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Roland Bacher
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Abstract

The use of compositions simplifies some aspects of the theory of
numerical semigroups. We illustrate this by giving a new proof for the
asymptotic number C((1 +

√
5)/2)g of numerical semigroups of genus

g and by describing the constant C explicitly1.

1 Introduction

..., chacun appelant idées claires
celles qui sont au même degré
de confusion que les siennes
propres.

Marcel Proust

A numerical semigroup2 is a subgroup S = S+S of the additive semigroup
N = N + N such that the complementary set N \ S is finite. The embedding
dimension e = e(S) of S is the minimal cardinal of a generating set. The
smallest non-zero element m = m(S) = min(S \ {0}) of S is the multiplicity
of S. The finite set G = G(S) = N \ S is the set of gaps and the number
g = g(S) = ♯(G) of elements in G is the genus of S. The Frobenius number
f = f(S) = max(G) is the maximal element of G.

Throughout the rest of the paper, the letter m will always denote the
multiplicity min(S \ {0}) of a numerical semigroup S.

1Keywords: Numerical semigroup, composition, Fibonacci numbers, spin model, dihe-
dral group. Math. class: 20M14, 05A16.

2Numerical semigroups are a hot topic during outbreaks of contagious diseases: You
don’t want to take change at grocery stores. (This paper was largely written during the
Corona-virus lock-down.)
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For j = 0, . . . , m− 1, we set

xj = xj(S) = ♯{G ∩ j +mZ} . (1)

We have x0 = 0 and x1, . . . , xm−1 ≥ 1. The vector (x1, . . . , xm−1) is called
the Kunz coordinate vector or simply the Kunz vector of S. It is also called
the Apéry tuple of S, see e.g. [2]. The trivial identity

g =

m−1
∑

j=1

xj

shows that x1 + x2 + · · ·+ xm−1 is a composition of g into m− 1 parts. The
Frobenius number f of S is given by

max
j∈{1,...,m−1}

j +m(xj − 1) .

The Frobenius number f = l + m(xl − 1) is equivalently defined in terms
of the index and the value of the last maximal part xl of the composition
x1 + · · ·+ xm−2 with parts defined by (1).

We call the composition x1+ · · ·+xm−1 the composition of S. It is closely
related to the Apéry set

Ap(m,S) = {0, x1m+ 1, x2m+ 2, . . . , xm−1m+m− 1}

consisting of minimal representatives in S for classes modulo the multiplicity
m = min(S \ {0}) of S.
Remark 1.1. By a fortunate coincidence, the letter m (denoting the mul-
tiplicity of S) is also well-suited for denoting classes modulo mZ of Z. The
composition x1+ · · ·+xm−1 can be considered as the image in the group alge-
bra Z[Z/mZ] of the characteristic function

∑

γ∈N\S [γ] for the gap-set in the

group algebra Z[Z] of Z. The trivial character applied to the characteristic
function of N \ S yields the genus of S.

It is easy to show that a numerical semigroup is determined by its compo-
sition with parts defined by (1). We will recall a well-known characterisation
of compositions associated to numerical semigroups. We can thus replace
the tree-structure underlying numerical semigroups by the (essentially) lin-
ear structure of compositions when studying certain properties of numerical
semigroups. This reduces the study of asymptotic growth (for numbers of
numerical semigroups of given genus) to elementary considerations boiling of-
ten down to “generatingfunctionology”, after making use of simple geometric
properties of (integers contained in) intervals.
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We use this approach in a new proof for asymptotics conjectured by Maria
Bras-Amorós in [1] and proven by Alex Zhai in [5] (a pleasant overview of
this topic describing the gist of Zhai’s proof is given in [2]) for the number
n(g) of semigroups of genus g:

Theorem 1.2. There exists a constant C such that

lim
g→∞

n(g)

ωg
= C (2)

where ω = 1+
√
5

2
= 1.61803398874989 . . . is the golden number.

The constant C is given by

C =
5 +

√
5

10

(

1 + C̃(ω−1)
)

(3)

where C̃(q) is the generating function

C̃(q) =

∞
∑

g=3

c̃gq
g (4)

enumerating the number c̃g of numerical semigroups S of genus g ≥ 3 satis-
fying the identity f = 3m−1 linking their Frobenius number f = max(N\S)
with their multiplicity m = min(S \ {0}).

The series C̃(q) defines a holomorphic function in an open disc of radius
strictly larger than ω−1.

Remark 1.3. The convergency radius of C̃ is at most equal to the positive
real root 0.659982 . . . of 1− q3 − 2q4 − 2q5 − q6, cf. Theorem 15.1. It is thus
only slightly larger than ω−1 ∼ 0.618. Using this approach for determining a
good numerical approximation of the constant C involved in (2) is thus quite
tricky.

Remark 1.4. Formula (2) of Theorem 1.2 is sometimes given with ωg re-
placed by the g-th Fibonacci number. This changes the value of the associated
constant C ′ which depends also (up to a power of ω) on the convention for
indices of Fibonacci numbers.

Throughout the paper we use always ω for the golden number ω = 1+
√
5

2

with multiplicative inverse ω−1 =
√
5−1
2

.
The overall structure of our proof of Theorem 1.2 and of the proof in [5]

are similar: Numerical semigroups whose Frobenius numbers are much larger
than twice their multiplicity can be neglected when considering asymptotics.
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Zhai proves this by analysing the tree-structure of numerical semigroups. We
use instead compositions with parts defined by (1) which we call numerical
semigroup compositions (called Kunz coordinate vectors or special cases of
so-called Apéry sets by other authors) or NSG-compositions for short. The
linear nature of compositions makes their study fairly elementary: It is es-
sentially equivalent to the geometry of closed real intervals, endowed with
partial actions by real reflections. Transfer matrix techniques and elemen-
tary properties of series expansions for holomorphic functions complete the
proof.

Sections 2-14 are devoted to the proof of Theorem 1.2.
Section 2 introduces numerical semigroup compositions or NSG-compositions

for short.
Section 3 illustrates the notion of NSG-compositions by describing all

NSG-compositions of maximum at most 2, a result also contained in [5].
Sections 4 and 5 are digressions describing generalised compositions, al-

gorithmic aspects and the tree-structure of NSG-compositions.
Section 6 contains a rough outline for the proof of Theorem 1.2.
Section 7 introduces pivot-factorisation, our main tool for obtaining enu-

merative results on NSG-compositions.
Section 8 recalls a few facts concerning generating series and growth-rates.
Section 9 defines weak admissibility for compositions. This is used in Sec-

tion 10 for obtaining upper bounds on the growth-rate of NSG-compositions
of maximum at least 6.

NSG-compositions of maximum 5 and 4 are treated in Sections 11 and
12.

Section 13 describes the Combinatorics of NSG-compositions of maximum
3.

Section 14 completes the proof of Theorem 1.2 by giving upper bounds on
the growth-rate of NSG-compositions of maximum 3 ending with a maximal
part enumerated by the series C̃ occurring in Formula (4).

Sections 15-18 outline some (sometimes only conjectural) combinatorial
or probabilistic aspects of numerical semigroups and certain types of compo-
sitions.

2 Numerical semigroup-compositions

We start this Section with a justification of our (non-standard) terminol-
ogy. Numerical semigroup-compositions are equivalent to Kunz coordinate
vectors, an unfortunate choice of terminology in our opinion: there is no un-
derlying vector space and these “vectors” encode simply finite sequences of
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strictly positive integers indexed by 1, 2, . . . , m−1 (representing all non-zero
classes of Z/mZ) summing up to the genus.

Our next result, which is folklore (see for example [2]), shows that nu-
merical semigroups are encoded by their compositions:

Proposition 2.1. A numerical semigroup S associated to a composition x1+
· · · + xm−1 with parts defined by formula (1) is uniquely determined by the
formula

S = ∪m−1
j=0 (j +mxj +mN) (5)

using the convention x0 = 0.
A numerical semigroup composition (or an NSG-composition, for short)

is a composition x1+· · ·+xm−1 (with an omitted trivial part x0 = 0) defining
a numerical semigroup by (5). We identify henceforth numerical semigroups
with their NSG-compositions.

Proof of Proposition 2.1. A composition x1 + · · ·+ xm−1 associated to a nu-
merical semigroup S determines the multiplicity m of S (by adding 1 to the
number m − 1 of its summands). Every numerical semigroup associated to
x1 + · · · + xm−1 has thus the same multiplicity m. Since m is an element
of S, the intersection of S with an arithmetic progression j + mN (for j in
{1, . . . , m− 1}) lacks consecutive initial values of the arithmetic progression
j +mN. This shows that S ∩ (j +mZ) is given by j + xjm+mN for every
j ∈ {1, . . . , m − 1}. Since m ∈ S implies S ∩ mN = mN, the composition
x1 + · · · + xm−1 defines the intersection of S with j + mZ for all j. This
determines S uniquely.

Corollary 2.2. There are at most 2g−1 numerical semigroups of genus g.

Proof. A strictly positive integer g > 0 has 2g−1 compositions3.

