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Abstract. Empirical mode decomposition (EMD) is a fully data driven method for multiscale decomposing4
signals into a set of components known as intrinsic mode functions. EMD is based on lower and5
upper envelopes of the signal in an iterated decomposition scheme. In this paper, we put forward a6
simple yet effective method to learn EMD from data by means of morphological operators. We pro-7
pose an end-to-end framework by incorporating morphological EMD operators into deeply learned8
representations, trained using standard backpropagation principle and gradient descent-based opti-9
mization algorithms. Three generalizations of morphological EMD are proposed: a) by varying the10
family of structuring functions, b) by varying the pair of morphological operators used to calculate11
the envelopes, and c) by considering a convex sum of envelopes instead of the mean point used12
in classical EMD. We discuss in particular the invariances that are induced by the morphological13
EMD representation. Experimental results on supervised classification of hyperspectral images by14
1D convolutional networks demonstrate the interest of our method.15

Key words. Deep Learning, Mathematical morphology, Hyperspectral image processing16

AMS subject classifications. 68U10, 94A12, 68T0717

1. Introduction. Deep convolutional neural networks (DCNN) provide state-of-the-art18

results in many tasks for signal and image classification [4]. The DCNN architectures com-19

bine low complexity signal/image operators, like convolution with small kernels or pooling20

estimation, with the ability to optimize the corresponding weights of the operators in evolved21

and hierarchical networks. Traditional models for signal/image representation and associated22

feature extraction are generally not compatible with the DCNN paradigm. The main limita-23

tion is the incompatibility of the backpropagation principle used to train the parameters of24

the neural networks by gradient descent algorithms. In the case of traditional signal/image25

processing, the interpretability of the operators and features is often straightforward. We26

focus here in particular in the Empirical Mode Decomposition (EMD) [24], which is a simple27

and powerful technique used to represent the features of a signal (without any assumption on28

its frequency content) from a geometric viewpoint, basically using lower and upper envelopes29

of the signal in an iterated decomposition. The two main ingredients of EMD: detection of30

local extrema and the interpolation between them, are not naturally formulated in the neural31

network paradigm. Inspired by the work of Diop and co-workers [12, 11, 13], we revisit EMD32

using morphological operators to deal with lower/upper envelopes. Additionally, we propose33

three generalizations: a) by varying the family of structuring functions, b) by varying the pair34

of morphological operators used to calculate the envelopes, and c) by considering a convex35
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2 S. VELASCO-FORERO, R. PAGÈS AND J. ANGULO

sum of envelopes instead of the mean point used in classical EMD. All the parameters of our36

proposition can be learnt using backpropagation and gradient descent techniques and therefore37

the associated morphological EMD can be integrated into standard DCNN representations for38

end-to-end learning. The integration of morphological operators into DCNN pipelines is an39

active research area. First attempts were based on approximation of dilation and erosion using40

standard convolution [33]. More recently, straightforward approaches of dilation and erosion41

optimization have been explored [14, 34, 38]. However, plugging morphological operators into42

standard networks is far from being trivial from the optimization based on backpropagation43

of gradients through all layers by the chain rule. Max-plus operators are indeed differentiable44

only on a local and specific domain. Here we focus on standard gradient descent strategies45

and we provide a better understanding of how the gradient of morphological operators, in46

particular those associated to parametric structuring functions, is defined. Additionally, we47

show that our morphological EMD induces the invariance to additive shift in standard DCNN.48

To the best of our knowledge, these technical aspects have not been previously discussed in49

the field of morphological deep neural networks.50

1.1. Related work. In what follows we review the state-of-the-art that is most relevant51

for the proposed morphological EMD.52

1.1.1. Empirical Mode Decomposition. EMD is an algorithm introduced by Huang et al.53

[24] for analysing linear and non-stationary time series. It is a way to decompose a signal in or-54

der to obtain instantaneous frequency data. In this original version of the EMD is an iterative55

process which decomposes real signals f into simpler signals (modes), f(x) =
∑M

i=1 Φj(x),56

where each mono-component signal Φ should be written in the form Φ(x) = r(x) cos(θx),57

where the amplitude and phase are both physically and mathematically meaningful [49]. Un-58

like some other common transforms like the Fourier transform for example, the EMD was59

built as an algorithm and lacks theoretical background then. The problem of EMD to rep-60

resent a signal as a sum of amplitude modulation (AM) and frequency modulation (FM)61

components at multiple scales was first proposed in [32] where the problem of finding the62

AM-FM components and their envelopes was solved using multiscale Gabor filters and non-63

linear Teager-Kaiser Energy Operators via an Energy Separation Algorithm (ESA). In the64

original EMD, there is no parametric family of filters used to estimate the envelopes.65

From an algorithmic point of view, the EMD is obtained following the iterative process66

[24]:67

1. Find all the local extrema of the function f .68

2. Interpolate all the local maxima together to get the function f̂ (upper envelope), and69

all the local minima together to get the function f̌ (lower envelope)70

3. Calculate the local mean as the average of the both interpolations; the obtained func-
tion is called Intrinsic Mode Function:

IMF (x) =
1

2

(
f̂(x) + f̌(x)

)
4. Iterate this process (that is called the sifting process) on the residual, i.e.,

r(x) = f(x)− IMF (x)

until a selected tolerance criterion is respected.71
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LEARNABLE EMPIRICAL MODE DECOMPOSITION BASED ON MATHEMATICAL MORPHOLOGY 3

Thus, the original signal is decomposed as:72

(1.1) f(x) =
n∑
k=1

IMFk(x) + r(x)73

where IMFk is the k-th intrinsic mode function and r is the last residual. The EMD can be74

efficiently applied to 1D-signals. However the selection of interpolation method for the second75

step gives a wide variety of possibilities, from the original formulation using cubic splines [24],76

passing by sparse filtering [23], filtering from wavelet based decomposition [15] and partial77

differential equation based formulations [10].78

The EMD method can be justified only under certain very restrictive assumptions that79

are seldom satisfied by practical data. The EMD method is also known to be very sensitive80

to noisy data. Recently, a compendium of practical advice for EMD in real life examples81

has been presented in [51]. Some works extend EMD to 2D [12, 50, 11] and 3D images [19].82

