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Abstract. Mathematical morphology is a useful theory of nonlinear operators
widely used for image processing and analysis. Despite the successful application
of morphological operators for binary and gray-scale images, extending them to
vector-valued images is not straightforward because there are no unambiguous
orderings for vectors. Among the many approaches to multivalued mathematical
morphology, those based on total orders are particularly promising. Morphologi-
cal operators based on total orders do not produce the so-called false-colors. On
the downside, they often introduce irregularities in the output image. Although
the irregularity issue has a rigorous mathematical formulation, we are not aware
of an efficient method to quantify it. In this paper, we propose to quantify the ir-
regularity of a vector-valued morphological operator using the Wasserstein met-
ric. The Wasserstein metric yields the minimal transport cost for transforming the
input into the output image. We illustrate by examples how to quantify the irreg-
ularity of vector-valued morphological operators using the Wasserstein metric.

Keywords: mathematical morphology · vector-valued images · total order · ir-
regularity issue · optimal transportation.

1 Introduction

Mathematical morphology (MM) is a nonlinear theory that uses geometric and topolog-
ical concepts for image and signal processing. The theory of mathematical morphology
is usually defined on an algebraic structure called complete lattices which is satisfac-
tory for binary and grayscale images [10, 8]. In the case of vector-valued images, vector
spaces endowed with a total order is one of the most comfortable frameworks for the
extension of morphological processing [2, 1, 22]. Approaches that have been recently
formulated using total orderings include [9, 12, 18–21]. Despite their successful appli-
cations for color and hyperspectral image processing, Chevallier and Angulo showed
that the information contained in a total order is too weak to reproduce the natural
topology of the value space [5]. As a consequence, morphological operators may intro-
duce irregularities and aliasing on images.
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Our motivation is to formulate quantitative measures to study the irregularity im-
plied by a morphological operator on vector-valued images. We believe that this is the
first work proposing a framework based on the Wasserstein metric to score this irregu-
larity effect considering pairs of input/output images [11, 23]. The paper is organized as
follows: Section 2 introduced mathematical morphology concepts for vector-valued im-
ages and the difficulties produced by operators based on total orders. Section 3 presents
our proposition of irregularity measure. Additionally, results on natural images show the
goodness of proposed measures. The paper ends with Section 4 including conclusions
and recommendations for future works.

2 Basic Concepts on Mathematical Morphology

Let us begin by presenting the basic concepts and the notations used in this paper. First,
an image I corresponds to a mapping from a point set D to a value set V, that is,
I : D → V. The set of all images from a domain D to V is denoted by V = VD.
Throughout the paper, we assume the point set D is finite and included in a space E ,
where (E ,+) is a group. Usually, we consider E = R2 or E = Z2 with the usual
addition. Furthermore, we assume the value set V is a complete lattice equipped with
a metric d : V × V → [0,+∞). Recall that a complete lattice L is a partially ordered
set in which any subset X ⊂ L has both an infimum and a supremum [3]. The infimum
and the supremum of X are denoted respectively by

∧
X and

∨
X .

2.1 Mathematical Morphology on Complete Lattices

Mathematical morphology (MM) is mainly concerned with image operators used to
extract relevant geometric and topological information from an image [8, 6, 15]. The
two elementary operators of MM are dilations and erosions. Many other operators, such
as opening, closing, and the morphological gradient, are obtained by combining the
elementary morphological operators.

Complete lattices provide an appropriate mathematical background for defining the
elementary morphological operators [10, 8]. Indeed, the elementary morphological op-
erators are those that commute with the supremum and the infimum operations in a com-
plete lattice. When the value set V is a complete lattice, the operators δS , εS : V → V
given by the following equations where S ⊆ E is finite are respectively a dilation and
an erosion:

δS(I)(p) =
∨
s∈S

p−s∈D

I(p− s) and εS(I)(p) =
∧
s∈S

p+s∈D

I(p+ s). (1)

The set S is referred to as the structuring element (SE) [15]. The images δS(I) and
εS(I) are respectively the dilation and the erosion of I by the structuring element S.

