corresponds to the observed signal, a) Flat dilation/erosion based Morphological
Empirical Mode (1.7) with a disk of A =5, b) Quadratic dilation/erosion based Morphological Empirical Mode
(2.3) with A = 3.

Remark 2.1. The erosion by a quadratic structuring function with parameter A is defined
by
(2.2)
o _ _ [
“on (@) 1= I () = = 2)) = inf (£ =)~ an(:)) = inf { e =)+ 151},

yeE

The erosion of a function f by a quadratic structuring function with parameter A is
known as the Moreau envelope or Moreau-Yosida approximation [36, 44, 41], which offers
many benefits specially for optimization purposes [35]. Additionally, (2.2) induces an additive

scale-space [20, 25], i.e., g4, (gqy,(f)) = €qy, 1n, (f)-
Definition 2.2. The quadratic morphological empirical mode (QMEM) is defined as a MEM
where the pair (h,h) corresponds to erosion/dilation with a quadratic structuring functions,

(2.3) (I)s,ﬁ,qk(f) _ % (f) ;— 511>\(f).

An example of (2.3) for a 1D signal with noise is shown in Figure 2.

2.1.2. Nonflat Morphological MEM. The most general case of nonflat structuring func-
tion involves different additive weights W, () at each position z of the local neighborhood B
centered at pixel y, i.e., a nonflat structuring function SEyy of support shape B at y is defined
as

(24) SEw, (z) = { Wy(x) if 2 € B(y)

—00 otherwise

The case (2.4) includes flat, nonflat, either local or nonlocal structuring functions [55]. In the
translation invariant case, the weighting function Wy (z) is equal for all y € E.

2.2. Varying the Envelope. We have explored above several possible structuring functions
that produce multiple pairs of (esg, dsg) as basic ingredient for the Morphological Empirical
Mode (1.8). At this point, we can consider the use of the composition of erosion and dilation
to obtain other upper/lower envelopes, typically of the form (dsg o esg, €sg © dsg) -

This manuscript is for review purposes only.
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2.2.1. Opening/Closing MEM. The theory of morphological filtering is based on the
opening ysg(f)(x) and closing pse(f)(z) operators, obtained respectively by the composi-
tion product of erosion-dilation and dilation-erosion, i.e., ysg(f)(x) = dsE (ese(f)) () and
ose(f)(x) = esg (0se(f)) (). Opening (resp. closing) is increasing, idempotent and anti-
extensive (resp. extensive), independently of the properties of the structuring function. The
opening can be seen as the supremum of the invariants parts of f under-swept by SE and it
can be again rewritten as a maximal lower envelope of structuring functions (resp. minimal
upper envelope of negative symmetric structuring functions). We highlight that the quadratic
envelope also called as proximal hull [7] is an opening with a quadratic structuring function,
i.e., a quadratic erosion followed by a quadratic dilation.

Definition 2.3. The opening/closing morphological empirical mode (OCMEM) is defined as
a MEM where the pair (h,h) corresponds to (Ysg, psg), i-e.,

(25) @, sp(f) = PN seld),

For the case of flat disks B), the operator (2.5) was called a morphological locally monotonic
(LOMO) filter in [5]. A signal is monotonic over an interval if it is either non-increasing or
non-decreasing over that interval. A 1-D signal is locally monotonic of degree n (LOMO-n)
if and only if the signal is monotonic within every interval of length n. In the general case, a
LOMO filter of f is defined as the fixed point of iterating ®, ., g, (f), which is simultaneously
idempotent to both the opening and closing by a flat disk as structuring function. Two
examples of (2.5) for both flat and quadratic structuring function for the 1D signal with noise
are shown in Figure 3.