However, the main limitations of EMD for both 2D and 3D are both the choice of maxima83

and minima detector, and the choice of the interpolation algorithm.84

An alternative characterisation of the EMD computation was introduced by Diop et al. in85

[12, 13] according to the definition of local mean, i.e., the sifting process is fully determined86

by the sequence (hn)n∈N defined by :87

(1.2)

{
hn+1 = hn − Φ(hn) = (Id− Φ)hn
h0 = f

88

where Φ(hn) = ĥn+ȟn
2 , and ĥn (resp. ȟn) denotes a continuous interpolation of the maxima89

(resp. minima) of hn.90

In the following subsection, we formulated an EMD by means of dilation and erosion91

operators.92

1.1.2. Dilation/Erosion. We study here functions f : E → R, where R it allowed to be93

extended-real-valued, i.e., to take values in R = [−∞,∞]. Accordingly, the set of all such94

functions is denoted by F(E,R). We will use the two basic morphological operators dilation95

and erosion, which correspond respectively to the convolution in the (max,+) algebra and its96

dual.97

Definition 1.1. In mathematical morphology [48], the dilation (sup-convolution) δSE(f) of98

f is given by:99

(1.3) δSE(f)(x) := sup
y∈E
{f(y) + SE(x− y)} = sup

w∈E
{f(x− w) + SE(w)}100

where SE ∈ F(E,R) is the (additive) structuring function which determines the effect of the101

operator. Here the inf-addition rule ∞−∞ =∞ is to be used in case of conflicting infinities.102

sup f and inf f refer to the supremum (least upper bound) and infimum (greatest lower bound)103

of f . In the discrete case where the function is a finite set of points, max and min are used.104

The erosion [48] εSE(f), known as inf-convolution in convex analysis [36], is the adjoint105

operator to the dilation (1.3), and it is defined as106

(1.4) εSE(f)(x) := −δŠE(−f)(x) = inf
y∈E
{f(y)− SE(y − x)} = inf

w∈E
{f(w − x)− SE(w)}107
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4 S. VELASCO-FORERO, R. PAGÈS AND J. ANGULO

Figure 1. First Row: Noise-free example a) f(x) = 2x+1+cos(20x)+cos(60x), b) Classical EMD c) MEMD
with flat structuring functions. Second Row: Noisy example a) f(x) = 2x+ 1 + cos(20x) + cos(60x) +N(0, 1

8
),

b) Classical EMD c) MEMD with flat structuring functions.

where the transposed structuring function is ŠE(x) = SE(−x).108

Remark 1.2. ∀f, g ∈ F(E,R)109

1. The operators (1.3) and (1.4) are translation invariant.110

2. (1.3) and (1.4) correspond to one another through the duality relation δSE(f)(x) ≤111

g(x) ⇐⇒ f(x) ≤ εSE(g)(x), called adjunction [16].112

3. An operator ξ is called increasing if f(x) ≥ g(x)⇒ ξ(f)(x) ≥ ξ(g)(x) ∀x. The dilation113

(1.3) and erosion (1.4) are increasing for all SE.114

4. An operator ξ is called extensive (resp. antiextensive) if ξ(f)(x) ≥ f(x) (resp.115

ξ(f)(x) ≤ f(x)), ∀x. The dilation (1.3) (resp. erosion (1.4)) is extensive (resp. antiex-116

tensive) if and only if SE(0) ≥ 0, i.e., the structuring function evaluated at the origin117

is non-negative.118

5. εSE(f)(x) ≤ f(x) ≤ δSE(f)(x) if and only if SE(0) ≥ 0.119

6. δSE (resp. εSE) does not introduce any local maxima (resp. local minima) if SE ≤ 0120

and SE(0) = 0. In this case, we say that SE is centered.121

Proof. (1) and (2) are classical results from [48]. As explained in [21] and [31], the adjunc-122

tion is related to a well-known concept in group and lattice theory, the Galois connection. (3)123

and (6) are easy to prove directly from the definition of the operators. It has been also proved124
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LEARNABLE EMPIRICAL MODE DECOMPOSITION BASED ON MATHEMATICAL MORPHOLOGY 5

in the original paper of inf-convolution (Proposition 6.d) in [36]. (4) ∀f, δSE(x) ≥ f(x) ⇒125

∀f, sup (f(x− w) + SE(w)− f(x)) (x) ≥ 0 ⇒ SE(0) ≥ 0. Now, sup f(x − w) + SE(w) ≥126

f(x)+SE(0), if SE(0) ≥ 0⇒ sup f(x−w)+SE(w) ≥ f(x). From (3) and (4) is easy to prove127

(5).128

The most commonly studied framework for dilation/erosion of functions is based on flat struc-129

turing functions, where structuring elements are viewed as shapes. More precisely, given the130

structuring element B ⊆ E, its associated structuring function is131

(1.5) B(y) =

{
0 if y ∈ B
−∞ if y ∈ Bc132

Hence, the flat dilation δB(f) and flat erosion εB(f) can be computed respectively by the133

moving local maxima and minima filters. The shape of B is often a disk of radius λ, denoted134

by Bλ.135

(1.6) Bλ(w) =

{
0 if ‖w‖ ≤ λ
−∞ if ‖w‖ > λ

136

A Morphological Empirical Mode Decomposition (MEMD) where the pair (ĥ, ȟ) correspond137

to (εBλ , δBλ) has been proposed in [13].138

Definition 1.3. The Flat Morphological Empirical Mode [13] is defined as139

(1.7) Φε,δ,Bλ(f)(x) :=
δBλ(f)(x) + εBλ(f)(x)

2
140

The operator (1.7) was proposed to generate an EMD based on solving a morphological PDE141

[13]. As a manner of example, EMD and MEMD are shown for a mono-component signal in142

the first row of Figure 1. In the second row of Figure 1, we illustrated how the addition of143

noisy perturbed more the results of classical EMD than the proposed morphological one.144

Remark 1.4. Note that using (1.7) twice, the first residual (1.2) is 2(f − Φλ(f)) = (f −145