The next result is well-known (see for example Proposition 9 in [2]) and
describes the set of all NSG-compositions:

3Write the word 1g consisting of g identical letters 1. Starting with the second oc-
currence of 1, decide for each letter 1 if you add it to the precedent letter or if you do
nothing. These 2g−1 possible choices produce all possible sequences of strictly positive
integers adding up to g. Equivalently, write all 2g−1 words of 0{0, 1}g−1 of length g, with
letters in {0, 1} and first letter 0: Consider lengths of factors for such a word after rewriting
it in terms of 0, 01, 011, 0111, . . ..
For a proof with generating series observe that (q/(1− q))n counts the number of com-

positions with exactly n parts. We get the result by the identities
∑

∞

n=1
(q/(1 − q))n =

(q/(1−q))◦ (q/(1−q)) = q/(1−2q) for the generating series enumerating all compositions
of strictly positive integers.
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Theorem 2.3. A composition x1 + · · · + xm−1 is the composition of a nu-
merical semigroup of multiplicity m if and only if we have the inequalities

xs+t ≤ xs + xt,
xm−s−t ≤ xm−s + xm−t + 1

(6)

for all s, t in {1, . . . , m− 2} such that s+ t < m.

The inequalities given by (6) are henceforth called NSG-inequalities.

Proof of Theorem 2.3. Let x1+ . . .+xm−1 be a composition to which we add
a trivial part x0 = 0. We define a subset S of N by setting

S =
m−1
⋃

j=0

(j + xjm+mN)

(cf. formula (5) of Proposition 2.1). We have to show that S is a numerical
semigroup if and only if all NSG-inequalities (6) hold: Given two elements a
and b of S we consider their representatives s, t modulo m in {0, . . . , m− 1}.
By construction of S, there exist two natural integers α and β such that
a = s + xsm + αm and b = t + xtm + βm. We have thus c = a + b =
s+ t + (xs + xt)m+ (α+ β)m.

If s+ t < m we have u = s+ t in {1, . . . , m−1} representing s+ t modulo
m. We get thus

c = s+ t+ (xs + xt)m+ (α + β)m

= u+ xum+ (α + β + xs + xt − xu)m

and α+β+xs+xt−xu is always a natural integer if and only if all inequalities
of the first line in (6) hold.

If s+ t ≥ m, we get u = s+ t−m for u in {0, . . . , m− 1} and we have

c = (s+ t−m) + (xs + xt + 1)m+ (α+ β)m

= u+ xum+ (α + β + xs + xt + 1− xu)m

and α+β+xs+xt+1−xu is always in N if and only if we have the inequalities
of the second line in (6).

Remark 2.4. The NSG-inequalities (6) can be rewritten as

xi + xj ≥ xi+j (mod m) + c(i, j)

where

c(i, j) =

{

0 if i+ j < m,
1 otherwise
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is the 2-cocycle of H2(Z/mZ,Z) corresponding to the exact sequence

0 −→ Z −→ Z −→ Z/mZ −→ 0

defining Z as a central extension of Z/mZ by Z. This observation can of
course be explained by Remark 1.1.

2.1 Parameters

We describe without proofs how to recover basic parameters of a numeri-
cal semigroup S = mN

⋃
(

∪m−1
j=1 {j +m(xj + N)}

)

from its NSG-composition
x1 + . . .+ xm−1.

The multiplicity m of S is easily obtained from the number m−1 of parts
of x1 + . . .+ xm−1. Similarly, the genus is the sum

∑m−1
i=1 xi of all parts.

Minimal generators for S are given by the multiplicity m and by integers
j + xjm, j ∈ {1, . . . , m− 1} such that all NSG-inequalities (6) are strict for
s, t ∈ {1, . . . , m− 1} with s + t in {j, j +m}.

The Frobenius number f = max(N \ S) of a numerical semigroup with
composition x1 + . . .+ xm−1 is given by

f = max(x1, . . . , xm−1)m−m+max({j | xj = max(x1 . . . , xm−1)}) (7)

or equivalently by m(xl−1)+ l where x1, . . . , xl−1 ≤ xl > xl+1, . . . , xm−1 (i.e.
xl is the last summand of maximal value). We have the inequalities

m(max(x1, . . . , xm−1)− 1) < f < mmax(x1, . . . , xm−1)

and the equality max(x1, . . . , xm−1) = ⌈f/m⌉.

3 NSG-compositions with maximum 2

Results of this Section are well-known, see for example [5].

Proposition 3.1. All compositions with parts in {1, 2} are NSG-compositions.
The generating function for the number of compositions x1 + · · ·+ xm−1

with genus g and all parts xj in {1, 2} is the generating function

∞
∑

n=0

Fgq
g =

1

1− q − q2

of Fibonacci numbers Fg =
5+

√
5

10

(

1+
√
5

10

)g

+ 5−
√
5

2

(

1−
√
5

2

)g

defined recursively

by F0 = 1, F1 = 1, F2 = 2, . . . , Fn = Fn−1 + Fn−2, . . . .
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Proof. Compositions with all parts xj in {1, 2} satisfy obviously all NSG-
inequalities (6) of Theorem 2.3 and are thus NSG-compositions.

The generating series for compositions with all parts in {1, 2} is given by
∑∞

n=0(q + q2)n = 1/(1− (q + q2)).

Remark 3.2. Two other proofs for the generating series enumerating com-
positions with all parts in {1, 2} are as follows:

There is a unique such composition of genus 0 or 1. Every such composi-
tion of genus ≥ 2 is obtained by adding a final part 1 to such a composition
of genus g − 1 or by adding a final part 2 to such a composition of genus
g − 2. Numbers of such compositions satisfy thus the initial conditions and
recurrence relations of Fibonacci-numbers.

A composition of genus g =
∑m−1

j=1 xj with all parts in {1, 2} and with
multiplicity m = g − k (for k in {0, . . . , ⌊g/2⌋}) has k parts equal to 2 and
g − 2k parts equal to 1. There are thus

∑

k≥0

(

g−k
k

)

such compositions. The
easy identity

⌊g/2⌋
∑

k=0

(

g − k

k

)

= Fg

for F0 = F1 = 1 and Fn = Fn−2 + Fn−1 the sequence of Fibonacci numbers
ends the proof.

Remark 3.3. A bijection between {0, 1, . . . , Fg − 2, Fg − 1} and composi-
tions of g with parts in {1, 2} can be constructed as follows: The Zeck-
endorff expansion ǫgǫg−1 . . . ǫ2ǫ1 of length g (defined by n =

∑g
j=1 ǫjFj with

ǫj ∈ {0, 1}, ǫj+1ǫj = 0 for all j) of an integer n < Fg starts with ǫg = 0
and contains only isolated digits 1. Rewriting it in terms of 0 and 01 and
considering lengths of factors yields the composition of g associated to n.

We end this Section with a digression on the following well-known prop-
erties (not directly related to the topic of the paper) of compositions:

Remark 3.4. Compositions of n having only parts ≤ 2 are equinumerous
with compositions of all integers up to n having only parts ≥ 2: Given a
composition x1+ . . .+xk of n with xj ∈ {1, 2}, remove the final block (which
is empty if xk = 2) of consecutive parts 1, factor the resulting word x1x2 . . . xl

with factors in {1}∗2 and replace 1k2 by k+2. The resulting word corresponds
to a composition of an integer ≤ n with summands ≥ 2.

Equivalently, compositions of n with all parts in {1, 2} correspond to com-
positions of n+ 2 with all parts ≥ 2. (Add a final part 2 before applying the
above algorithm.)
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Combining the two previous bijections yields a bijection between all Fn

compositions with parts ≥ 2 of integers up to n and all Fn compositions with
parts ≥ 2 of the integer n+ 2.

Subtracting 1 from the first part of partitions with all parts ≥ 2 shows
finally that there are also Fn partitions of n+ 1 with arbitrary first part and
all other parts ≥ 2. Such partitions encode Zeckendorff expansions of integers
in {Fn+1, . . . , Fn+2 − 1} by associating to x1 + . . .+ xk the word ǫ1ǫ2 . . . ǫn+1

(ending with ǫn+1 = 1) obtained by replacing xk by 0k−11. The composition
1 + 3+ 2 for example corresponds to ǫ1 . . . ǫ6 = 1|001|01 encoding the integer
∑6

j=1 ǫjFj = F1 + F4 + F6 = 1 + 5 + 13 = 19.

4 Generalised compositions

Let N 6⊂ {0} be a non-trivial submonoid of the additive monoid (N,+). We
associate to a strictly positive element M of N the cardinals x0, x1, . . . xM−1

in N ∪ {∞} counting the numbers

xj = ♯ ((j +MN) \ N ) ∈ N ∪ {∞}, j = 0, . . . ,M − 1

of elements in the complement (gap-set) N\N intersecting congruence classes
modulo M .

This defines a generalised composition x0 + x1 + · · · + xM−1 with parts
in N ∪ {∞} and (perhaps infinite) sum

∑M−1
j=0 xj = ♯{N \ N} counting the

number of elements in the gap-set N \ N of N .
N is a semigroup (i.e. N contains 0) if and only if x0 = 0. We work

henceforth only with semigroups and omit the trivial summand x0 = 0.
A semigroupN is a numerical semigroup if and only if all parts x1, . . . , xM−1

are natural integers.
The occurrence of infinite parts among x1, . . . , xM−1 is equivalent to the

existence of a divisor d > 1 of M such that N = dN ′ with N ′ a numerical
semigroup. We have then xj < ∞ if and only if d divides j.

All parts x1, . . . , xM−1 are strictly positive (with ∞ being strictly positive
by convention) if and only if M is the minimal non-zero element min(N \{0})
of N .

The generalised composition x′
1 + · · ·+ x′

M ′−1 associated to another non-
zero element M ′ of N is defined by considering the smallest natural integer
x′
j such that there exists i ∈ {0, . . . ,M − 1} with x′

jM
′ + j = yM + i for

y ≥ xi. We set x′
j = ∞ if N contains no elements congruent to j modulo M ′.