2.2.2. Lasry-Lions MEM. Besides their feature extraction properties, morphological di-
lation and erosion using quadratic structuring functions are a powerful tool for Lipschitz
regularization. For the nonconvex case, the Lasry—Lions double envelope is defined as the
composition of two different Moreau envelopes, or using the morphological vocabulary, the
composition of an erosion followed by a dilation with quadratic structuring functions. For all
0 < c<1andO0 < ), the so-called Lasry—Lions regularizers [28] are defined as

such that if f is bounded, the functions ~§ and ¢ are bounded and one has the ordering
properties for the following envelopes:
o if \y > Xy >0, for any 0 < ¢ < 1 then

Yo (N)(@) <5, (@) < f <95, (@) < of, () (@);

o if 0 <co < <1, for any A > 0 then

() (@) S NH(@) < f <l (@) < o2 ()(@).

This manuscript is for review purposes only.
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5.0 1 5.0 1
45 45
4.0 4.0 A
35 1 3.5 A
3.0 1 3.0 1
25 25 A
201 Flat Closing 20 Quadratic Closing
15 - — Flat Opening 15 — Quadratic Opening
= Flat Opening/Closing MEMD = Quadratic Clasing/Opening MEMD
lo T T T T T T T T T lcl T T T T T T T T T
o 50 100 150 200 250 300 350 400 ] 50 100 150 200 250 300 350 400
5.0 1
4.5
4.0 A
3.5
3.0 1
25 1
20 LasryLions DilationErasicn
15 4 — LasryLions ErosionDilation
— Lasrylions MEMD
]—ﬂ T T T

T T T T T
] 50 100 150 200 250 300 350 400

Figure 3. a) Flat OCMEM with a disk of A = 5, b) Quadratic OCMEM with A = 3 and c¢) Lasry-Lions
MEM with A\ =3 and ¢ =.9

For any bounded function f, Lasry—Lions regularizers provide a function with a Lipschitz
continuous gradient, i.e.,

VAR (@) = VRN < Myellz —yll, [VeS()(@) = VES()(y)] < Myellz -yl

where the Lipschitz constant is My, = max ((cA)™, ((1 —¢)A)™!). If f is bounded and
Lipschitz continuous, one has

Lip(+5(f)) < Lip(f) and Lip(¢5(f)) < Lip(f),
with

lg(z) — g(v)]

; x,yeR”,x#y}-
|z —yll

Lip(g) = sup {

For more details on the properties of Lasry—Lions regularizers in the context of mathe-
matical morphology, see [1].

Remark 2.4. The following statements are interesting about the composition of quadratic
morphological operators [44, 9]. Let 0 < pu < A,

This manuscript is for review purposes only.



266
267
268
269
270

281
282
283

284

285
286
287
288
289
290

291

292
293
294
295
296
297

10 S. VELASCO-FORERO, R. PAGES AND J. ANGULO

L. €QA(7qA(f)) = A( )
2. Vg, (€qr_ M(f) = Eqxn_ “('qu(f))‘
3. '711>\7c/\90)\(f) (f)

Definition 2.5. The Lasry-Lions morphological empirical mode (LLMEM) is defined as a
MEM where the pair (h, h) corresponds to (75, ¢5), i-e

(26) (I)’y,go,c,)\(f) = A

An example of (2.6) for a 1D signal is shown in Figure 3(c).

2.3. Parametric family of morphological empirical mode operator. The choices of the
structuring function and the class of lower and upper envelopes give extra possibilities for the
formulation of an EMD approach. Besides, a third degree of freedom is considered now by
including a parameter to weight the contribution of the two envelopes. We have been inspired
by the recent work on proximal average [9] to propose a convex generalization of MEMs.

Definition 2.6. {Lezﬁ a be a real value with 0 < a < 1, the a-Morphological Empirical Mode
based on the pair (h,h) is defined as:

(2.7) 55 (f) = ah(f) + (1 = a)h(f).

Definition 2.7. Let Ty : F(E,R) — F(E,R) be a set of transformations on the space E for
the abstract group g € G. We say a function ¢ is invariant to g if for all transformations Ty,
and for all f € F(E,R) one has

(2.8) P(Ty(f) = ¢(f)

This says that the feature extracted by ¢ does not change as the transformation is applied to
the input.