δBλ(f)) + (f − εBλ(f)) = 2f − δBλ(f) − εBλ(f). This expression, up to a minus sign, cor-146

responds just to the so-called morphological Laplace operator [54], and therefore provides an147

interpretation of the EMD as an iterated second-order derivative decomposition of the function148

f .149

1.2. Our proposal. The main motivation of this paper is to define EMD learnable in the150

sense of neural networks approaches. Note that last property in Remark 1.2 together with151

the extensivity/antiextensivity (i.e., upper/lower envelopes) imply that the pair of operators152

(εSE, δSE) are candidate functions for (ĥ, ȟ) in (1.2). Accordingly, we proposed a simple153

generalization by considering non-flat structuring functions.154

Definition 1.5. The Morphological Empirical Mode (MEM) is defined as155

(1.8) Φε,δ,SE(f) =
δSE(f)(x) + εSE(f)(x)

2
156

This operator can be formulated in any dimension (from 1D to nD signals) and avoid using157

an interpolation method which is the bottleneck of the original definition of EMD.158
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6 S. VELASCO-FORERO, R. PAGÈS AND J. ANGULO

1.3. Contributions of the paper. In what follows we study,159

• A formulation of EMD based on pairs of morphological operators in a general case.160

• The proposition of a parametric morphological empirical mode whose sifting process161

is invariant to additive intensity shifts.162

• A approach to learn the structuring functions of a morphological operator in a deep163

learning framework.164

• A convex sum of envelopes instead of mean points to learn morphological EMD.165

• A number of numerical experiments for hyperspectral signal classification to illustrate166

the relevance of our proposal.167

1.4. Organization of the paper. The rest of the paper is organised as follows. In sec-168

tion 2, we review the general definition of Empirical Mode Decomposition approach to decom-169

pose signals and we introduce how morphological extensive/antiextensive filters are naturally170

adapted to implement a MEMD computation. We consider different possibilities in the choice171

of structuring functions and the pair of lower and upper envelopes. Additionally, an α-MEM172

is proposed as a generalization of the mean of envelopes. Section 3 is devoted to the imple-173

mentation of morphological EMD operators as layers in a neural network pipeline. Section 4174

presents the experimental results of hyperspectral image classification using DCNNs which175

integrate morphological EMD layers. Conclusions and perspectives are discussed in section 5.176

2. Morphological Empirical Mode and its variants. In this section, three kinds of gen-177

eralization will be explored: a) different types of structuring functions, b) different pairs of178

functions to compute the lower and upper envelopes, and c) a convex sum of lower and upper179

envelopes.180

2.1. Varying the structuring function. In this subsection, firstly we will study a paramet-181

ric family of symmetric quadratic shape structuring functions. Secondly, similarly to classical182

CNNs, the structuring function plays a similar role to the kernel in standard convolution.183

Accordingly a structuring function without any parametric constraint is also considered.184

2.1.1. Quadratic MEM. From the theory of morphological scale-spaces, the most useful185

nonflat structuring functions are those which depend on a scale parameter [22, 47]. The only186

separable and rotationally invariant structuring functions is the called quadratic structuring187

function[52]:188

(2.1) qλ(z) = −‖z‖
2

2λ
,189

such that the corresponding dilation and erosion are equal to the Lax–Oleinik operators or190

viscosity solutions of the standard Hamilton–Jacobi PDE, also known as morphological PDE:191

ut(t, x)∓‖ux(t, x)‖2 = 0, (t, x) ∈ (0,+∞)×E; u(0, x) = f(x), x ∈ E. It plays also a canonical192

role in the definition of dilation and erosion on Riemannian manifolds [2] and their behaviour193

with respect to the maxima/minima is well understood [26]. The morphological PDE was194

proposed and analyzed using 2D boundary propagation in [53] and further analyzed using the195

morphological slope transform in [20].196
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Figure 2. The blue points corresponds to the observed signal, a) Flat dilation/erosion based Morphological
Empirical Mode (1.7) with a disk of λ = 5, b) Quadratic dilation/erosion based Morphological Empirical Mode
(2.3) with λ = 3.

Remark 2.1. The erosion by a quadratic structuring function with parameter λ is defined197

by198

(2.2)

εqλ(f)(x) := inf
y∈E
{f(y)− qλ(y − x)} = inf

z∈E
{f(z − x)− qλ(z)} = inf

z∈E

{
f(z − x) +

‖z‖2

2λ

}
.199

The erosion of a function f by a quadratic structuring function with parameter λ is200

known as the Moreau envelope or Moreau-Yosida approximation [36, 44, 41], which offers201

many benefits specially for optimization purposes [35]. Additionally, (2.2) induces an additive202

scale-space [20, 25], i.e., εqλ1 (εqλ2 (f)) = εqλ1+λ2 (f).203

Definition 2.2. The quadratic morphological empirical mode (QMEM) is defined as a MEM204

where the pair (ĥ, ȟ) corresponds to erosion/dilation with a quadratic structuring functions,205

(2.3) Φε,δ,qλ(f) =
εqλ(f) + δqλ(f)

2
.206

An example of (2.3) for a 1D signal with noise is shown in Figure 2.207

2.1.2. Nonflat Morphological MEM. The most general case of nonflat structuring func-208

tion involves different additive weights Wy(x) at each position x of the local neighborhood B209

centered at pixel y, i.e., a nonflat structuring function SEW of support shape B at y is defined210

as211

(2.4) SEWy(x) =

{
Wy(x) if x ∈ B(y)
−∞ otherwise

212

The case (2.4) includes flat, nonflat, either local or nonlocal structuring functions [55]. In the213

translation invariant case, the weighting function Wy(x) is equal for all y ∈ E.214

2.2. Varying the Envelope. We have explored above several possible structuring functions215

that produce multiple pairs of (εSE, δSE) as basic ingredient for the Morphological Empirical216

Mode (1.8). At this point, we can consider the use of the composition of erosion and dilation217

to obtain other upper/lower envelopes, typically of the form (δSE ◦ εSE, εSE ◦ δSE) .218
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8 S. VELASCO-FORERO, R. PAGÈS AND J. ANGULO