Although there exist more general definitions, the elementary morphological op-
erators given by (1) are widely used in practical situations. Combining dilations and
erosions, we obtain many other morphological operators. In this paper, we focus on
elementary operators defined by (1). We also consider openings γS and closings φS ,
which are obtained by the compositions γS = δS ◦ εS and φS = εS ◦ δS [15].
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2.2 Vector-Valued Mathematical Morphology

Let us now address morphological operators for vector-valued images. A vector-valued
image is obtained by considering V ⊆ R̄d, where R̄ = R ∪ {−∞,+∞} and d ≥ 2.

Vector-valued dilations and erosions can be defined using (1) whenever the vector-
valued set V is a complete lattice. However, there are many different ordering schemes
for vector-valued sets. Defining an appropriate ordering scheme is one of the main chal-
lenges of vector-valued MM. The following references provide a brief sense of interest-
ing directions of research on vector-valued MM [1, 2, 4, 5, 7, 9, 18, 19, 21, 22].

As examples of ordering schemes on vector-valued sets, let us recall the marginal
and the lexicographical orderings [2]. The marginal ordering is defined as follows for
all u = (u1, . . . , ud) ∈ V and v = (v1, . . . , vd) ∈ V:

u ≤M v ⇐⇒ ui ≤ vi,∀i = 1, . . . , d, (2)

where “≤” denotes the usual ordering on R. The marginal ordering is also called the
component-wise ordering or the Cartesian product ordering. The lexicographical order-
ing is defined as follows:

u ≤L v ⇐⇒ ∃i : ui ≤ vi and uj = vj ,∀j < i. (3)

In contrast to the marginal ordering, the lexicographical ordering is a total ordering.
Hence, either one of the inequalities u ≤L v or v ≤L u holds for any u,v ∈ V.

2.3 The False “Colors” Problem Versus the Irregularity Issue

One problem on vector-valued MM is the creation of “false colors” or, more generally,
false values [14]. A morphological operator ψ : V → V introduces false values when-
ever there are values on ψ(I) which do not belong to the original image I. Formally, let
2V denote the power set of V and let V : V → 2V be the mapping given by

V (I) = {I(p) : p ∈ D}, ∀I ∈ V. (4)

A morphological operator ψ introduces false colors if the set difference V (ψ(I))\V (I)
is not empty. The abnormal false values can be a problem in many applications such as
when dealing with satellite data [14]. Using the marginal ordering, the dilation and the
erosion given by (1) usually yield false colors.

A total ordering, such as the lexicographical ordering, circumvents the problem
of the false values [14]. Using a total ordering, the supremum and the infimum of a
finite set is an element of the set, i.e., they coincide with the maximum and minimum
operations, respectively. As a consequence, ifD is finite, the elementary morphological
operators given by (1) only contain values of the input image I. On the downside, a total
ordering can be irregular in a metric space. According to Chevallier and Angulo, the
irregularities follow because the topology induced by a total order may not reproduce
the topology of a metric space [5]. Specifically, let the value set V be a totally ordered
set as well as a metric space, with metric d : V×V→ [0,+∞). Chevallier and Angulo
showed that there exists u,v,w ∈ V such that u ≤ v ≤ w but d(u,w) < d(u,v)
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a) Dilated Image JL

(Lexicographical RGB) b) Toy Image I
c) Dilated Image JM

(Marginal)

Fig. 1. Illustractive example of the irregularity issue. Image with three colors and its correspond-
ing dilation by a cross structuring element using the RGB lexicographial and marginal orderings.

under mild conditions with respect to the connectivity of V. In words, although w is
closer to u than v, the inequalities u ≤ v ≤ w suggest w is farther from u than v.
Since the morphological operators are defined using the extrema operators, they do not
take the metric of V into account.

A visual interpretation of the irregularity issue is shown in Figure 1, which is very
similar to an example provided in [5]. Figure 1b) shows an image with three RGB
colors, namely u = (0, 0, 0), v = (0, 0, 1), and w = (0.005, 0, 0). The toy image I
is obtained by replacing pure black values u by w with probability 0.3 from an image
of size 32 × 64 with two stripes of colors blue and black. The dilations JL and JM

by a cross as the structuring element using respectively the lexicographical RGB and
the marginal ordering schemes are also depicted in Figure 1. Visually, u and w are
black colors while v is a pure blue. Using the Euclidean distance, we obtain d(u,v) =
1 and d(u,w) = 0.005. These distances agree with our color perception. However,
using the lexicographical ordering, we obtain u ≤L v ≤L w. As a consequence, the
following happens when we compute the dilation δS(I) = JL using the lexicographical
ordering: the blue pixel value v advances over the black u but it is overlaid by the black
w, resulting in the irregularities shown in Figure 1a). In contrast, the dilated image
depicted in Figure 1c) obtained using the marginal ordering does not present any visual
irregularity.