In this context, an important fact to consider are the invariances of the operator (2.7).

Remark 2.8. For any SE, V0 < o < 1, and all the pairs (h, fz) previously considered, the
operator (2.7) is increasing, invariant to translation, and the sifting process f — CIJ%E( f) is

invariant to additive intensity shifts, i.e., Vc € R and Vf € F(E,R),

(f(@) +¢) = @5 1 (f(2) + ¢) = f(z) — @7 ; (f(2)).

3. Learnable Morphological Empirical Mode Decomposition. One of the main advan-
tages of EMD is that it can be considered as a parameter-free decomposition [51] and, for
this reason, the inclusion of the structuring function and the parameter o can be seen as
inconvenient. However, in the following, we consider EMD in the context of learning from
data [30], where one would be interested in using EMD decomposition as a preprocessing of
an input signal before using a machine learning or deep learning methods [43, 3, 27].
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Figure 4.  The Mor-
phological Empirical Mode
layer with input f) corre-
sponds to a residual layer
[18] where the processing
block is the average be-
tween upper and lower en-
velopes (ﬁ,fz), in this case
the pair (g,0) is used as
example.  In the experi-
mental section that is used
as a preprocessing layer
for high-dimensional su-
pervised classification prob-
lems. The parameters of
the layer are highlighted in
blue.

3.1. Neural network-based learning of parameters. The simplest form of a neural net-
work is the called multilayer architecture, which is a stack by composition of modules, each
module implements a function X,, = F,(0,, X,—1), where X,, is a vector representing the
output of module, ,, is the vector of learnable parameters in the module, and X,,_; is the
module input vector (as well as the output of the previous module). The input of the first
module Xj is an input pattern Zj, the output of the whole system is the one of the last mod-
ule which denoted Z;, where [ is the number of layers. In gradient-based learning methods,
given a cost function LP(-,-) measuring the discrepancy between the output of the system
le and DP the “correct” or desired output for the p-th input pattern. One is interested on
minimizing the average discrepancy over a set of input/output pairs called the training set,
{(23,D%), (2%, DY), ..., (Z}, D™)}. The network is initialized with randomly chosen weights
6°. The gradient of the error function with respect to each parameter is computed and gradient

descent is used to update the weights in each layer, i.e., for the i-th iteration, 61 = ¢’ 77786(9)

06°
where 7 is a learning rate, and the computation of 85(5’ ), is performed by backpropagation al-

gorithm through the layers [45]. Additionally, for structured data as images, convolutional
neural networks (CNN) are nowadays the recommended solution. In CNNs, the same operator
is computed in each pixel of the image. This mechanism is called weight sharing, and it has
several advantages such as it can reduce the model complexity and make the network easier
to train [39]. Including any new layer, like EMD, requires therefore the computation of the
corresponding gradient of the layer with respect to the parameters to be learnt.

3.2. Derivatives of Morphological EMD in discrete domains.

3.2.1. Derivative of dilation and erosion. Our approach involves dilation and erosion
operators as defined in (1.3) and (1.4). However, in the discrete domain as it is the case
of nD images, the sup operator is computed via max. Consequently, for dilation operator
(1.3), is computed by 6)(z) = max, {f(x —w) + SEx(w)}. To understand how to compute
the derivative of 0, (z) with respect A\, we rewrite 0)(x) = maxyesg, u(w). The max operator
has no gradient with respect to non-maximum values, since changing them slightly does not

This manuscript is for review purposes only.
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affect the output. In general for rank operators, their derivative is zero in every coordinate,
except for that of the value attending the desired rank [42, 37]. Accordingly, the derivative
with respect of a parameter in the additive structuring function is given by