2.2.1. Opening/Closing MEM. The theory of morphological filtering is based on the219

opening γSE(f)(x) and closing ϕSE(f)(x) operators, obtained respectively by the composi-220

tion product of erosion-dilation and dilation-erosion, i.e., γSE(f)(x) = δSE (εSE(f)) (x) and221

ϕSE(f)(x) = εSE (δSE(f)) (x). Opening (resp. closing) is increasing, idempotent and anti-222

extensive (resp. extensive), independently of the properties of the structuring function. The223

opening can be seen as the supremum of the invariants parts of f under-swept by SE and it224

can be again rewritten as a maximal lower envelope of structuring functions (resp. minimal225

upper envelope of negative symmetric structuring functions). We highlight that the quadratic226

envelope also called as proximal hull [7] is an opening with a quadratic structuring function,227

i.e., a quadratic erosion followed by a quadratic dilation.228

Definition 2.3. The opening/closing morphological empirical mode (OCMEM) is defined as229

a MEM where the pair (ĥ, ȟ) corresponds to (γSE, ϕSE), i.e.,230

(2.5) Φγ,ϕ,SE(f) =
γSE(f) + ϕSE(f)

2
.231

For the case of flat disks Bλ, the operator (2.5) was called a morphological locally monotonic232

(LOMO) filter in [5]. A signal is monotonic over an interval if it is either non-increasing or233

non-decreasing over that interval. A 1-D signal is locally monotonic of degree n (LOMO-n)234

if and only if the signal is monotonic within every interval of length n. In the general case, a235

LOMO filter of f is defined as the fixed point of iterating Φγ,ϕ,Bλ(f), which is simultaneously236

idempotent to both the opening and closing by a flat disk as structuring function. Two237

examples of (2.5) for both flat and quadratic structuring function for the 1D signal with noise238

are shown in Figure 3.239

2.2.2. Lasry–Lions MEM. Besides their feature extraction properties, morphological di-240

lation and erosion using quadratic structuring functions are a powerful tool for Lipschitz241

regularization. For the nonconvex case, the Lasry–Lions double envelope is defined as the242

composition of two different Moreau envelopes, or using the morphological vocabulary, the243

composition of an erosion followed by a dilation with quadratic structuring functions. For all244

0 < c < 1 and 0 < λ, the so-called Lasry–Lions regularizers [28] are defined as245

γcλ(f)(x) := δqcλ (εqλ(f)) (x),246

ϕcλ(f)(x) := εqcλ (δqλ(f)) (x),247

such that if f is bounded, the functions γcλ and ϕλc are bounded and one has the ordering248

properties for the following envelopes:249

• if λ1 ≥ λ2 > 0, for any 0 < c < 1 then250

γcλ1(f)(x) ≤ γcλ2(f)(x) ≤ f ≤ ϕcλ2(f)(x) ≤ ϕcλ1(f)(x);251

• if 0 < c2 < c1 < 1, for any λ > 0 then252

γc2λ (f)(x) ≤ γc1λ (f)(x) ≤ f ≤ ϕc1λ (f)(x) ≤ ϕc2λ (f)(x).253
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LEARNABLE EMPIRICAL MODE DECOMPOSITION BASED ON MATHEMATICAL MORPHOLOGY 9

Figure 3. a) Flat OCMEM with a disk of λ = 5, b) Quadratic OCMEM with λ = 3 and c) Lasry-Lions
MEM with λ = 3 and c = .9

For any bounded function f , Lasry–Lions regularizers provide a function with a Lipschitz254

continuous gradient, i.e.,255

|∇γcλ(f)(x)−∇γcλ(f)(y)| ≤Mλ,c‖x− y‖, |∇ϕcλ(f)(x)−∇ϕcλ(f)(y)| ≤Mλ,c‖x− y‖.256

where the Lipschitz constant is Mλ,c = max
(
(cλ)−1, ((1− c)λ)−1

)
. If f is bounded and257

Lipschitz continuous, one has258

Lip(γcλ(f)) ≤ Lip(f) and Lip(ϕcλ(f)) ≤ Lip(f),259

with260

Lip(g) = sup

{
|g(x)− g(y)|
‖x− y‖

; x, y ∈ Rn, x 6= y

}
.261

For more details on the properties of Lasry–Lions regularizers in the context of mathe-262

matical morphology, see [1].263

Remark 2.4. The following statements are interesting about the composition of quadratic264

morphological operators [44, 9]. Let 0 < µ < λ,265
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10 S. VELASCO-FORERO, R. PAGÈS AND J. ANGULO

1. εqλ(γqλ(f)) = εqλ(f);266

2. γqµ(εqλ−µ(f)) = εqλ−µ(γqλ(f));267

3. γqλ−cλϕ
c
λ(f) = ϕcλ(f).268

Definition 2.5. The Lasry-Lions morphological empirical mode (LLMEM) is defined as a269

MEM where the pair (ĥ, ȟ) corresponds to (γcλ, ϕ
c
λ), i.e.,270

(2.6) Φγ,ϕ,c,λ(f) :=
γcλ(f) + ϕcλ(f)

2
.271

An example of (2.6) for a 1D signal is shown in Figure 3(c).272

2.3. Parametric family of morphological empirical mode operator. The choices of the273

structuring function and the class of lower and upper envelopes give extra possibilities for the274

formulation of an EMD approach. Besides, a third degree of freedom is considered now by275

including a parameter to weight the contribution of the two envelopes. We have been inspired276

by the recent work on proximal average [9] to propose a convex generalization of MEMs.277

Definition 2.6. Let α be a real value with 0 ≤ α ≤ 1, the α-Morphological Empirical Mode278

based on the pair (ȟ, ĥ) is defined as:279

(2.7) Φα
ȟ,ĥ

(f) = αĥ(f) + (1− α)ȟ(f).280

Definition 2.7. Let Tg : F(E,R) 7→ F(E,R) be a set of transformations on the space E for281

the abstract group g ∈ G. We say a function φ is invariant to g if for all transformations Tg,282

and for all f ∈ F(E,R) one has283

(2.8) φ(Tg(f)) = φ(f)284

This says that the feature extracted by φ does not change as the transformation is applied to285

the input.286

In this context, an important fact to consider are the invariances of the operator (2.7).287