(It is also possible to compute x′
1, . . . , x

′
M ′ using the algorithm sketched in

Remark 4.1 below with generators {M,x1M +1, . . . , xM−1M +M − 1}∩N.)
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Theorem 2.3 holds (except for the assertion concerning the multiplicity
which is at most equal to M) for generalised compositions after extending
the NSG-inequalities (6) to N∪{∞} by considering ∞ as a maximal element.

Remark 4.1. Generalised compositions have interesting algorithmic aspects.
They can easily be computed if N =

∑

g∈G Ng (only finite sums are considered
if G is infinite) is defined in terms of a set G ⊂ N\{0} of non-zero generators:

Choose an element M in G (the choice M = min(G) is optimal).
For j = 1, . . . ,M − 1, set xj = ∞ if G ∩ (j +MZ) = ∅ and

xj = min
g∈G, g≡j (mod M)

g − j

M

otherwise.
Iterate the following loop until stabilisation: For j = 1, . . . ,M −1 replace

xj by

min



{xj} ∪





⌊j/2⌋
⋃

i=1

{xi + xj−i}



 ∪





⌊(m−j)/2⌋
⋃

i=1

{1 + xj+i + xm−i}







 .

5 The tree of numerical semigroups

Numerical semigroups have a natural tree-structure: Adding the Frobenius
number f = max(N\S) to a numerical semigroup S of strictly positive genus
g yields a numerical semigroup S ∪ {f} of genus g − 1.

We discuss without proofs in this somewhat informal and colloquial Sec-
tion how to recover the tree-structure from NSG-compositions. The content
of this Section will not be explicitly used in the sequel. (The tree-structure
is however implicitly used when discussing NSG-compositions with maximal
parts of size 3, 4 or 5.)

The predecessor of a non-trivial NSG-composition x1+ · · ·+xm−1 is given
by x1 + · · ·+ xl−1 + (xl − 1) + xl+1 + · · · + xm−1 if xl = max(x1, . . . , xm−1)
is the last maximal part defining the Frobenius number f = l + m(xl − 1).
A trailing part equal to zero is of course suppressed: The predecessor of the
composition g = 1+ 1+ · · ·+1+ 1 with Frobenius number g is given by the
composition 1 + 1 + · · ·+ 1 of g − 1.

Children (immediate successors) of the NSG-composition 1 + 1 + · · ·+ 1
(consisting of g parts xj = 1) are given either by adding an additional part
xg+1 = 1 or by replacing any part xj = 1 by xj = 2.

Children of a NSG-composition x1 + · · · + xm−1 with maximal parts of
size max(x1, . . . , xm−1) ≥ 2 are given as follows: Let f = l+m(xl−1) be the
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Frobenius number associated to x1 + . . .+ xm−1. Children of x1 + · · ·+ xm−1

are given by NSG-compositions

x1 + · · ·+ xi−1 + (xi + 1) + xi+1 + · · ·+ xm−1 (8)

such that xi = xl if i ≤ l, respectively xi = xl − 1 if i > l. Observe
however that compositions of the form (8) (with xi = xl if i ≤ l, respectively,
xi = xl − 1 otherwise) do not necessarily satisfy NSG-inequalities (6) for
indices s, t with s+ t ∈ {i, i+m}.

The set of all children of a NSG-composition x1+· · ·+xm−1 with maximum
at least 2 corresponds thus to a (perhaps empty) subset C of {1, . . . , m− 1}
with an element i of C defining a child by formula (8).

Descendants of the NSG-composition 1 + 1 + · · ·+ 1 with m = g + 1 are
NSG-compositions of multiplicity at least m.

The set of all descendants of a NSG-composition x1 + . . . + xm−1 with
max(x1, . . . , xm−1) > 1 can be constructed as follows: Consider the gener-
alised composition z̃1+ · · ·+ z̃m−1 defined by z̃i = ∞ if i belongs to the set C
indexing children of x1 + · · ·+ xm−1 and z̃i = xi if i 6∈ C. Applying the NSG-
algorithm of Remark 4.1 to z̃1 + · · ·+ z̃m−1 yields a generalised composition
z1 + · · · + zm−1 encoding a smallest semigroup (missing perhaps infinitely
many elements of N) contained in all descendants of x1+ · · ·+xm−1. Descen-
dants are encoded by NSG-compositions y1 + · · ·+ ym−1 with xi ≤ yi ≤ zi.
(A composition y1+ · · ·+ym−1 with xi ≤ yi ≤ zi, i = 1, . . . , m−1 is however
not necessarily a NSG-composition.) Observe that we have zi = xi if i is
not in C. Observe also that the number of descendants is finite if and only if
{1, . . . , m− 1} \ C generates Z/mZ.

5.1 A combinatorial over-tree for successors

We have seen that descendants of a NSG-composition x1 + · · ·+ xm−1 with
maximum max(x1, . . . , xm−1) at least 2 correspond to all NSG-compositions
y1 + · · ·+ ym−1 such that xi ≤ yi ≤ zi where z1 + · · ·+ zm−1 is a generalised
NSG-composition with parts in {1, 2, . . .} ∪ {∞} defined in terms of x1 +
· · ·+ xm−1. We have zi = xi except for i belonging to the set C indexing all
children of x1 + · · ·+ xm−1.

We define a sequence

D = (zi1 − xi1 , zi2 − xi2 , . . . , zik − xik) ∈ ({1, 2, . . .} ∪ {∞})C (9)

where the sequence of indices i1, . . . , ik corresponds to all elements of C or-
dered by ia < ib if either xia < xib or if xia = xib and ia < ib. (The
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index ik of the last element of D corresponds thus to the Frobenius number
f = (xik − 1)m+ ik.)

We associate to a sequence (n1, . . . , nk) ∈ ({1, 2, . . . , } ∪ {∞})k recur-
sively a decorated rooted plane tree T (n1, . . . , nk) as follows: The root is
decorated by the sequence (n1, . . . , nk). It has k children defined as the roots
of the trees given by (ni+1, ni+2, . . . , nk, ni − 1) for i = 1, . . . , k with the last
coordinate ni − 1 missing if ni = 1. Leaves of T are associated to empty
sequences.

A vertex labelled (5, 1, 3, 1, 1, 3) for example has six children given by
(1, 3, 1, 1, 3, 4), (3, 1, 1, 3), (1, 1, 3, 2), (1, 3), (3) and (2).

Proposition 5.1. The tree T (n1, . . . , nk) has
∏k

i=1(ni + 1) vertices.

Proof. The formula holds obviously if
∑k

i=1 ni = ∞. We can thus assume
n1, . . . , nk ∈ {1, 2, . . .}.

The formula holds for the tree T () reduced to its root.
The induction step reduces to the easy identity

k
∏

i=1

(ni + 1) = 1 +

k
∑

i=1

ni

k
∏

j=i+1

(nj + 1)

with the right hand side obtained as a partial expansion of the product
(n1 + 1)(n2 + 1) · · · (nk + 1).

A rooted sub-tree T ′ of a rooted tree T is a sub-tree such that v in T ′ for
a vertex v implies that the predecessor of v in T belongs also to T ′.

Proposition 5.2. The set of all successors of a NSG-composition x1 +
. . . , xm−1 with maximum at least 2 is a rooted sub-tree of T (D) with D =
(zi1 − xi1 , zi2 − xi2 , . . . , zik − xik) defined by (9).

We leave the obvious proof to the reader.
Observe that the set of all successors of a NSG-composition defines in

general a strict sub-tree of T (D): The NSG-composition 3+1+2 for example
gives rise to D = (∞,∞). The corresponding combinatorial tree T (D) can
be embedded in R2 as follows: Vertices are all elements of N2. Vertices in
N × {0} are labelled (∞,∞). All other vertices are labelled (∞). A vertex
(x, 0) (labelled (∞,∞)) has two successors (x+ 1, 0) (labelled (∞,∞)) and
(x, 1) (labelled (∞)). A vertex (x, y) with y > 0 (labelled (∞)) has a unique
successor (x, y + 1) (labelled (∞)). Only vertices (x, y) ∈ N2 with y ∈ {0, 1}
correspond to NSG-compositions.

12



Remark 5.3. It is tempting to use the combinatorial trees T (D) for deriv-
ing bounds on NSG-compositions. This does not seem to pan out: It gives
essential only the trivial bounds obtained by considering NSG-compositions
of genus g as a subset of all 2g−1 compositions of sum g.

6 Road map for proving Theorem 1.2

We prove Theorem 1.2 by exploiting the linear structure of compositions.
The proof has two essential ingredients:

First we show that NSG-compositions with maximal parts of size at least
4 have growth-rate strictly smaller than ω. Asymptotics are thus given by
NSG-compositions with all parts in {1, 2, 3}.

In order to bound NSG-compositions with maximal parts larger than 3,
we chose well-suited pivot-parts xp of maximal value in such NSG-compositions.
This cuts a composition x1+· · ·+xm−1 into a left composition x1+· · ·+xp−1,
followed by the pivot-part xp and a right composition xp+1 + · · ·+ xm−1.

We construct then a useful upper bound on the number of possibilities
for left compositions x1 + · · · + xp−1, retaining only suitably chosen NSG-
inequalities given by the first line of (6) with indices s, t summing up at most
to the pivot-index p.