(3:-1) o Ou(w) oA

dox(z)  9d\(x) Ou(w) 88%7*)\(1”) if w € argmax,, d)(x)

"~ |0 otherwise
where the operator argmax, f(z) = {z | Vy : f(y) < f(x)}. In other words, argmax is
the set of points z, for which f(x) attains the largest value of the function. Note that we
do not regard maximum as being attained at any x when f(z) = oo, nor do we regard the
minimum as being attained at any x when f(x) = —oo. Similarly for the erosion, e)(x) =
miny, [f(z + w) — SEx(w)] = minyesg, u(w)

(3.2)

Den(z)  Oea(x) du(w) [ =P i 4 € argmin, ey ()
0 otherwise

ox  Ou(w) O

there is only gradient with respect to minimum values.
As a manner of example, for the dilation by quadratic structuring element (2.1), one has

g\ (2)
o\

lw]?
— 22|22 = 9ox(x) _ { sz if w € argmax, dx(x)

oA

0 otherwise
Therefore, for Quadratic EMD (2.3) the derivative with respect of A,

0a(z) _ [lwsl|* — |lwe |

oA 4)\? ’

where ws € argmax, d)(z) and ws € argming ey (x). Thus, the evolution of the parameter
A depends on the difference of the norm to the value where the morphological operator at-
tends their value, normalised by the square of the current value of A\. Curiously the nonflat
translation invariant MEM (2.4) has a derivative that does not depend on the scale of the
parameters, i.e, for SEy = [wyo, ..., wy],

1/2 if w; € argmax, dsg,, ()

8@ K3 X w

(3.3) SGE;V(:E) =< —1/2if w; € argming egp, (x)
i 0 otherwise

Finally, the derivative for composition operators, as opening or closing, can be easily compute
by the chain rule.

3.3. Implementation. Different methods for learning morphological operators in neural
networks have been proposed in the literature:

1. Replace maximum and minimum operator by smooth differentiable approximations,
making possible the use of conventional gradient descent learning approach via back-
propagation, for instance using an approximation by counter-harmonic mean [33] or
other generalizations [29].
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LEARNABLE EMPIRICAL MODE DECOMPOSITION BASED ON MATHEMATICAL MORPHOLOGY 13

2. Morphological operations can be computed by combinations of depthwise and point-
wise convolution with depthwise pooling [38] allowing the use of classical optimization
procedures.

3. Use original definition of morphological operator, and in the backpropagation step
follows the approach used in max-pooling layers [6, 14, 34].

We follow the last approach. That means that the gradient in (3.1) and (3.2) will have val-
ues different from zero only for the first element equal to the arg max or argmin instead
of the complete equivalence class. This is the implementation used in deep learning mod-
ules based on Tensorflow or Pytorch. An implementation of our approach is available in
http://www.cmm.mines-paristech.fr/~velasco/morpholayers/

3.3.1. Example of learning parameters in morphological operators. We present a dummyfl
example of supervised classification in two classes for 1D signals of dimension p. Both classes
have been generated by the function f(z) = sin(2X(z + €))), for z = 0,...,10, with spatial
step of 0.02 and where € is a random realisation of a normalized Gaussian distribution. For
the first class, we have used a period ¢ = 2 and for the second class a period ¢ = 1.75. Some
examples are illustrated in Figure 5(a). We explore the training process by using a simple

architecture: 2 := model(x) = (T L BTNEE i.e, a morphological dilation followed by

a global average pooling with a sigmoid activation function, also called the logistic function.
Now, we want to show the computation of the partial derivative with respect to a given loss
function. As a manner of example, we use the mean squared error as a loss function, i.e.,
loss(z,2) = (z — 2)%.