Remark 2.8. For any SE, ∀0 ≤ α ≤ 1, and all the pairs (ȟ, ĥ) previously considered, the288

operator (2.7) is increasing, invariant to translation, and the sifting process f − Φα
ȟ,ĥ

(f) is289

invariant to additive intensity shifts, i.e., ∀c ∈ R and ∀f ∈ F(E,R),290

(f(x) + c)− Φα
ȟ,ĥ

(f(x) + c) = f(x)− Φα
ȟ,ĥ

(f(x)).291

3. Learnable Morphological Empirical Mode Decomposition. One of the main advan-292

tages of EMD is that it can be considered as a parameter-free decomposition [51] and, for293

this reason, the inclusion of the structuring function and the parameter α can be seen as294

inconvenient. However, in the following, we consider EMD in the context of learning from295

data [30], where one would be interested in using EMD decomposition as a preprocessing of296

an input signal before using a machine learning or deep learning methods [43, 3, 27].297
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f

εSE(f)

δSE(f)

f − [αδSE(f) + (1− α)εSE(f)]

Residual

1− α

α

Figure 4. The Mor-
phological Empirical Mode
layer with input f) corre-
sponds to a residual layer
[18] where the processing
block is the average be-
tween upper and lower en-
velopes (ȟ, ĥ), in this case
the pair (ε, δ) is used as
example. In the experi-
mental section that is used
as a preprocessing layer
for high-dimensional su-
pervised classification prob-
lems. The parameters of
the layer are highlighted in
blue.

3.1. Neural network-based learning of parameters. The simplest form of a neural net-298

work is the called multilayer architecture, which is a stack by composition of modules, each299

module implements a function Xn = Fn(θn, Xn−1), where Xn is a vector representing the300

output of module, θn is the vector of learnable parameters in the module, and Xn−1 is the301

module input vector (as well as the output of the previous module). The input of the first302

module X0 is an input pattern Z0, the output of the whole system is the one of the last mod-303

ule which denoted Zl, where l is the number of layers. In gradient-based learning methods,304

given a cost function Lp(·, ·) measuring the discrepancy between the output of the system305

Zpl and Dp the “correct” or desired output for the p-th input pattern. One is interested on306

minimizing the average discrepancy over a set of input/output pairs called the training set,307

{(Z0
0 , D

0), (Z1
0 , D

1), . . . , (Zn0 , D
n)}. The network is initialized with randomly chosen weights308

θ0. The gradient of the error function with respect to each parameter is computed and gradient309

descent is used to update the weights in each layer, i.e., for the i-th iteration, θi+1 = θi−η ∂L(θ)
∂θi

310

where η is a learning rate, and the computation of ∂L(θ)
∂θi

, is performed by backpropagation al-311

gorithm through the layers [45]. Additionally, for structured data as images, convolutional312

neural networks (CNN) are nowadays the recommended solution. In CNNs, the same operator313

is computed in each pixel of the image. This mechanism is called weight sharing, and it has314

several advantages such as it can reduce the model complexity and make the network easier315

to train [39]. Including any new layer, like EMD, requires therefore the computation of the316

corresponding gradient of the layer with respect to the parameters to be learnt.317

3.2. Derivatives of Morphological EMD in discrete domains.318

3.2.1. Derivative of dilation and erosion. Our approach involves dilation and erosion319

operators as defined in (1.3) and (1.4). However, in the discrete domain as it is the case320

of nD images, the sup operator is computed via max. Consequently, for dilation operator321

(1.3), is computed by δλ(x) = maxw {f(x− w) + SEλ(w)}. To understand how to compute322

the derivative of δλ(x) with respect λ, we rewrite δλ(x) = maxw∈SEλ u(w). The max operator323

has no gradient with respect to non-maximum values, since changing them slightly does not324
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affect the output. In general for rank operators, their derivative is zero in every coordinate,325

except for that of the value attending the desired rank [42, 37]. Accordingly, the derivative326

with respect of a parameter in the additive structuring function is given by327

∂δλ(x)

∂λ
=
∂δλ(x)

∂u(w)

∂u(w)

∂λ
=

{
∂SEλ(w)

∂λ if w ∈ arg maxx δλ(x)

0 otherwise
(3.1)328

where the operator arg maxx f(x) := {x | ∀y : f(y) ≤ f(x)}. In other words, arg max is329

the set of points x, for which f(x) attains the largest value of the function. Note that we330

do not regard maximum as being attained at any x when f(x) = ∞, nor do we regard the331

minimum as being attained at any x when f(x) = −∞. Similarly for the erosion, ελ(x) =332

minw[f(x+ w)− SEλ(w)] = minw∈SEλ u(w)333

∂ελ(x)

∂λ
=
∂ελ(x)

∂u(w)

∂u(w)

∂λ
=

{
−∂SEλ(w)

∂λ if w ∈ arg minx ελ(x)

0 otherwise
(3.2)334

there is only gradient with respect to minimum values.335

As a manner of example, for the dilation by quadratic structuring element (2.1), one has336

∂qλ(z)

∂λ
= (2λ2)−1‖z‖2 =⇒ ∂δλ(x)

∂λ
=

{
‖w‖2
2λ2

if w ∈ arg maxx δλ(x)

0 otherwise
337

Therefore, for Quadratic EMD (2.3) the derivative with respect of λ,338

∂Φλ(x)

∂λ
=
‖wδ‖2 − ‖wε‖2

4λ2
,339

where wδ ∈ arg maxx δλ(x) and wδ ∈ arg minx ελ(x). Thus, the evolution of the parameter340

λ depends on the difference of the norm to the value where the morphological operator at-341

tends their value, normalised by the square of the current value of λ. Curiously the nonflat342

translation invariant MEM (2.4) has a derivative that does not depend on the scale of the343

parameters, i.e, for SEW = [w0, . . . , wk],344

(3.3)
∂ΦSEW (x)

∂wi
=


1/2 if wi ∈ arg maxx δSEW (x)
−1/2 if wi ∈ arg minx εSEW (x)