Although we know the irregularity results from a divergence between the topolo-
gies induced by the metric and the total ordering, there is no consensual quantitative
measure which agrees with our visual perception. A quantitative measure can help to
choose an appropriate ordering scheme for vector-valued mathematical morphology.
In the following section, we propose to measure the irregularity using the Wasserstein
metric.

3 Measuring the Irregularity

In this section, we present a quantitative measure for the irregularity issue, called the
irregularity index. We begin by presenting a global irregularity index. Then, we propose
computing the irregularity index as an average of local irregularity indexes. Although
we are interested in measuring the irregularity implied by a total ordering, we will not
assume V is totally ordered. Indeed, the proposed irregularity measure is well defined
whenever D is finite and V is a metric space.
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3.1 The Wasserstein Metric and the Generalized Sum of Pixel-Wise Distances

The global irregularity index is defined in terms of the quotient of the Wasserstein metric
and a generalized sum of pixel-wise distances. Let us begin by reviewing the general-
ized sum of pixel-wise distances.

Consider an image operator ψ : V → V . Given an input image I ∈ V , let J = ψ(I)
denote the output of the image operator. The generalized sum of pixel-wise distances of
I and J is an operator Dp : V × V → [0,+∞) given by

Dp(I,J) =

(∑
x∈D

dp
(
I(x),J(x)

)) 1
p

, p ≥ 1. (5)

The generalized sum of pixel-wise distances is one of the simplest measures that takes
into account the metric d and the pixel locations. However, Dp is usually not properly
scaled; possibly because its dimension is the same as the metric d. For example, using
the Euclidean RGB distance and p = 1, the images shown in Figure 1 yield the val-
ues D1(I,JL) = 34.12 and D1(I,JM ) = 66.05. Note that D1(I,JL) ≤ D1(I,JM ).
Hence, the generalized sum of pixel-wise distances is not an appropriate quantitative
measure for the irregularity issue.

Let us now review the Wasserstein metric, also known as the earth mover’s distance
or the Kantorovich-Rubinstein distance in certain contexts [11, 23]. The Wasserstein
metric, named after the Russian mathematician Leonid Vaseršteı̆n, has been previously
used by Rubner et al. for content-based image retrieval [11]. In the general case, the
Wasserstein metric is used to compute distances between probability distributions. For
discrete probabilities, however, it is formulated as a transportation problem.

The objective of a transportation problem is to minimize the cost to deliver items
from n factories to m shops. In our context, the transportation problem minimizes the
cost to transform the input image I into the output image J. The cost is defined us-
ing the metric on the value set V. Precisely, let V (I) = {v1, . . . , vn} and V (J) =
{u1, . . . , um} be the sets of color values of I and J, respectively. Given p ≥ 1, the cost
to transform a value vi of I into a value uj of J is defined by

cij = dp(vi, uj), i = 1, . . . , n, j = 1, . . . ,m. (6)

The Wasserstein metric, denoted byWp : V × V → [0,∞) for p ≥ 1, is given by

Wp(I,J) =

 n∑
i=1

m∑
j=1

cijxij

1/p

, p ≥ 1, (7)
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where xij solves the linear programming problem

minimize
n∑

i=1

m∑
j=1

cijxij

subject to
m∑
j=1

xij = Card({x : I(x) = vi}), ∀i = 1, . . . , n,

n∑
i=1

xij = Card({x : J(x) = uj}), ∀j = 1, . . . ,m,

xij ≥ 0, ∀i = 1, . . . , n, ∀j = 1, . . . ,m.

(8)

In the transportation problem (8), the variable xij represents the amount of the pixel
value vi of I transformed to the pixel value uj of J. In some sense, the Wasserstein
metric can be interpreted as the minimal cost to transform I into J. Considering p = 1
and the Euclidean distance, we obtain W1(I,JL) = 6.18 and W1(I,JM ) = 65.94
for the images shown in Figure 1. Note that the inequality W1(I,JL) < W1(I,JM )
holds in this example. Like the generalized sum of pixel-wise distances, the Wasserstein
metric is not an appropriate measure of the irregularity; possibly because it has the same
dimension as the generalized sum of pixel-wise distances.