Similarly, we construct an upper bound on the number of possibilities for
right compositions xp+1+· · ·+xm−1 such that NSG-inequalities of the second
line of (6) hold for suitable choices of s, t such that m − s,m − t > p and
m− s− t ≥ p. The additional summand +1 in the second line of (6) makes
the study of right compositions a bit spicier.

The product of the two upper bounds for left, respectively right, com-
positions is now an upper bound for the number of all NSG-compositions.
In terms of growth-rates, this translates into the fact that the maximum of
the growth-rates for left, respectively right, compositions is at least equal
to the growth-rate of all NSG-compositions. This inequality is sharp for
NSG-compositions of maximum 3, see below.

by taking the maximum among the two upper bounds for left, respectively
right, compositions.

This approach is easy for NSG-compositions with a maximal part of size
at least 6: It is then enough to work with all inequalities (6) such that
s+ t = l, respectively m− s− t = l where xl is the last part of maximal size
defining the Frobenius number (xl − 1)m+ l.

For maximum 5 and 4, things get more messy: we have to consider a few
additional NSG-inequalities after a careful choice of pivot-parts. (We need
also a technical condition on such NSG-compositions. NSG-compositions
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not satisfying the condition are treated by the procrastinational technique of
kicking the can down the road.)

Finally we have to study NSG-compositions with maximum at most 3.
(The elementary case of maximum ≤ 2 has already been discussed in Section
3.) The crucial point for NSG-compositions of maximum 3 is the observa-
tion that pivoting with respect to the last maximal part works: all NSG-
inequalities of the second line hold trivially for compositions with parts in
{1, 2, 3}. We get thus a “factorisation”

(x1 + · · ·+ xl) + (xl+1 + · · ·+ xm−1)

where xl = 3 is the last maximal part (defining the Frobenius number 2m+ l)
of such a NSG-composition. This leads to equation (3) of Theorem 1.2.

Finally, we have to show that the generating series C̃ enumerating NSG-
compositions ending with a last maximal part xm−1 = 3 converges in an open
disc of radius strictly larger than ω−1. The proof is essentially analogous to
the proof for an upper bound on the number of right compositions associated
to NSG-compositions of maximum 4.

7 Pivot-factorisation

A part xp of a composition x1 + · · ·+ xm−1 determines a pivot-factorisation
given by x1 + · · ·+ xp−1(+xp) and (xp+) + xp−1 + · · ·+ xm−1. We call p the
pivot-index and xp the pivot-part. We call x1+ · · · (+xp) the left composition
and (xp+) · · · + xm−1 the right composition (defined by the pivot-index p).
The parentheses around xp indicate that the inclusion (or exclusion) of xp

is a matter of convention. We omit generally pivot-parts in left or right
compositions.

If x1 + · · · + xm−1 is a NSG-composition, parts of the left composition
x1 + · · · (+xp) (with respect to a pivot-part xp) satisfy the NSG-inequalities

xi + xj ≥ xi+j

if i+ j ≤ p and parts of the right composition satisfy

xi + xj + 1 ≥ xi+j−m

if i+ j ≥ p+m.
Pivot-factorisation with a pivot-part of maximal size are our main tool

for getting useful upper bounds on NSG-compositions with genus g and max-
imum ≥ 4. More precisely, canonical choices of maximal pivot-parts in com-
positions lead to factorisation LR (with L, respectively R, being generating
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series accounting for left, respectively right, compositions) of power series
giving useful upper bounds on NSG-compositions of certain types.

This idea works nicely for NSG-compositions of maximum µ ≥ 6 and
needs a few technical refinements for µ = 4 and 5.

Pivot-factorisation with respect to a last maximal part with value 3 lead
to Theorem 1.2: The left factor is given by 1+C̃ (the summand 1 in 1+C̃(ω−1)
in (3) accounts for NSG-compositions of maximum at most 2), the right
factor, given by the rational series 1/(1− (q + q2)), induces the growth-rate
ω.

8 Generating series, growth-rates

We define the (exponential) growth-rate of a sequence of strictly positive
natural integers s1, s2, . . . by γ = lim supn→∞ n

√
sn. The sequence sn has

exponential growth, if 1 < γ < ∞. We consider henceforth only sequences
with exponential growth. Given ǫ > 0, we have sn < (γ + ǫ)n for almost all
integers n and sn > (γ − ǫ)n infinitely often. The inverse ρ = 1/γ of the
growth-rate γ for s0, s1, . . . is the radius of convergency for the power series
∑∞

n=0 sNR
n.

Remark 8.1. Having exponential growth γ is slightly weaker than having an
asymptotic growth of exponential rate γ (defined as γ = limn→∞ n

√
sn).

A non-constant power-series with real non-negative coefficients of growth-
rate γ defines a holomorphic function in a neighbourhood of 0 which has al-
ways a smallest singularity at its convergency radius ρ = 1/γ. If such a series
∑∞

n=0 sNP
n is rational, then its singularities are isolated and

∑∞
n=0 sNq

n
0 < ∞

for some strictly positive q0 implies γ < 1/q0. Strict inequality does however
generally not hold for series which are not rational: Coefficients of the series
∑∞

n=0⌊γn/(1 + n2)⌋qn have growth-rate γ for γ > 1 and the series converges
for q of absolute value |q| = 1/γ. The following result describes however
a well-behaved class of generally irrational power series (with non-negative
coefficients):

Lemma 8.2. Let S(q) =
∑∞

n=n0
An/(1 − Bn) be a power-series with coef-

ficients in N defined by sequences of polynomials An, Bn ∈ N[q] satisfying
linear recursions with coefficients in Q[q].

Suppose that there exists a strictly positive real number ρ0 such that S(q)
converges for q = ρ0 and such that the evaluations of An, Bn at q = ρ0 decay
exponentially fast. Then S(q) has convergency radius strictly larger than ρ0.
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Proof of Lemma 8.2. The hypotheses imply that evaluations at ρ0 of the
characteristic polynomials defining linear recursions for An and Bn have all
roots in the open complex unit disc. This condition (which implies exponen-
tially fast decay) holds by continuity for q close enough to ρ0.

A similar arguments shows that all evaluations of Bn at q are strictly
smaller than 1 for q close enough to ρ0.

Non-negativity of all involved coefficients shows now that the convergency
radius of S is strictly larger than ρ0.

Remark 8.3. Lemma 8.2 streamlines a few proofs. It can however easily
be replaced by a few computations involving eigenvalues and eigenvectors of
transfer matrices.

Throughout the paper we will also use several times the trivial fact that
the convergency radius of a finite product of power-series is at least equal to
the minimal convergency radius among factors.

9 Weakly admissible compositions

A composition x1+ · · ·+xm−1 with last maximal part xl = max(x1, . . . , xl) >
max(xl+1, . . . , xm−1) is weakly admissible if xl ≤ min(x1+xl−1, x2+xl−2, . . . , xl−1+
x1) and xl ≤ 1 +min(xl+1 + xm−1, xl+2 + xm−2, . . . , xm−1 + xl+1). Otherwise
stated, we require only NSG-inequalities (6) involving the last maximal part
xl of x1 + · · ·+ xm−1.

Since NSG-compositions are weakly admissible we get crude upper bounds
for NSG-compositions by counting weakly admissible compositions.

Observe however that the composition 1 + 3 + 3 for example is weakly
admissible but is not a NSG-composition.

This section is devoted to generating series of weakly admissible compo-
sitions having maximal parts of given size µ.

Weakly admissible compositions of maximum at least 6 have growth-
rate strictly smaller than ω and give thus useful upper bounds for NSG-
compositions with maximal parts of size at least 6.

Refinements are needed for useful bounds on NSG-compositions with
maximal parts of size 4 and 5. NSG-compositions with maximal parts of
size at most 3 are asymptotically generic (their proportion among all NSG-
compositions tends to 1 for g → ∞) and induce the growth-rate for numerical
semigroups.

For n ≥ 1, we consider the generating polynomial

In =
∑

1≤a,b≤n≤a+b

qa+b (10)
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of all compositions a + b with total sum at least n into two parts a, b not
exceeding n.

The polynomial In can be computed by removing all contributions of
degree strictly less than n (corresponding to compositions with two parts
summing up to integers strictly smaller than n) from (q + q2 + . . . + qn)2.
This implies easily the closed formula

In = qn

(

−2 +
n
∑

i=0

(n+ 1− i)qi

)

. (11)

The following table gives the first few polynomials In and their evaluations
In(ω

−1) in Q[
√
5], together with a decimal approximation, at the inverse ω−1

of the golden number ω = 1+
√
5

2
:

k Ik Ik(1/ω) ∼
1 q2 (3−

√
5)/2 0.3820

2 q2 + 2q3 + q4 1 1

3 2q3 + 3q4 + 2q5 + q6 (9− 3
√
5)/2 1.1459

4 3q4 + 4q5 + 3q6 + 2q7 + q8 10− 4
√
5 1.0557

5 4q5 + 5q6 + 4q7 + 3q8 + 2q9 + q10 21− 9
√
5 0.8754

6 5q6 + 6q7 + 5q8 + 4q9 + 3q10 + 2q11 + q12 70− 31
√
5 0.6819

Proposition 9.1. The generating series Wµ(q) for weakly admissible com-
positions x1+ · · ·+xm−1 of genus g with maximal parts max(x1, . . . , xm−1) =
µ ≥ 2 is given by

Wµ(q) =
1 +

∑µ
i=⌈µ/2⌉ q

i

1− Iµ
qµ

1 +
∑µ−1

i=⌊µ/2⌋ q
i

1− Iµ−1

. (12)

Remark 9.2. Since all compositions with parts in {1, 2} are NSG-compositions,
Propositions 3.1 and 9.1 imply the identity

1

1− (q + q2)
=

1

1− q
+W2(q) .