0 otherwise
345

Finally, the derivative for composition operators, as opening or closing, can be easily compute346

by the chain rule.347

3.3. Implementation. Different methods for learning morphological operators in neural348

networks have been proposed in the literature:349

1. Replace maximum and minimum operator by smooth differentiable approximations,350

making possible the use of conventional gradient descent learning approach via back-351

propagation, for instance using an approximation by counter-harmonic mean [33] or352

other generalizations [29].353
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2. Morphological operations can be computed by combinations of depthwise and point-354

wise convolution with depthwise pooling [38] allowing the use of classical optimization355

procedures.356

3. Use original definition of morphological operator, and in the backpropagation step357

follows the approach used in max-pooling layers [6, 14, 34].358

We follow the last approach. That means that the gradient in (3.1) and (3.2) will have val-359

ues different from zero only for the first element equal to the arg max or arg min instead360

of the complete equivalence class. This is the implementation used in deep learning mod-361

ules based on Tensorflow or Pytorch. An implementation of our approach is available in362

http://www.cmm.mines-paristech.fr/∼velasco/morpholayers/363

3.3.1. Example of learning parameters in morphological operators. We present a dummy364

example of supervised classification in two classes for 1D signals of dimension p. Both classes365

have been generated by the function f(x) = sin(2π
c (x + ε))), for x = 0, . . . , 10, with spatial366

step of 0.02 and where ε is a random realisation of a normalized Gaussian distribution. For367

the first class, we have used a period c = 2 and for the second class a period c = 1.75. Some368

examples are illustrated in Figure 5(a). We explore the training process by using a simple369

architecture: ẑ := model(x) = 1
1+exp(− 1

p

∑p
i=1 δλ(xi))

, i.e, a morphological dilation followed by370

a global average pooling with a sigmoid activation function, also called the logistic function.371

Now, we want to show the computation of the partial derivative with respect to a given loss372

function. As a manner of example, we use the mean squared error as a loss function, i.e.,373

loss(z, ẑ) = (z − ẑ)2.374

One can compute the gradient ∂loss(z,ẑ)
∂λ by using the chain rule of derivative375

∂loss(z, ẑ)

∂λ
=
∂loss(z, ẑ)

∂ẑ

∂ẑ

∂σ

∂σ

∂
∑
δλ/p

∂
∑
δλ/p

∂λ
,376

where σ(x) := 1
1+exp(−x) is the sigmoid function. Remember that the derivative of the sigmoid377

function is σ(x)σ(1−x). By defining m =
∑p

i=1 δλ(xi)/p, the mean value of the dilation, which378

is used as decision function, the derivative of the parameter of the dilation with respect to the379

loss function can be written by380

∂loss(z, ẑ)

∂λ
=

(2m)(m(1−m))

p

p∑
i=1

∂δλ(x)

∂λ
.381

The first term is computed in the forward pass and it is the same for every parameter. We382

decided to train a nonflat structuring function, so from (3.3), one can interpret the second383

term as a counts the number of number of times that the spatial position in the structuring384

function attains the maximal value, which is illustrated in Figure 5(c) for the last epoch of the385

training. Additionally, the evolution of structuring function weights is given in Figure 5(d).386

As a manner of example, two signals and its corresponding learned dilation are shown for the387

initialization (as a flat structuring function) in Figure 5(e) and after convergence in Figure 5(f).388

Finally, the decision function (mean value of the learned dilation) is shown for all the training389

examples at initialisation Figure 5(g) and after convergence Figure 5(h). We highlight that390

the learned structuring function seems to be an asymmetric quadratic with an additive bias.391
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(a) Class 1, f(x) = sin( 2π
1.95(x+ε)

) (b) Class 2, f(x) = sin( 2π
1.75(x+ε)

)

(c)
∑p
i=1

∂δλ(x)
∂λ

(d) Evolution of learned structuring function

(e) In the initialization (f) After convergence

(g) In the initialization (h) After convergence

Figure 5. Evolution in the case of Nonflat structuring function learning in a classification problem based
on dilation and average pooling.
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Figure 6. Baseline architecture vs Baseline architecture applied to EMD. The baseline uses a 20 convolu-
tions 2D with a kernel size of (24, 1) followed by a max-pooling reduction of size (5, 1) and a RELU activation.
For the case presented in the experimental section the same baseline architecture is used. In (b) is the same
baseline architecture adapted for ten empirical modes.

4. Experimental results on hyperspectral classification. In this section, we investigate392

the application of the proposed morphological empirical mode layer (Figure 4) to the problem393

of signal classification. In particular, we will focus in the case of supervised classification of394

high-dimensional 1D signals in hyperspectral images. The architecture chosen as baseline is395

the one recommended in [40] and illustrated in Figure 6. More specifically, the network is396

composed of convolution layers, RELU, max-pooling. Each stage consists of twenty convolu-397

tion layers with a kernel size of 24 channels followed by ReLU activation, and a dense layer398

with batch normalization. In the experimenal section, the proposed morphological empirical399

mode will be used as the first layer of an architecture of the baseline neural network.400

4.1. Considered datasets. The aim of this section is to compare the results obtained by401

different proposed EMD for 1D supervised classification problems. Accordingly, we used as402

benchmark two classical hyperspectral images (HIS):403

• Pavia University hyperspectral is a scene acquired by the ROSIS sensor in the north404

of Italy. The dataset contains nine different classes including multiple solid structures,405

natural objects and shadows (Figure 7(a-c)). After discarding the noisy bands, the406

considered scene contains 103 spectral bands, with a size of 610 × 340 pixels with407

spatial resolution of 1.3 mpp and covering the spectral range from 0.43 to 0.86 µm.408

• Indian Pines dataset is a hyperspectral image captured over an agricultural area char-409

acterized by its crops of regular geometry and also irregular forest regions. The scene410

consists of 145 × 145 pixels and with 224 spectral bands, which have been collected411

in the wavelength range from 0.4 to 2.5 µm. There are 16 different classes for train-412

ing/testing set with a highly unbalanced distribution (Figure 7(d-f)).413

4.1.1. Protocol. HSI scenes generally suffer from high intraclass variability and interclass414

similarity, resulting from uncontrolled phenomena such as variations in illumination, presence415

of areas shaded and/or covered by clouds, among others. Accordingly, the selection of training416

samples must be carried out very carefully. Deep learning models for HSI have been tradi-417

tionally trained by extracting random samples from available ground-truth. However, some418

works emphasize that the random sampling strategy has a great influence on the reliability419
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(a) In Pavia University HSI, each data point
corresponding to a vector is 103 dimensions.
An example per class is shown from the training
set in (c).