One can compute the gradient %%f”%) by using the chain rule of derivative

Oloss(z,2) _ Oloss(z,2) 02 0o 93 6x\/p
1)) N 9z 000> 6\/p ON

where o(x) := is the sigmoid function. Remember that the derivative of the sigmoid

1
1+exp(—z)
function is o(z)o(1—x). By defining m = >_%_; 6x(z;)/p, the mean value of the dilation, which
is used as decision function, the derivative of the parameter of the dilation with respect to the

loss function can be written by

dloss(z,2)  (2m)(m(1 —m)) — 90x(x)

oA P — oA
The first term is computed in the forward pass and it is the same for every parameter. We
decided to train a nonflat structuring function, so from (3.3), one can interpret the second
term as a counts the number of number of times that the spatial position in the structuring
function attains the maximal value, which is illustrated in Figure 5(c) for the last epoch of the
training. Additionally, the evolution of structuring function weights is given in Figure 5(d).
As a manner of example, two signals and its corresponding learned dilation are shown for the
initialization (as a flat structuring function) in Figure 5(e) and after convergence in Figure 5(f).
Finally, the decision function (mean value of the learned dilation) is shown for all the training
examples at initialisation Figure 5(g) and after convergence Figure 5(h). We highlight that
the learned structuring function seems to be an asymmetric quadratic with an additive bias.
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Figure 5. FEvolution in the case of Nonflat structuring function learning in a classification problem based
on dilation and average pooling.
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Layer (type) Output Shape Param # Layer (type) Output Shape Param #
InputLayer (None, 103, 1, 1) Q input (InputLayer) [ (None, 103, 1, 10)] o
conv2d (Conv2D) (None, B0, 1, 20) 500 convad  (Conv2D) (None, 80, 1, 20) 4820
max_pooling2d (None, 16, 1, 20) 0 max_pooling2d (None, 16, 1, 20) 0
flatten (None, 320) 0 flatten, (Flatten) (None, 320) 0
dense (None, 100) 32100 dense  (Dense) (None, 100) 32100
batch_normalization (None, 100) 400 batch_normalization (None, 100) 400
activation (None, 100) o activation (Activation) (None, 100) 0
dense_1 (Dense) (None, 9) 909 dense_ (Dense) (Ncne, 9) 909
Total params: 33,909 Total params: 38,229

Figure 6. Baseline architecture vs Baseline architecture applied to EMD. The baseline uses a 20 convolu-
tions 2D with a kernel size of (24,1) followed by a maz-pooling reduction of size (5,1) and a RELU activation.
For the case presented in the experimental section the same baseline architecture is used. In (b) is the same
baseline architecture adapted for ten empirical modes.

4. Experimental results on hyperspectral classification. In this section, we investigate
the application of the proposed morphological empirical mode layer (Figure 4) to the problem
of signal classification. In particular, we will focus in the case of supervised classification of
high-dimensional 1D signals in hyperspectral images. The architecture chosen as baseline is
the one recommended in [40] and illustrated in Figure 6. More specifically, the network is
composed of convolution layers, RELU, max-pooling. Each stage consists of twenty convolu-
tion layers with a kernel size of 24 channels followed by ReLU activation, and a dense layer
with batch normalization. In the experimenal section, the proposed morphological empirical
mode will be used as the first layer of an architecture of the baseline neural network.

4.1. Considered datasets. The aim of this section is to compare the results obtained by
different proposed EMD for 1D supervised classification problems. Accordingly, we used as
benchmark two classical hyperspectral images (HIS):

e Pavia University hyperspectral is a scene acquired by the ROSIS sensor in the north
of Italy. The dataset contains nine different classes including multiple solid structures,
natural objects and shadows (Figure 7(a-c)). After discarding the noisy bands, the
considered scene contains 103 spectral bands, with a size of 610 x 340 pixels with
spatial resolution of 1.3 mpp and covering the spectral range from 0.43 to 0.86 pm.

o Indian Pines dataset is a hyperspectral image captured over an agricultural area char-
acterized by its crops of regular geometry and also irregular forest regions. The scene
consists of 145 x 145 pixels and with 224 spectral bands, which have been collected
in the wavelength range from 0.4 to 2.5 um. There are 16 different classes for train-
ing/testing set with a highly unbalanced distribution (Figure 7(d-f)).