Proof of Proposition 9.1. Let x1 + · · · + xl−1 + xl + xl+1 + · · · + xm−1 be a
weakly admissible composition with x1, . . . , xl−1 ≤ xl = µ > xl+1, . . . , xm−1.
We have thus 1 ≤ xi, xl−i ≤ µ ≤ xi + xl−i for i < l/2. For odd l there

are I
(l−1)/2
µ possibilities satisfying these inequalities. For l even, we have

moreover to choose a coefficient xl/2 in {⌈µ/2⌉, . . . , µ}. Summing over l in
N \ {0} we get the left factor (1 +

∑µ
i=⌈µ/2⌉ q

j)/(1− Iµ) of (12) enumerating
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all possibilities for left compositions with respect to the pivot-part xl = µ
given by the last maximal part xl.

The central factor qµ accounts for the pivot-part xl = µ.
The final right factor corresponds to all possibilities involving the parts

xl+1, . . . , xm−1 ∈ {1, . . . , µ−1} of right compositions following the pivot-part
xl = µ: We have 1 ≤ xl+i, xm−i ≤ µ−1 ≤ xl+i+xm−i. Such pairs (xl+i, xm−i)
are thus encoded by powers of Iµ−1 and we have moreover a choice of x(m+l)/2

in {⌊µ/2⌋, . . . , µ− 1} if m+ l is even.

Remark 9.3. Formula (12) gives crude upper bounds: It counts only compo-
sitions satisfying NSG-inequalities (6) involving the last maximal part. Only
a small proportion of weakly admissible compositions with maximum strictly
larger than 2 satisfy all NSG-inequalities.

10 NSG-compositions with maximum ≥ 6

Proposition 9.1 gives useful upper bounds for the number of NSG-compositions
with maximum at least 6, as suggested by the evaluations In(ω

−1) of the first
few polynomials In defined by (11):

Proposition 10.1. Numbers of weakly admissible compositions with maxi-
mum at least 6 have growth-rate strictly smaller than ω.

Proof. Proposition 9.1 shows that it is enough to prove that
∑∞

n=6Wn(q)
(for Wn(q) defined by (12)) converges in an open disc of radius strictly larger
than ω−1.

This holds clearly for W6(q) which converges in the open disc of radius
the strictly positive root 0.6318 . . . > ω−1 of 1 − I5 = 1 − 4q5 − 5q6 − 4q7 −
3q8 − 2q9 − q10.

Formula (11) shows that coefficients of the rational fraction

I6 =

∞
∑

j=6

(j − 1)qj = q6
5− 4q

(1− q)2

yield upper bounds on the coefficients of In for n ≥ 6.
The convergency radius of

∑∞
n=7Wn(q) is thus at least as large as the

convergency radius of the rational fraction

∞
∑

n=7

∑∞
j=0 q

j

1− I6
qn
∑∞

j=0 q
j

1− I6
=

q7

(1− q)3(1− I6)2

given by the positive root 0.6206 . . . > ω−1 of the polynomial (1−q)2(1−I6) =
1− 2q + q2 − 5q6 + 4q7.
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11 NSG-compositions with maximum 5

The rational generating series W5(q), given by Proposition 9.1 and enumer-
ating weakly admissible compositions of maximum 5, involves 1− I4(q) (ac-
counting for right compositions) in its denominator. Since 1 − I4 has a
root in (0, ω−1), the growth-rate of weakly admissible compositions of max-
imum 5 exceeds ω. Obtaining useful upper bounds for NSG-compositions
of maximum 5 (trickier than obtaining the corresponding results for NSG-
compositions of maximum at least 6, see Section 10) requires thus additional
NSG-inequalities (6).

Proposition 11.1. There exists a strictly positive constant κ5 < ω such
that NSG-compositions with maximum 5 have growth-rate at most equal to
max(γ4, κ5) where γ4 is the growth-rate of NSG-compositions with maximum
4.

Proposition 11.1 follows trivially from the two following results:

Proposition 11.2. The growth-rate of NSG-compositions with maximum 5
having a unique maximal part is at most equal to the growth-rate γ4 of NSG-
compositions with maximum 4.

Proposition 11.3. The growth rate of NSG-compositions having at least two
maximal parts of size 5 is strictly smaller than ω.

Remark 11.4. We will show later that the constant γ4 of Proposition 11.1
satisfies the inequality γ4 < ω (see Proposition 12.1 and Theorem 13.3).

11.1 Proof of Proposition 11.2

Proof of Proposition 11.2. A unique maximal part xl = 5 of size 5 corre-
sponds to the Frobenius number f = 4m + l of such a NSG-composition
x1+ · · ·+xm−1. Adding the Frobenius element f to the associated numerical
semigroup amounts to replacing xl = 5 by xl = 4 and results in a NSG-
composition with maximum 4 (and genus decreased by 1). Such reductions
yield any given NSG-composition of genus g and maximum 4 less than g
times (since m ≤ g + 1 with equality only for 1 + 1 + . . . + 1). Numbers of
NSG-compositions with a unique maximal part of size 5 are thus bounded by
coefficients of q2G′

4 whereG4 is the generating series for all NSG-compositions
with maximum 4. The result follows by observing that coefficients of G4 and
of its derivative G′

4 have identical growth-rates.
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11.2 Proof of Proposition 11.3

Proposition 11.5. NSG-compositions x1 + · · ·+ xm−1 with a last maximal
part xl = 5 such that 3l ≥ m− 1 have growth rate at most equal to 1/ρ < ω
where ρ = 0.6189 . . . > ω−1 is the positive root of 1 − I5I

2
4 for In given by

(11).

Proof of Proposition 11.5. Choosing the index l of the last maximal part xl =
5 in such a NSG-composition as a pivot, the proof of Proposition 9.1 shows
that the number of such NSG-compositions of genus g (with multiplicity m
and last maximal part xl = 5) is bounded by the coefficient of qg in

(1 + q3 + q4 + q5)(1 + q2 + q3 + q4)I
⌊(l−1)/2)⌋
5 I

⌊(m−1−l)/2⌋
4

where

I4 = 3q4 + 4q5 + 3q6 + 2q7 + q8,

I5 = 4q5 + 5q6 + 4q7 + 3q8 + 2q9 + q10

(see Formula (11)).
The inequality 3l ≥ m− 1 implies that (m− 1− l)/2− 1 is at most twice

as large as (l − 1)/2.
Neglecting polynomial factors, we have reduced the proof of Proposition

11.2 to the study of the convergency radius of

∞
∑

a=0

2a
∑

b=0

Ia5 I
b
4 . (13)

Rewriting (13) by regrouping I5I
2
4 we can work with

1

(1− I5I
2
4 )(1− I5)

(up to neglecting a polynomial factor) which converges on the open disc of
radius ρ > ω−1 the strictly positive root 0.6189 . . . of 1− I5I

2
4 .

Proof of Proposition 11.3. Given a NSG-composition x1+ · · ·+xm−1 having
at least two maximal parts of size 5 let k and l with 1 ≤ k < l < m be the
indices of the two last maximal parts xk = xl = 5.

The result holds by Proposition 11.5 for all NSG-compositions such that
3l ≥ m− 1.

We are now left with the case of NSG-compositions x1 + · · ·+ xm−1 with
indices of the two last maximal parts satisfying k < l < (m− 1)/3.
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We give again a factorised upper bound for all such NSG-compositions.
We use 1+q3+q4+q5

1−I5
(see the proof of Proposition 9.1) for upper bounds

on numbers of left compositions with respect to the pivot-part xk given by
the second-last maximum. (This works since coefficients of 1/(1 − I5) have
growth-rate strictly smaller than ω.)

In order to get upper bounds for right compositions, we introduce a graph
Γ with vertices k + 1, k + 2, . . . , m− 1 and edges {i, j} if i+ j −m ∈ {k, l}.
The graph Γ is a union of paths (trees with at most two leaves and interior
vertices of degree 2). A connected component of Γ is ordinary if it contains no
endpoint in {(k+m)/2, (l+m)/2}∩N. It is exceptional otherwise. Ordinary
connected components of Γ have an even number of vertices and contain a
central edge.

1 2 3 4 5 6

11
14 21

Figure 1: An example of a graph Γ.

Figure 1 shows an example with vertices k+1, k+2, . . . simply numbered
1, 2, where where m = k+22 and l = k+6. Edges {i, j} with i+ j = k+m,
respectively i + j = l + m, are represented by upper, respectively lower,
half-circles. Edges of exceptional components are dashed. (The horizontal
coordinate-axis is not part of Γ.)
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The first l − k vertices k + 1, k + 2, . . . , l of Γ are leaves of all connected
components of Γ.

Ordinary connected components have length 2n ± 1 for some integer n
(depending on k, l,m). Exceptional components have length n or n− 1.

The construction of Γ implies xi+xj ≥ 4 if {i, j} is an edge of Γ associated
to a NSG-composition x1+. . .+xm−1 as above. Generating functions of parts
supported by connected components (maximal paths) of Γ can be considered
as partition-functions of constrained spin models with spins {1, 2, 3, 4} such
that all pairs of adjacent spins have sum at least 4.