(b) In Indian Pines HSI, each data point cor-
responds to a vector in 224 dimensions. An
example per class is shown from the training
set in (e).

(c) Spatial position of training set in 9 classes
for Pavia University HSI.

(d) Spatial position of testing set for Pavia Uni-
versity HSI.

(e) Spatial position of training set in 16 classes for
Indian Pines HSI.

(f) Spatial position of testing set for Indian
Pines HSI.

Figure 7. For considered HSI dataset, (a) an example per class in Pavia University and (b) Indian Pines.
Spatial disjoint distribution of training and testing sets: for Pavia University in (c-d) and for Indian Pines in
(e-f). In both cases, white pixels are not considered in the evaluation.
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and the quality of the solution obtained in HSI [40]. In order to avoid this import issue, we420

have follow the recommendation of using spatial-disjoint samples, i.e, to have used a strict421

spatial-separation between training and testing sets, allowing us to compare our models in a422

difficult and realist case. The selected training and testing samples have been illustrated in423

Figure 7(b-c) for Pavia University and (e-f) for Indian Pines datasets.424

In gradient descent approaches the selection of random initialization of the parameter425

value is critical. The aim of this initialization is to prevent layer activation outputs from426

exploding or vanishing during the course of a forward pass [17]. While the source of difficulty427

is well-understood, there is no universal remedy. For our MEM layers, we have used the428

following initialization:429

1. For non-flat structuring functions, a flat structuring element, i.e., SEW is a zero matrix.430

2. For quadratic structuring functions, λ is a random realization of a uniform distribution431

between one and four, and for the parameter c, a uniform distribution between .5 and432

.95.433

3. For the parameter α in (2.7), the value .5 is used.434

4.1.2. Quantitative results. We explore the use of proposed EMDs as preprocessing lay-435

ers, that means instead of learning the classification task from the original spectral signals,436

we will use the residual of a single step of the decomposition by MEMD. The parameters of437

the MEMD are learned in a gradient-based learning method. As a manner of comparison,438

we report in Figure 9 and Figure 10 the accuracy over testing samples for different proposed439

envelopes by varying both the number of MEM from 10 to 40 and the type of structuring440

function. Each point is the performance for the best model trained from different random ini-441

tialization and an early stopping parameter of ten, i.e, we have stopped the training process if442

it is not improving during ten successive epochs. As it is common in supervised classification443

problems, we have used categorical cross-entropy as loss function. Additionally, for quantita-444

tive comparisons, we have reported best, mean and standard deviation after ten repetitions on445

both Indian Pines HSI (Table 1) and Pavia University HSI (Table 2). In general, the following446

results can be highlighted:447

• Learning the parameter in the α-Morphological Empirical Mode (2.7) improves the448

performance. This can be observed in Table 1) and Pavia University HSI (Table 2)449

by comparing the performance of models trained with α = 0.5 and models where450

this parameter is learned. Additionally, in Figure 9 and Figure 10 this fact has been451

highlighted by using different colors in the representation.452

• Quadratic MEMDs perform significantly worse than non-flat ones. However, we would453

like to highlight that the number of parameters is less in the first case.454

• In the considered HSI supervised classification problems, the best of the proposed ap-455

proaches have a performance equivalent to our baseline, which is the state-of-the-art456

for the considered problems (Table 3). However, we remark that the inclusion of mor-457

phological EMDs induces an invariant to additive intensity shifts in the classification458

model. To illustrate this fact, we have trained a classical model Figure 6 with and459

without a random data augmentation by using an additive shift as transformation.460

That is the usual approach to include some invariance in deep learning models. This461

gives an improvement in the invariance measure in Figure 8. We highlight that by462

This manuscript is for review purposes only.



18 S. VELASCO-FORERO, R. PAGÈS AND J. ANGULO

Figure 8. Analysis of invariance against additive shift for the training sample of Indian Pines. Norm of
the Difference in the predictions with and without additive shift, i.e., ||pred(x) − pred(x + c)||22 for different
values of c is given for three models: a) MEMD by (ε, δ), b) baseline model, c) baseline model with a data
augmentation by random additive constant. We highlight that by Remark 2.8 all the MEMD based models are
invariant to additive shifts.

Remark 2.8 all the MEMD based models are intrinsically invariant to additive shifts,463

which is illustrated in Figure 8.464

5. Discussion. The paper investigated the formulation of EMD based on morphological465

operators and its integration into deep learning architectures. The training of the layers466

realizing the EMD process allows them to adapt the morphological models to the signals to467

be classified. The assessments have been done for supervised classification problem in 1D468

signals from hyperspectral images (i.e., pixelwise spectra), but the proposed approaches are469

applicable to CNN architectures for nD images, without conceptual or algorithmic problem.470

1D signals have been used for the only reason that the effects of the process on such signals471

are easier to interpret in a research perspective. Several variants of the morphological layers472

have been used. However, we think that for a better understanding of some of the elements of473

the approach: behaviour of the gradient of the layers during the optimization, contribution of474

the different parts of the signals to the optimization, effect of the initialization, etc. a deeper475

theoretical and empirical study is required. Additionally, we have illustrated the use of only476

one decomposition but the presented framework allows us to go further. In the future work,477

we are planning to use some interesting approaches to propose more adapted optimization478

schemes [8] for max-plus based layers, which reveals remarkable properties of network pruning479

by these operators [56]. Additionally, we will explore: a) the use for the MEMD of other480

structuring functions as Poweroids or Anisotropic Quadratic functions as proposed in [47], b)481

to consider the interest of MEMD to produce Scale Equivariant Neural Networks as in [46].482
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Figure 9. Test accuracy for spatial-disjoint samples in Indian Pines Hyperspectral image. Envelopes
produces by opening/closing MEMD (left figure) and erosion/dilation MEMD(right figure) by flat structuring
function are used in the architecture presented inFigure 6. In both the number of MEMD varies from 10 to 40.
Each point is the performance for the best model trained from different random initialization and same early
stopping parameter (patience of ten epochs). The horizontal lines indicate the maximum/average/minimum
performance of baseline architecture [40] on original data. Blue points correspond to α = .5, i.e., when this
parameter was not learned.