4.1.1. Protocol. HSI scenes generally suffer from high intraclass variability and interclass
similarity, resulting from uncontrolled phenomena such as variations in illumination, presence
of areas shaded and/or covered by clouds, among others. Accordingly, the selection of training
samples must be carried out very carefully. Deep learning models for HSI have been tradi-
tionally trained by extracting random samples from available ground-truth. However, some
works emphasize that the random sampling strategy has a great influence on the reliability
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Figure 7. For considered HSI dataset, (a) an example per class in Pavia University and (b) Indian Pines.

Spatial disjoint distribution of training and testing sets: for Pavia University in (c-d) and for Indian Pines in
(e-f). In both cases, white pizels are not considered in the evaluation.
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and the quality of the solution obtained in HSI [40]. In order to avoid this import issue, we
have follow the recommendation of using spatial-disjoint samples, i.e, to have used a strict
spatial-separation between training and testing sets, allowing us to compare our models in a
difficult and realist case. The selected training and testing samples have been illustrated in
Figure 7(b-c) for Pavia University and (e-f) for Indian Pines datasets.

In gradient descent approaches the selection of random initialization of the parameter
value is critical. The aim of this initialization is to prevent layer activation outputs from
exploding or vanishing during the course of a forward pass [17]. While the source of difficulty
is well-understood, there is no universal remedy. For our MEM layers, we have used the
following initialization:

1. For non-flat structuring functions, a flat structuring element, i.e., SEyy is a zero matrix.

2. For quadratic structuring functions, A is a random realization of a uniform distribution

between one and four, and for the parameter ¢, a uniform distribution between .5 and
.95.
3. For the parameter « in (2.7), the value .5 is used.

4.1.2. Quantitative results. We explore the use of proposed EMDs as preprocessing lay-
ers, that means instead of learning the classification task from the original spectral signals,
we will use the residual of a single step of the decomposition by MEMD. The parameters of
the MEMD are learned in a gradient-based learning method. As a manner of comparison,
we report in Figure 9 and Figure 10 the accuracy over testing samples for different proposed
envelopes by varying both the number of MEM from 10 to 40 and the type of structuring
function. Each point is the performance for the best model trained from different random ini-
tialization and an early stopping parameter of ten, i.e, we have stopped the training process if
it is not improving during ten successive epochs. As it is common in supervised classification
problems, we have used categorical cross-entropy as loss function. Additionally, for quantita-
tive comparisons, we have reported best, mean and standard deviation after ten repetitions on
both Indian Pines HSI (Table 1) and Pavia University HSI (Table 2). In general, the following
results can be highlighted:

e Learning the parameter in the a-Morphological Empirical Mode (2.7) improves the
performance. This can be observed in Table 1) and Pavia University HSI (Table 2)
by comparing the performance of models trained with o = 0.5 and models where
this parameter is learned. Additionally, in Figure 9 and Figure 10 this fact has been
highlighted by using different colors in the representation.

e Quadratic MEMDs perform significantly worse than non-flat ones. However, we would
like to highlight that the number of parameters is less in the first case.

e In the considered HSI supervised classification problems, the best of the proposed ap-
proaches have a performance equivalent to our baseline, which is the state-of-the-art
for the considered problems (Table 3). However, we remark that the inclusion of mor-
phological EMDs induces an invariant to additive intensity shifts in the classification
model. To illustrate this fact, we have trained a classical model Figure 6 with and
without a random data augmentation by using an additive shift as transformation.
That is the usual approach to include some invariance in deep learning models. This
gives an improvement in the invariance measure in Figure 8. We highlight that by
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/ ,— l(a) Proposed
ib) Original
— (k] with Data Augmentation

MNorm of Difference of Logits
=

)
0.0
Additive constant

02 04

Figure 8. Analysis of invariance against additive shift for the training sample of Indian Pines. Norm of
the Difference in the predictions with and without additive shift, i.e., ||pred(z) — pred(z + c)||3 for different
values of ¢ is given for three models: a) MEMD by (g,0), b) baseline model, c) baseline model with a data
augmentation by random additive constant. We highlight that by Remark 2.8 all the MEMD based models are
invariant to additive shifts.