We can compute the generating series (partition-functions) of this model
on paths by an easy application of the transfer-matrix method originating
in statistical physics and widely used in enumerative combinatorics, see e.g.
Chapter 4.7 of [4]. (Details are easy and can be understood without prior
knowledge of spin models.)

We denote by An, Bn, Cn the generating series (with respect to the weight
qs0+s1+...+sn) for sequences (s0, s1, . . . , sn) ∈ {1, 2, 3, 4}n+1 of length n+1 with
coefficients in {1, 2, 3, 4} such that si+si+1 ≥ 4 for i = 0, . . . , n−1 and ending
with sn = 1 for elements counted by An, sn = 2 for Bn and sn ∈ {3, 4} for
Cn. We have A0 = q, B0 = q2, C0 = q3 + q4 and





An

Bn

Cn



 =





0 0 q
0 q2 q2

q3 + q4 q3 + q4 q3 + q4





n



A0

B0

C0



 , (14)

by an easy induction. The transfer-matrix involved in (14) has eigenvalues
−0.3981, 0.2476, 0.9143 at q = ω−1. This shows that the evaluations Pn(ω

−1)
of the polynomials Pn = An + Bn + Cn decay exponentially fast to 0. The
evaluations Pn(ω

−1) are strictly smaller than 1 for n ≥ 3.
Lemma 8.2 implies that the series

(

1 +

∞
∑

n=0

Pn

)2

q

(

1 +

∞
∑

n=3

P2n−1 + P2n+1

(1− P2n−1)(1− P2n+1)

)

(15)

converges on an open disc of radius strictly larger than ω−1.
Coefficients of (15) are upper bounds on the number of possibilities for

right compositions of NSG-compositions with pivot-part the second last max-
imum xk = 5: The squared first factor has convergency radius strictly larger
than ω−1 by Lemma 8.2 and accounts for perhaps existing exceptional com-
ponents, the isolated factor q corrects for the fact that xl = 5 6∈ {1, 2, 3, 4}.
The final factor (which converges for q slightly larger than ω−1, see Lemma
8.2) yields a coarse upper bound for contributions coming from ordinary
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components of Γ. The summand 1 of the final factor is needed for NSG-
compositions with graphs reduced to exceptional components. The sum of
the final factor starts at n = 3 since the inequality l < (m − 1)/3 ensures
length at least 5 for ordinary components of Γ. The numerator P2n−1+P2n+1

(necessary for convergency) is due to the assumed existence of at least one
ordinary component of length 2n − 1 or 2n + 1. (NSG-compositions with-
out ordinary components in the associated graph Γ are accounted for by the
summand 1 of the last factor, see above).

12 NSG-compositions with maximum 4

This section contains a proof of the following result:

Proposition 12.1. We assume the inequality γ̃ < ω for the growth-rate
of the generating series C̃(q) enumerating NSG-compositions of maximum 3
ending with a maximal part.

There exists then a positive constant κ4 strictly smaller than ω such
that NSG-compositions of maximum 4 have growth-rate at most equal to
max(κ4, 1/ρ,

3

√

γ̃ω2) where ρ = 0.71667 . . . > ω−1 is the positive root of
1− (2q3 + q4).

The inequality γ̃ < ω will be proven in Theorem 13.3 whose proof uses
parts (contained in Sections 12.4-12.6 and independent of the assumption
γ̃ < ω) of the proof of Proposition 12.1.

We start by outlining the proof of Proposition 12.1, hopefully providing
the reader with a “magic flute” guiding him through the foggier parts. The
main difficulty is due to the fact that we have to work with NSG-inequalities
involving three maximal parts when considering right compositions with re-
spect to a suitable maximal pivot-part.

The proof remains however roughly similar to the proof of the correspond-
ing result (given by Proposition 11.1) for NSG-compositions of maximum 5.

We start by studying the growth-rate of NSG-compositions with maxi-
mum 4 having a bounded number of maximal parts. This is done procrasti-
nationally in Section 12.1 whose main result, Proposition 12.2 is the analogue
of Proposition 11.2.

Section 12.2 is devoted to left compositions with respect to an arbitrary
maximal pivot-part.

Section 12.3 is the analogue of Proposition 11.5: It deals with NSG-
compositions whose Frobenius numbers are close to 4m.

Section 12.4 discusses Cayley and Schreier graphs of (some) groups.

23



Section 12.5 discusses spin models of lanes, used in the proof of Section
12.6

Section 12.6 contains the core of the proof: It introduces the ǫ-condition
and bounds the growth rate of right compositions satisfying the ǫ-condition.

The content of Sections 12.3–12.6 corresponds more or less to the state-
ment and proof of Proposition 11.3 in the case of NSG-compositions of max-
imum 5.

Section 12.7 ties up loose ends.

12.1 NSG-compositions with a bounded number of max-

imal parts of size 4

Proposition 12.2. Given a natural integer A, the growth-rate of NSG-
compositions with maximum 4 having at most A maximal parts is at most
equal to max(1/ρ, 3

√

γ̃ω2) where ρ = 0.71667 . . . > ω−1 is the positive root of
1 − (2q3 + q4) and where γ̃ < ω is the growth-rate of the generating series
C̃(q) enumerating NSG-compositions with maximum 3 ending with a part of
maximal size.

A straightforward modification of the proof of Proposition 11.2 does un-
fortunately not work: NSG-compositions with a maximal part of size 3 are
generic and have growth-rate ω due to the possibility of arbitrary long ’tails’
involving only summands 1 and 2. In order to circumvent this difficulty, we
discuss first NSG-compositions with ’short tails’.

A NSG-composition x1+. . .+xm−1 is short-tailed if it involves a summand
xl ≥ 3 with index l ≥ m/2.

Lemma 12.3. The generating series S for short-tailed NSG-compositions
with maximum 3 has growth rate at most 3

√

γ̃ω2 where γ̃ < ω is the growth-

rate of the generating series C̃(q) enumerating NSG-compositions with max-
imum 3 ending with a part of maximal size.

Proof of Lemma 12.3. Let x = x1 + · · · + xl + · · · + xm−1 be a short-tailed
NSG-composition with last maximum xl = 3 for 2l ≥ m. Since x1, . . . , xl ≥ 1
and xl+1, . . . , xm−1 ≤ 2 with l > m − 1 − l we have 2(x1 + · · ·+ xl) = 2l >
2(m − 1 − l) ≥ xl+1 + · · · + xm−1. In particular, the NSG-composition
x1 + · · ·+ xl contributes at least g/3 to the genus g = x1 + · · ·+ xm−1 of x.

Denoting by c̃g the number of NSG-compositions of genus g ending with
a final maximal part of size 3 (with growth-rate γ̃, involved in the generating
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series C̃ =
∑∞

g=3 c̃gq
g, see (4)), the series

U =

∞
∑

g=3





g
∑

k=⌈g/3⌉
c̃kFg−k



 qg (16)

(where the Fibonacci numbers Fg−k count possibilities for the final NSG-
composition xl+1 + · · · + xm−1 with all parts in {1, 2}, see Proposition 3.1)
with growth rate 3

√

γ̃ω2 gives upper bounds on the coefficients of S counting
short-tailed NSG-compositions with maximum 3.

Proof of Proposition 12.2. Replacing all parts of size 4 in such a NSG-composition
x = x1 + · · · + xm−1 with parts of size 3, we get a NSG-composition x =
x1 + · · ·+ xm−1 with parts xi = min(xi, 3) of maximal size 3.

We count first all such NSG-compositions x (having at most A maximal
parts of size 4) such that x is short-tailed. Since such a short-tailed NSG-
composition of genus g can be lifted into at most

(

g
a

)

NSG-compositions x

having a maximal parts of size 4, we can bound the number of such NSG-
compositions x by applying the same trick used with a = 1 in the proof
of Proposition 11.2. More precisely, numbers of such NSG-compositions x

(with maximum 4 arising at most A times, associated to a short-tailed NSG-
composition x as above) are bounded above by coefficients of

UA =
A
∑

a=1

q2a
da

dqa
U =

A
∑

a=1

q2a
da

dqa





∞
∑

g=3





g
∑

k=⌈g/3⌉
c̃kFg−k



 qg



 (17)

with U the series of upper bounds for short-tailed NSG-compositions of max-
imum 3 given by (16). Since finite sums of derivatives do not increase growth-
rates, the growth rate of the series UA is still given by 3

√

γ̃ω2.
We consider now NSG-compositions x having at most A maximal parts

of size 4 giving rise to NSG-compositions x which are not short-tailed. Such
a NSG-composition x = x1+ · · ·+xl+xl+1+ · · ·+xm−1 has thus a last part xl

of size 3 or 4 indexed by l < m/2. Since it has maximum 4, it contains a part
xk (not necessarily distinct from xl) of size 4 with k ≤ l. Since k ∈ {1, . . . , l}
with l < m/2, the two (not necessarily distinct) indices l+1 and m+k− l−1
belong to {l + 1, . . . , m − 1} and the NSG-inequalities (6) involving xk = 4
yield xl+i + xm+k−l−i ≥ 3 with xl+i, xm+k−l−i in {1, 2} for i ≥ 1 such that
l+i ≤ m+k−l−i. The contribution of all such (not necessarily distinct pairs)
to the generating series involved in Proposition 12.2 can be bounded above
by 1+q2

1−(2q3+q4)
. Removing all summands xl+1, xl+2, . . . , xm+k−l−1 involved in
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such pairs from x and replacing maximal parts of size 4 by parts of size 3,
we get a NSG-composition

x̃ = min(x1, 3) + · · ·+min(xl, 3) + xm+k−l + xm+k−l+1 + · · ·+ xm−1

with tail-length (given by the number of final parts in {1, 2} following xl = 3)

m− 1− (m+ k − l − 1) = l − k < l .