3.2 Global Irregularity Index

Although both generalized sum of pixel-wise distances and the Wasserstein metric are,
per se, not appropriate to evaluate the irregularity issue, we advocate in this paper that
their quotient yields a useful measure. First of all, note that the generalized sum of
pixel-wise distances satisfies

Dp(I,J) =

 n∑
i=1

m∑
j=1

cijyij

 1
p

, p ≥ 1, (9)

where
yij = Card ({x : I(x) = vi and J(x) = uj , x ∈ D}) , (10)

for all i = 1, . . . , n and j = 1, . . . ,m. Moreover, it is not hard to see that yij ≥ 0,
m∑
j=1

yij = Card({x : I(x) = vi}) and
n∑

i=1

yij = Card({x : J(x) = uj}) (11)

for all i = 1, . . . , n and j = 1, . . . ,m. Therefore, the generalized sum of pixel-
wise distances also measures the cost of transforming I into J. Moreover, Dp andWp

have the same units and magnitudes. Because Wp is the minimal cost, the inequality
Wp(I,J) ≤ Dp(I,J) holds for any I and J = ψ(I). Using these remarks, we propose
to measure the irregularity using the mapping Φg

p : V × V → [0, 1] given by the rela-
tive gap between Dp and Wp. Precisely, given images I,J ∈ V , we define the global
irregularity index by means of the equation

Φg
p(I,J) =

Dp(I,J)−Wp(I,J)

Dp(I,J)
, if Dp(I,J) 6= 0, (12)



Measuring the Irregularity of Vector-Valued Morphological Operators 7

and Φg
p(I,J) = 0 if Dp(I,J) = 0. Note that the larger the gap betweenWp(I,J) and

Dp(I,J), the larger the global irregularity index. Equivalently, we have

Φg
p(I,J) =

0, if Dp(I,J) = 0,

1− Wp(I,J)

Dp(I,J)
, otherwise.

(13)

The irregularity index is symmetric and bounded, that is, Φp(I,J) = Φp(J, I) and
0 ≤ Φp(I,J) ≤ 1. Moreover, Φg

p(I,J) is a dimensionless quantity. The more irregular
is J = ψ(I), the larger the value of Φg

p(I,J) is expect to be. For example, using p = 1
and the Euclidean distance, the irregularity index of the dilated images shown in Figure
1a) and 1c) are respectively Φg

1(I,JL) = 81.90% and Φg
1(I,JM ) = 0.17%.

3.3 Average of Local Irregularity Indexes

Despite its mathematical formulation, computing the global irregularity index is not an
easy task for natural images. Precisely, this irregularity index requires solving a linear
programming problem with mn variables, where m and n are the number of distinct
pixel values of the images I and J, respectively. In practical situations, the dimension
of the linear programming problem (8) is extremely large, making it impossible to be
solved in real time. To circumvent this computational burden, we propose to compute
the Wasserstein metric and the generalized sum of pixel-wise distances locally and ag-
gregate the values into a single quantitative index.

Let {W1,W2, . . . ,Wk}, with W` ⊆ D for all ` = 1, . . . , k, be a family of pos-
sibly overlapping local windows such that D ⊆ ∪ki=1Wi. Also, let Dp(I,J|W`) and
Wp(I,J|W`) denote the generalized sum of pixel-wise distances and the Wasserstein
metric computed restricting the images I and J to the local window W`. The average of
local irregularity indexes is defined by the following equation for all I,J ∈ V:

Φa
p(I,J) = 1−

(
k∏

`=1

Wp(I,J|W`)

Dp(I,J|W`)

) 1
p

(14)

We would like to emphasize that, because the irregularity index is given by a ratio, the
geometric mean is used to aggregate the quotient ofWp(I,J|W`) by Dp(I,J|W`).