Remark 2.8 all the MEMD based models are intrinsically invariant to additive shifts,
which is illustrated in Figure 8.

5. Discussion. The paper investigated the formulation of EMD based on morphological
operators and its integration into deep learning architectures. The training of the layers
realizing the EMD process allows them to adapt the morphological models to the signals to
be classified. The assessments have been done for supervised classification problem in 1D
signals from hyperspectral images (i.e., pixelwise spectra), but the proposed approaches are
applicable to CNN architectures for nD images, without conceptual or algorithmic problem.
1D signals have been used for the only reason that the effects of the process on such signals
are easier to interpret in a research perspective. Several variants of the morphological layers
have been used. However, we think that for a better understanding of some of the elements of
the approach: behaviour of the gradient of the layers during the optimization, contribution of
the different parts of the signals to the optimization, effect of the initialization, etc. a deeper
theoretical and empirical study is required. Additionally, we have illustrated the use of only
one decomposition but the presented framework allows us to go further. In the future work,
we are planning to use some interesting approaches to propose more adapted optimization
schemes [8] for max-plus based layers, which reveals remarkable properties of network pruning
by these operators [56]. Additionally, we will explore: a) the use for the MEMD of other
structuring functions as Poweroids or Anisotropic Quadratic functions as proposed in [47], b)
to consider the interest of MEMD to produce Scale Equivariant Neural Networks as in [46].
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Figure 9. Test accuracy for spatial-disjoint samples in Indian Pines Hyperspectral image. Envelopes
produces by opening/closing MEMD (left figure) and erosion/dilation MEMD (right figure) by flat structuring
function are used in the architecture presented inFigure 6. In both the number of MEMD wvaries from 10 to 40.
Each point is the performance for the best model trained from different random initialization and same early
stopping parameter (patience of ten epochs). The horizontal lines indicate the mazimum/average/minimum
performance of baseline architecture [40] on original data. Blue points correspond to a = .5, i.e., when this
parameter was not learned.

- Lasry-Lions Quadratic Erosion/Dilation Quadratic Opening/Closing
084
g .
L2 v e p————— == z ey — . e s
g [ ] il : X : _
> - 3 & “, = Trainable ¥
£ hid - ® False
£ 080 T : 3 P » H o ® Te
& ole . . . . . . L f :
L . . - . M .
id
078 2 “-_ - 3
3 e
:'- ':‘ 1]
076 e

0 E) P 0 P )
Number of MEMD Number of MEMD Number of MEMD

Figure 10. Test accuracy for spatial-disjoint samples in Indian Pines Hyperspectral image. FEnvelopes
produces by Lasry-Lions operator (left figure), erosion/dilation (central figure), and opening/closing (right
figure) by quadratic structuring functions are used in the architecture presented inFigure 6. The number of
MEMD wvaries from 10 to 40. Each point is the performance for the best model trained from different random
initialization and same early stopping parameter (patience of 10 epochs). The horizontal lines indicate the
mazimum,/average/minimum performance of baseline architecture [40] on original data. Blue points correspond
to o = .5, where this parameter was not learned.
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Overall Val. Acc. Overall Training Acc.