Figure 10. Test accuracy for spatial-disjoint samples in Indian Pines Hyperspectral image. Envelopes
produces by Lasry-Lions operator (left figure), erosion/dilation (central figure), and opening/closing (right
figure) by quadratic structuring functions are used in the architecture presented inFigure 6. The number of
MEMD varies from 10 to 40. Each point is the performance for the best model trained from different random
initialization and same early stopping parameter (patience of 10 epochs). The horizontal lines indicate the
maximum/average/minimum performance of baseline architecture [40] on original data. Blue points correspond
to α = .5, where this parameter was not learned.
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Overall Val. Acc. Overall Training Acc.

Type Operator α Best µ± σ Best µ± σ
Baseline — — 85.035 83.929±0.654 93.443 91.413±1.696

NonFlat (γ, ϕ) .5 84.080 83.239 ± 0.512 97.012 95.495±1.184
True 84.420 83.490 ± 0.656 97.223 96.012 ± 0.847

(ε, δ) .5 83.252 82.764 ± 0.576 97.451 95.226 ± 2.065
True 85.311 84.052 ± 1.227 95.922 94.015 ± 2.717

(ε, δ) SE(0) ≥ 0 .5 83.379 82.870 ± 0.261 96.889 95.621 ± 1.043
True 85.247 83.821 ± 0.787 96.168 0.94874 ± 1.120

Quadratic (γ, ϕ) .5 79.495 78.024 ± 0.754 96.080 93.580 ± 2.625
True 80.959 77.971 ± 1.563 97.645 95.043 ± 1.565

(ε, δ) .5 81.363 79.798 ± 1.006 96.484 94.964± 1.111
True 81.596 80.847 ± 0.537 97.223 95.066± 1.191

Lasry-Lions .5 81.384 79.909 ± 0.876 96.924 95.273 ± 1.336
True 82.424 81.299 ± 0.983 96.941 95.674 ± 0.927

Table 1
Experiment on hyperspectral Indian Pines Disjoint classification problem. Each experiment has been re-

peated ten times varying the initialization of base architecture. Twenty filters of MEMD in a single level of
simplification. The training was performed without any data augmentation technique. The constraint SE(0) ≥ 0
is used to assure the order relation among envelopes (See Remark 1.2)

Overall Val. Acc. Overall Training Acc.

Type Operator α Best µ± σ Best µ± σ
Baseline — — 85.468 83.396± 2.420 92.527 86.447 ± 8.960

NonFlat (γ, ϕ) .5 79.543 78.189 ± 0.726 95.715 92.219 ± 2.408
True 82.353 79.293 ± 1.767 96.353 91.525 ± 4.335

(ε, δ) .5 84.261 82.681 ± 0.798 93.726 88.794 ± 4.998
True 84.133 82.529 ± 1.131 93.879 89.735 ± 2.118

(ε, δ), SE(0) ≥ 0 .5 83.908 81.740 ± 1.295 93.216 84.575 ± 7.334
True 85.483 83.994 ± 1.238 94.389 89.617 ± 3.289

Quadratic (γ, ϕ) .5 74.516 70.821 ± 2.023 91.201 80.951 ± 6.432
True 73.539 69.399 ± 2.339 93.828 87.360 ± 6.443

(ε, δ) .5 77.411 75.432 ± 1.193 95.052 86.470 ± 5.939
True 81.196 77.923 ± 1.700 92.476 86.593 ± 6.585

Lasry-Lions .5 77.461 76.396 ± 0.614 97.067 90.826 ± 6.223
True 80.971 78.501 ± 1.332 96.123 87.082 ± 8.221

Table 2
Experiment on hyperspectral Pavia University for a disjoint training sample. Nine different classes. Each

experiment has been repeated ten times varying the initialization of base architecture. Twenty filters of MEMD
in a single level of simplification. The training was performed without any data augmentation technique. The
constraint SE(0) ≥ 0 is used to assure the order relation among envelopes (See Remark 1.2)
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Method Indian Pines Pavia University

Random Forest 65.79 69.64

Multinomial Logistic regression 83.81 72.23

Support Vector Machines 85.08 77.80

MLP 83.81 81.96

CNN1D 85.03 85.47

Φα
ε,δ+ CNN1D 85.31 85.48

Table 3
Comparison (in terms of OA) between different HSI classification models trained on spatial-disjoint sam-

ples. The performance for first four models are included for comparison from [40].

Finally, we highlight that the study of theoretical properties of morphological networks in the483

sense of their expressiveness and universality [57] is fundamental to have a full understanding484

of the limits of these types of layers when they are integrated in DL architectures.485
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[10] E. Deléchelle, J. Lemoine, and O. Niang, Empirical mode decomposition: an analytical approach for509
sifting process, IEEE Signal Processing Letters, 12 (2005), pp. 764–767.510

[11] E. H. S. Diop and R. Alexandre, Analysis of intrinsic mode functions based on curvature motion-like511
pdes, in Curves and Surfaces, J.-D. Boissonnat, A. Cohen, O. Gibaru, C. Gout, T. Lyche, M.-L.512
Mazure, and L. L. Schumaker, eds., Cham, 2015, Springer International Publishing, pp. 202–209.513

[12] E. H. S. Diop, R. Alexandre, and L. Moisan, Intrinsic nonlinear multiscale image decomposition: A514
2D empirical mode decomposition-like tool, Computer Vision and Image Understanding, 116 (2012),515
pp. 102–119. Virtual Representations and Modeling of Large-scale Environments (VRML).516

[13] R. A. E.-H. S. Diop and V. Perrier, A PDE model for 2d intrinsic mode functions, IEEE ICIP, (2009).517

This manuscript is for review purposes only.

https://hal-mines-paristech.archives-ouvertes.fr/hal-01108130


22 S. VELASCO-FORERO, R. PAGÈS AND J. ANGULO
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