In our computational implementation, inspired by the structural similarity index
(SSIM) [24], we used local square windows of size 8 × 8 with strides of 4 pixels.
Using p = 1 and the Euclidean distance, the average of local irregularity indexes of
the dilated images shown in Figure 1a) and 1c) are respectively Φa

1(I,JL) = 15.27%
and Φa

1(I,JM ) = 0.03%. Note that Φa
1(I,JL) is significantly less than Φg

1(I,JL) =
81.90%. However, the following experiment shows that the average of local irregularity
indexes is highly correlated to the global irregularity index.

3.4 The Global Irregularity Index and the Average of Local Irregularity Indexes

Let us compare the global irregularity index and the average of local irregularity indexes
using toy images similar to the one provided by Chevallier and Angulo [5] but with
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different probabilities. Precisely, we first construct an image of size 64 × 32 with two
stripes of the same width but with the colors black u = (0, 0, 0) and blue v = (0, 0, 1)
in the RGB color space. Then, a pure black pixel value is replaced by the black w =
(0.005, 0, 0) with probability π ∈ [0, 1]. The resulting image I is dilated by a cross
structuring element using both the lexicographical and the marginal ordering schemes.
The simulation has been repeated 100 times for each probability π ∈ [0, 1]. Figure 2
shows the mean of both the global irregularity index and the average of local irregularity
indexes by the probability π. Again, we used the Euclidean distance to compute the
cost to transform pixel values. For a better interpretation of this graph, dilated images
obtained using the lexicographical ordering from images generated with probabilities
π = 0.0, 0.25, 0.50, 0.75, and 1.0 are shown at the bottom of Figure 2.

Note that both the global irregularity index and the average of the local indexes
are very close to zero for the marginal ordering. In contrast, using the lexicographical
RGB ordering, both irregularity indexes increase until close to π = 0.3 and then de-
crease. Furthermore, the irregularity indexes agree with the visual irregularity provided
in the sample images at the bottom of Figure 2. Finally, we would like to point out that
the correlation between the global and average of local irregularity indexes is 98.77%.
Therefore, although they have different scales, we believe both the global irregularity
index and the average of the local index can be used as an effective measure for the
irregularity issue.

3.5 Example with Natural Color Images

Let us now provide some examples with natural color images. Precisely, we compute the
average of local irregularity indexesΦa

p, the generalized sum of pixel-wise distancesDp,
and the average of local Wasserstein metrics, denoted byWa

p , for several RGB images
of size 256× 256. Because of their computational burden, we refrained to compute the
global irregularity index and the Wasserstein metric globally. In contrast toΦa

p, however,
the local Wasserstein metrics are aggregated using the arithmetic mean. Moreover, for
better scaling the Dp and Wa

p , these quantities have been divided by the number of
pixels of the processed image. Like in the previous examples, we used the Euclidean
distance as the metric of the value set. The quantitative measures have been computed
using the erosion, the dilation, the opening, and the closing by a 7×7 square structuring
element. Two approaches based on the total ordering have been considered: One based
on the RGB lexicographical order and the other based on a supervised reduced ordering
[19]. In a supervised reduced ordering, the pixel values are ranked using a supervised
machine learning technique trained on a set of background and foreground pixels. We
also included the marginal approach for comparison purposes. Recall that the marginal
approach is not based on a total order. Thus, it can circumvent the irregularity issue.

Figure 3 summarizes the outcome of this computational experiment. To facilitate the
exposition, the average of the local irregularity indexes, the generalized sum of pixel-
wise distances divided by the number of pixels of the image, and the average of local
Wasserstein metric divided by the number of pixels of the local windows, are presented
as a triple (Φa

p,Dp,Wa
p ) below the output images in percentage.

The weakness of both the generalized sum of pixel-wise distances Dp and the
Wasserstein metricWp for measuring the irregularity is observed on the images shown
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D
ila

te
d

im
ag

es

Fig. 2. Top: Irregularity indexes by the probability of replacing a pure black pixel value u =
(0, 0, 0) by the black w = (0.005, 0, 0) in an image similar to Figure 1b). Bottom: Lexico-
graphical dilation of images obtained using π = 0.0, 0.25, 0.5, 0.75, and 1.0, respectively.

in Figure 3. As pointed out previously, Dp and Wp are not dimensionless measures;
they are possibly measured using some photometric quantity such as lumen [17]. As
a consequence, they may yield misleading values. For example, comparing the eroded
boats and the dilated tulips depicted respectively in Figure 3b) and 3f), one may con-
jecture that the larger Dp orWp, the more irregular is the image. However, opening the
Lena image or closing the balloons images using the lexicographical ordering, yielded
the irregular images shown in Figure 3j) and 3n) whose quantitiesD1 andWa

1 are much
smaller than the values obtained for the eroded boat images.