Type Operator «a Best uwto Best uwto
Baseline — — 85.035 | 83.929+0.654 | 93.443 91.413£1.696
NonFlat (v, ) 83} 84.080 | 83.239 + 0.512 | 97.012 95.495+1.184
True | 84.420 | 83.490 + 0.656 | 97.223 | 96.012 £ 0.847

(€,9) .5 83.252 | 82.764 + 0.576 | 97.451 | 95.226 + 2.065

True | 85.311 | 84.052 4+ 1.227 | 95.922 94.015 + 2.717

(e,0) SE(0) >0 | .5 83.379 | 82.870 £+ 0.261 | 96.889 | 95.621 + 1.043

True | 85.247 | 83.821 + 0.787 | 96.168 | 0.94874 + 1.120

Quadratic | (v, ) 5 79.495 | 78.024 £ 0.754 | 96.080 | 93.580 + 2.625
True | 80.959 | 77.971 £ 1.563 | 97.645 | 95.043 £+ 1.565

(€,9) 5 81.363 | 79.798 £+ 1.006 | 96.484 94.964+ 1.111

True | 81.596 | 80.847 + 0.537 | 97.223 95.066+ 1.191

Lasry-Lions .5 81.384 | 79.909 £ 0.876 | 96.924 | 95.273 £ 1.336

True | 82.424 | 81.299 + 0.983 | 96.941 | 95.674 + 0.927

Table 1

Ezxperiment on hyperspectral Indian Pines Disjoint classification problem. Each experiment has been re-
peated ten times varying the initialization of base architecture. Twenty filters of MEMD in a single level of
stmplification. The training was performed without any data augmentation technique. The constraint SE(0) > 0
is used to assure the order relation among envelopes (See Remark 1.2)

Overall Val. Acc. Overall Training Acc.

Type Operator a Best pwto Best uwto
Baseline — — 85.468 | 83.396+ 2.420 | 92.527 | 86.447 + 8.960
NonFlat (v, ) .5 79.543 | 78.189 + 0.726 | 95.715 | 92.219 + 2.408
True | 82.353 | 79.293 + 1.767 | 96.353 | 91.525 + 4.335

(€,9) .5 84.261 | 82.681 4+ 0.798 | 93.726 | 88.794 + 4.998

True | 84.133 | 82.529 + 1.131 | 93.879 | 89.735 + 2.118

(e,d), SE(0) >0 | .5 83.908 | 81.740 4+ 1.295 | 93.216 | 84.575 + 7.334

True | 85.483 | 83.994 + 1.238 | 94.389 | 89.617 £ 3.289

Quadratic | (v, ) ) 74.516 | 70.821 4+ 2.023 | 91.201 | 80.951 + 6.432
True | 73.539 | 69.399 + 2.339 | 93.828 | 87.360 £ 6.443

(€,9) 5 77.411 | 75.432 + 1.193 | 95.052 | 86.470 + 5.939

True | 81.196 | 77.923 + 1.700 | 92.476 | 86.593 £ 6.585

Lasry-Lions 5 77.461 | 76.396 £+ 0.614 | 97.067 | 90.826 + 6.223

True | 80.971 | 78.501 + 1.332 | 96.123 | 87.082 + 8.221

Table 2

Ezperiment on hyperspectral Pavia University for a disjoint training sample. Nine different classes. Each
experiment has been repeated ten times varying the initialization of base architecture. Twenty filters of MEMD
in a single level of simplification. The training was performed without any data augmentation technique. The
constraint SE(0) > 0 is used to assure the order relation among envelopes (See Remark 1.2)
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Method Indian Pines | Pavia University
Random Forest 65.79 69.64
Multinomial Logistic regression 83.81 72.23
Support Vector Machines 85.08 77.80
MLP 83.81 81.96
CNN1D 85.03 85.47
o2 -+ CNN1D 85.31 85.48

Table 3

Comparison (in terms of OA) between different HSI classification models trained on spatial-disjoint sam-
ples. The performance for first four models are included for comparison from [40].

Finally, we highlight that the study of theoretical properties of morphological networks in the
sense of their expressiveness and universality [57] is fundamental to have a full understanding
of the limits of these types of layers when they are integrated in DL architectures.
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