This implies that x̃ is short-tailed.
The generating series of NSG-compositions having at most A parts of

maximal size 4 can thus be bounded above by the generating series

UA
1 + q2

1− (2q3 + q4)

(the constant coefficient 1 of 1+q2

1−(2q3+q4)
accounts for NSG-compositions dis-

cussed at the start of the proof) with growth-rate given by Proposition
12.2.

12.2 Left compositions

We set

P̃n =
(

1 1 1
)





0 0 q
0 q2 q2

q3 + q4 q3 + q4 q3 + q4





n



q
q2

q3



 (18)

for n ≥ 1.

Proposition 12.4. The coefficients of the generating series for distinct left
compositions with respect to a maximal pivot-part 4 are bounded above by
coefficients of

(1 + q)

(

1 + q2 + q3 + q4 +
∞
∑

n=1

P̃n

)2(

1 +
∞
∑

n=1

P̃2n−1 + P̃2n+1

(1− P̃2n−1)(1− P̃2n+1)

)

(19)

which converges on an open disc of radius strictly larger than ω−1.

Proof. In order to study the generating series associated to left compositions
x1+ · · ·+xl−1(+xl) with respect to a maximal pivot-part xl = 4, we consider
the graph Γ with vertices 1, . . . , l − 1 and edges {i, j} if i+ j ∈ {k, l} where
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k < l ≤ 2k is maximal such that xk = 4 if such an index k ≥ l/2 exists.
The graph Γ is a union of disjoint edges {i, l− i} (and of the isolated vertex
l/2 if l is even) if the index k does not exist. Connected components of Γ
are paths having at least one end-point in k, k + 1, . . . , l − 1 (respectively
⌈l/2⌉, . . . , l − 1 if k does not exist). (More precisely, they all start and end
at points in k, . . . , l− 1, except for at most two paths starting at elements of
k, . . . , l − 1 and ending in {k/2, l/2} ∩ N.)

Parts (spins) associated to initial vertices in {k, k + 1, . . . , l− 1} are ele-
ments of {1, 2, 3}, except for the path starting at xk = 4 if k exists. All other
spins are in {1, 2, 3, 4} and we have xi + xj ≥ 4 for edges {i, j} of Γ.

The generating series of a path of length n ≥ 1 not starting at xk is
thus given by the polynomial P̃n (obtained by the transfer matrix method,
compare with formula 14) defined by formula (18).

Formula (19) is analogous to Formula (15): The factor (1+ q) of formula
(19) accounts for the correction xk = 4 6∈ {1, 2, 3} of the (not necessarily
existing) path starting at k with initial spin xk = 4. The squared factor takes
into account the possible existence of exceptional paths ending at {l/2, k/2}∩
N. The final factor deals with all ordinary paths (not containing a vertex of
{l/2, k/2} ∩ N) of Γ.

Convergency of the series (19) for q slightly larger than ω−1 follows from
Lemma 8.2: Elementary (and somewhat lengthy) computations involving
the transfer matrix of (18) show that evaluations at q = ω−1 of P̃n decay
exponentially fast and are strictly smaller than 1 for n ≥ 1.

12.3 Frobenius numbers close to 4m

Proposition 12.5. There exists δ > 0 such that NSG-compositions x1 +
· · · + xl + · · · + xm−1 satisfying the inequality (m − 1 − l) ≤ δ(m − 1) for
the index l of their last maximal part xl = 4 have growth-rate strictly smaller
than ω.

Remark 12.6. The Frobenius number 3m+ l of NSG-compositions described
by Proposition 12.5 is close to 4m if δ is small.

Proof of Proposition 12.5. We consider the pivot-factorisation of such a NSG-
composition x1 + · · ·+xm−1 with pivot-part the last maximal part xl. Using
the NSG-inequalities xl = 4 ≤ 1 + xl+i + xm−i we see that the right com-
position xl+1 + · · ·+ xm−1 (with m − 1 − l parts in {1, 2, 3}) contributes at

most a factor of
∑3(m−1−l)

n=0 rnq
n to the generating series where

∑∞
n=1 rnq

n =
(1 + q2 + q3)/(1− I3) (for I3 = 2q3 + 3q4 + 2q5 + q6 given by Formula (11)).
Since (m − 1 − l) ≤ δ(m − 1) < δg (with g = x1 + · · ·+ xm−1 denoting the
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genus) we get the upper bound

⌈3δg⌉
∑

n=0

rnq
n (20)

for contributions coming from right-compositions. Coefficients of the rational
series

∑∞
n=0 rnq

n have however growth-rate 1/ρ > ω for ρ = 0.596 . . . the real
positive root of 1− I3.

Contributions coming from left compositions are bounded by the series
A =

∑∞
n=0 anq

n defined by formula (19) (which yields upper bounds on left
compositions with respect to a maximal pivot-part of size 4). Combining this
with the contribution (20) we get the upper bound

∞
∑

g=4

qg
g
∑

i=⌈g(1−3δ)⌉
airg−i. (21)

on the generating series for NSG-compositions described by Proposition 12.5.
Denoting by α the growth-rate of the series A we get the upper bound
α1−3δ(1/ρ)3δ on the growth-rate of (21). Proposition 12.4 shows the inequal-
ity α < ω which ends the proof since limδ→0 α

1−3δ(1/ρ)3δ = α.

12.4 Groups generated by reflections of R

A group Γ acting properly by affine isometries on the d-dimensional Eu-
clidean space Ed is crystallographic if it has a bounded fundamental domain.
Crystallographic groups are considered up to equivalence under conjugation
by affine bijections. A crystallographic group is a Bravais group if it is the
full group of all affine isometries of an Euclidean lattice.

The simplest crystallographic group is Zd (acting by translations). The
group Zd is not a Bravais group.

The simplest non-commutative example is the simplest Bravais group
{±1}⋉Zd with ±1 acting by x 7−→ ±x on the Euclidean space (and with −1
conjugating a translation to its inverse). It is the full group of affine isometries
of a generic d-dimensional Euclidean lattice having a trivial automorphism
group reduced to ±1. It consists of all translations by elements of Zd and of
all involutions x 7−→ z − x, z ∈ Zd with fix-points in the super-lattice 1

2
Zd

containing Zd with index 2d.

Proposition 12.7. The group 〈R〉 generated by a finite set R of real reflec-
tions of R is isomorphic to the simplest Bravais group {±1}⋉Zd where d is
the dimension of the Q-vector-space generated by all translations (given by
σ ◦ ρ for σ, ρ ∈ R) of 〈R〉.
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Proof. Products of an even number of generators in R generate the nor-
mal commutative subgroup Γe (of index 2) consisting of all translations in
Γ = 〈R〉. The torsion-free subgroup Γe is thus isomorphic to Zd where d
is the dimension of the Q-vector space spanned by all translations defined
by elements in Γe. (The group Γ acts of course by affine bijections on the
underlying Q-affine space.)

Up to conjugation of Γ by the translation of R which sends the fix-point
of ρ0 to the origin, we can assume that the first element ρ0 of R is given by
x 7−→ −x. This element acts on Γe by conjugating each element of Γe to its
inverse.

Finally, the reflection x 7−→ t − x with fix-point t/2 for t ∈ Zd is the
composition of the reflection x 7−→ −x followed by the translation x 7−→
x+ t.

Given a group Γ = 〈G〉 generated by a finite symmetric set G = G−1

containing all inverses of its elements, the group Γ indexes the set of vertices
of its Cayley graph (with respect to the generating set G) with edges given by
{r, gr} for (g, r) ∈ G × Γ. Observe that edges of Cayley graphs are coloured
by g±1 for g in G.

The structure of Cayley graphs is compatible with left-cosets giving rise
to Schreier graphs: The Schreier graph with respect to a subgroup H of Γ has
vertices given by left cosets rH for r in Γ and edges given by {rH, grH} for
g in G. This turns sets with actions of Γ into graphs: connected components
are orbits and correspond to Schreier graphs with respect to stabilisers of
base-points chosen in each orbit.

We apply this to groups Γ = 〈α, β, γ〉 generated by three reflections
α(x) = a− x, β(x) = b− x, γ(x) = c− x where a, b, c ∈ Z are three distinct
integers. Γ is always the infinite dihedral group with translation-subgroup
gcd(b−a, c− b)Z. Orbits of its obvious action (by affine isometries) on Z are
either isomorphic to its Cayley graph or are isomorphic to Schreier graphs
defined by two-element subgroups fixing some integer4.

More precisely, since compositions of all three generators define reflec-
tions, the Cayley graph (which is a bipartite 3-regular graph with edges of
three “colours” corresponding to the sum in {a, b, c} of their two endpoints)
is a hexagonal tiling of a cylinder S1 × R. Orbits of its obvious action on Z

(with vertices Z and edges {x, y} for x + y ∈ {a, b, c}) are either hexagonal
tilings of cylinders (for orbits with free action) or of half-cylinders (for or-
bits with stabilisers), up to neglecting a finite set of points near fix-points of
generators forming a somewhat messy ’cap’. The exact nature of the tiling

4For graphical representations of such orbits the reader can look at pictures of single-
walled carbon nanotubes.
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(and of the extremal cap in the half-cylinder case) depends on arithmetic
properties of b− a, c− b and the orbit.