Let us now address the proposed irregularity index Φa
1 , which is a dimensionless

measure. Note that the three eroded versions of the boat image shown in Figure 3b),
3c), and 3d) are quite similar. Accordingly, the corresponding irregularity indexes have
similar magnitudes. In contrast, the dilated version of the tulips image, depicted in 3f),
3g), and 3h), are quite different. In particular, the irregularities of the red pixels in
the flowers on Figure 3f) obtained using the lexicographical ordering is noticeable. In
agreement, the irregularity indexΦa

1 is much larger for the lexicographical ordering than
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a) Boat b) Erosion – Lex. c) Erosion – Superv. d) Erosion – Marg.

(Φa
1 ,D1,Wa

1 ): (1.2%, 22.9%, 22.7%) (1.9%, 22.7%, 22.4%) (0.7%, 23.2%, 23.3%)

e) Tulips f) Dilation – Lex. g) Dilation – Superv. h) Dilation – Marg.

(Φa
1 ,D1,Wa

1 ): (8.3%, 31.8%, 29.6%) (7.4%, 28.1%26.3%) (1.5%, 37.1%, 36.7%)

i) Lena j) Opening – Lex. k) Opening – Superv. l) Opening – Marg.

(Φa
1 ,D1,Wa

1 ): (16.5%, 8.5%, 7.8%) (13.3%, 9.1%, 8.3%) (2.7%, 9.4%, 9.3%)

m) Ballons n) Closing – Lex. p) Closing – Superv. o) Closing – Marg.

(Φa
1 ,D1,Wa

1 ): (13.8%, 4.5%, 3.8%) (16.5%, 4.8%, 4.0%) (4.46%, 4.51%, 4.22%)

Fig. 3. Illustrative examples of the average of local irregularity indexes Φa
1 computed for several

color images using different morphological operators. For comparison purposes, we also included
the sum of pixel-wise distances D1 and the average of local Wasserstein metricWa

1 .
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for the marginal ordering. Similar remarks hold by comparing the irregularity indexes
obtained for the images 3j), 3k), and 3l) or 3m), 3n), and 3o). In fact, except for the boat
image, the irregularity index obtained for the lexicographical and supervised approaches
are significantly larger than the irregularity index yielded by the marginal approach.

We invite the reader to carefully compare the images and the corresponding quanti-
ties shown in Figure 3. We hope this example will help the reader to be convinced of the
superiority of the proposed irregularity index, in particular, over both the generalized
sum of pixel-wise distances and the Wasserstein metric.

4 Concluding Remarks

In this paper, we proposed two quantitative measures for the irregularity issue. Namely,
the global irregularity index and the average of the local irregularity indexes, denoted
respectively by Φg

p and Φa
p. Although Chevallier and Angulo provided a rigorous formu-

lation of the irregularity issue [5], as far as we know, there is no effective quantitative
measure for this problem. For example, the generalized sum of pixel-wise distance Dp,
which is closely related to the norm of (internal or external) gradient or top-hat oper-
ations, is not a dimensionless measure [16, 15]. Similarly, the Wasserstein metricWp,
which is eventually known as the earth mover’s distance, is also not a dimensionless
measure [11]. Hence, they may not be appropriately scaled. Accordingly, as can be ob-
served in Figure 3, both Dp andWp are not appropriate for measuring the irregularity
issue. In contrast, the dimensionless global irregularity index given by the relative gap
between Dp and Wp yielded good quantitative values for the irregularity for images
with few pixel values. In practical situations, however, the number of distinct pixel val-
ues makes it impossible to compute the global irregularity index. To circumvent this
computational drawback, we proposed computing the geometric mean of the irregular-
ity index on several small windows. Visual interpretations of the irregularity indexes
are provided using both synthetic and natural images.

Finally, we would like to point out that the irregularity index can be used in the
future to evaluate the performance of morphological operators. The irregularity index
can also be used for the design of efficient morphological operators. For example, it
can be used as the objective function for the design of vector-valued morphological
operators based on uncertain reduced orderings [13].
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