The example {a, b, c} = {1, 3, 5} leads to a free transitive action on Z

(which can hence be identified with the Cayley graph of Γ). The tiled cylinder
is given by

2 0 2 4 6 8
�� �� �� �� �� ��

7 5 3 1 1 3 5
| | | | | | |
6 4 2 0 2 4 6

�� �� �� �� �� ��

9 7 5 3 1 1

(22)

with x representing −x. Endpoints of vertical edges sum up to 1 (corre-
sponding to the generator x 7−→ 1 − x. The corresponding sum for edges
�, respectively �, is 3, respectively 5. Edges with identical endpoints are of
course identified in the representation given above.

Remark 12.8. Identifying even integers with even translations, the group-
law on Γ is given by x · y = x + (−1)xy for x, y ∈ Z (this works if and only
if a, b, c are all odd and gcd(b− a, c− b) = 2, or equivalently, if the action of
Γ on Z is simply transitive). Observe that this group-law is compatible with
classes modulo 2N (leading to finite dihedral groups).

An example of an orbit defining a Schreier graph is given by {a, b, c} =
{0, 1, 2}:

4 6 8
�� �� �

2 4 6
| | |
3 5 7

�� �� ��

1 − 1 3 5 7
| | | | |
0 − 2 4 6 8

�� �� ��

2 4 6

(23)

(with conventions as above).
Each generator g in {α, β, γ} of such a group Γ = 〈α, β, γ〉 defines parallel

lanes given by bi-infinite sequences . . . , H−1, H0, H1, . . . of hexagons in the
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Cayley graph of Γ with Hi, Hi+1 sharing a common edge coloured by the
generator g (i.e. of the form {r, gr}). The three generators of Γ correspond
thus to three directions (or types) or parallel lanes. A lane is of colour g if its
interior edges (separating adjacent hexagons) are coloured by the generator
g in {α, β, γ}. A lane is embedded if there are no identifications along its
boundaries, i.e. if it injects into the Cayley graph. A lane is embedded if and
only if it misses some edges (of its proper colour) in the full Cayley graph of
Γ. Embedded lanes have parallel lanes of the same direction. Non-embedded
lanes of a given colour (direction) are unique if they exist.

All lanes are infinite (otherwise we get a non-trivial translation of fi-
nite order defined by the composition of the two reflections associated to its
boundary-edges). This implies that there is always a colour corresponding
to embedded lanes. Indeed, all three directions of lanes go off to infinity
and lanes with fastest escape-rates are embedded since they cover a strictly
smaller proportion of the total area than lanes of other colours (which wind
more around the tiled cylinder).

In example (22), the two parallel lanes defined by x 7−→ 3 − x (corre-
sponding to edges �) are embedded. Both remaining generators define a
unique lane which is not embedded.

The notion of a lane makes sense for Schreier graphs defining hexagonal
tilings of half-cylinders by considering infinite sequences H0, H1, H2, . . . of
distinct hexagons moving only in one direction. Embeddedness is defined
by neglecting the messy end capping off the tiled half-cylinder. Example
(23) gives rise to two embedded parallel lanes associated to the generator
x 7−→ 1−x (corresponding to vertical edges) and to (unique) non-embedded
lanes associated to each of the remaining generators.

12.5 Spin models on lanes

Recall that a lane is isomorphic to an infinite sequence of consecutively ad-
jacent hexagons with centres on a straight line. The following picture shows
the i-th hexagon Hi of an upgoing vertical lane.

li+1 − ri+1

� �

l′i Hi r′i
� �

li − ri

(24)

A finite (embedded) lane is a connected finite graph defined by a finite number
of consecutively adjacent hexagons in a (embedded) lane. Finite lanes of
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vertical direction are obtained by vertically stacking (24) in the obvious way.
We use the notations of (24): Left and right boundaries form paths with
vertices . . . , li, l

′
i, li+1l

′
i+1, . . ., respectively . . . , ri, r

′
i, ri+1, r

′
i+1, . . ..

We consider the constrained spin model with spins in {1, 2, 3} on vertices
of finite embedded lanes such that xi + xj ≥ 3 for spins xi, xj on adjacent
vertices. We have the following result:

Proposition 12.9. The partition function of a finite embedded lane contain-
ing n hexagons is given by the polynomial

Ln = (q2 + q3)2n
(

1 1 1
)

T n





q(q2 + q3)
(q2 + q3)q

(q2 + q3)(q2 + q3)



 (25)

where

T =





q(q + q2 + q3) q(q2 + q3) q(q + q2 + q3)
q(q2 + q3) q(q + q2 + q3) q(q + q2 + q3)

(q2 + q3)(q + q2 + q3) (q2 + q3)(q + q2 + q3) (q + q2 + q3)2





(26)

Evaluations at q = ω−1 of the polynomials Ln decay exponentially fast to
0.

Proof. We use transfer-matrices with respect to bases given by given by

li ri
b1 q q2 + q3

b2 q2 + q3 q
b3 q2 + q3 q2 + q3

encoding all possibilities for spins at two horizontally adjacent vertices li, ri
belonging to the left and right boundary path of a lane, see (24).

The reader should convince himself that (q2+q3)2T is the transfer matrix
with respect to the basis b1, b2, b3. Denoting by 1,≥ 2, respectively ≥ 2, 1
and ≥ 2,≥ 2 possibilities of spins at li, ri for b1, b2, b3, the transfer matrix can
be recovered from the following table with columns indexed by spins at li, ri,
rows indexed by spins at li+1, ri+1 and entries giving by all possibilities (using
the notation ∗ for arbitrary spins in {1, 2, 3} and ≥ 2 for spins in {2, 3}) for
spins at the intermediary vertices l′i, r

′
i:

1,≥ 2 ≥ 2, 1 ≥ 2,≥ 2
1,≥ 2 ≥ 2, ∗ ≥ 2,≥ 2 ≥ 2, ∗
≥ 2, 1 ≥ 2,≥ 2 ∗,≥ 2 ∗,≥ 2
≥ 2,≥ 2 ≥ 2, ∗ ∗,≥ 2 ∗, ∗

.
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Initial conditions are encoded by the final column-vector of (25). The
initial row vector sums over all possible states for the two final vertices.

Exponentially fast decay to 0 of Ln at q = ω−1 follows from the three
eigenvalues (given approximately by 0.0916, 0.1459 and 0.9297) smaller than
1 of the evaluation at q = ω−1 of (q2 + q3)2T .

We set

Mn =
(

1 1
)

(

0 q
q2 + q3 q2 + q3

)2n(
q

q2 + q3

)

(27)

and

Sn =
Ln(1 +Mn)

1− Ln

. (28)

Proposition 12.10. Up to contributions of boundary vertices, the series
Sn defined by formula (28) gives upper bounds for coefficients of the parti-
tion function (of the constrained spin model with spins in {1, 2, 3}) for finite
hexagonal tilings of bounded cylinders tiled by a finite number of parallel em-
bedded lanes consisting of n hexagons.

Evaluations at q = ω−1 of Sn decay exponentially fast to 0.

Proof. We consider a finite graph Γ on a hexagonally tiled cylinder which
consists of k embedded parallel finite lanes all consisting of n hexagons. Since
the family of k lanes consists of embedded lanes we have k ≥ 2. Up to a few
boundary vertices, vertices of Γ are contained in the union of k/2 embedded
disjoint lanes if k is even and they are contained in the union of (k−1)/2 ≥ 1
disjoint embedded lanes and of a simple path (parallel to the boundaries of
the previous lanes) of length 2n if k is odd. The fraction Ln

1−Ln
gives upper

bounds for the contribution coming from the ⌊k/2⌋ disjoint embedded lanes
(consisting of n hexagons). The factor (1 + Mn) accounts for the possible
presence (for k odd) of a simple path of length 2n.

The evaluation at q = ω−1 of the transfer matrix involved in the definition
of Mn given by formula (27) has eigenvalues 1 and −ω−2. Evaluations of Mn

at q = ω−1 define thus a bounded sequence.
Since Ln decays exponentially fast to 0, the final part of Proposition 12.10

holds.

Remark 12.11. The transfer-matrix

(

0 q
q2 + q3 q2 + q3

)

involved in the

definition of Mn has eigenvalue 1 at q = ω−1. This is of course the reason
for working with more complicated graphs (given by hexagonal tilings and
associated to three maximal parts) when dealing with NSG-compositions of
maximum 4.
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Remark 12.12. The spin models considered in this section can be considered
as a variation of the hard-square model (with spins in {0, 1} on vertices of
the square lattice such that vertices with maximal spin 1 are isolated). We
work essentially with spins in {1, 2, 3} on vertices of quotients of the 3-regular
graph defined by a hexagonal tiling such that vertices with minimal spin 1 are
isolated.

12.6 The ǫ-condition

Given ǫ > 0, a NSG-composition x1 + · · ·+ xm−1 of maximum 4 satisfies the
ǫ-condition if it has at least three maximal parts and if we have l3 − l1 ≤
ǫ(m− 1− l1) for the indices l1 < l2 < l3 of the last three maximal parts.

Proposition 12.13. There exists ǫ > 0 such that NSG-compositions of max-
imum 4 satisfying the ǫ-condition have growth-rate strictly smaller than ω.

Proof. We consider a NSG-composition x1 + · · ·+ xl1 + · · ·+ xm−1 satisfying
the ǫ-condition (for some small enough positive ǫ) with xl1 = xl2 = xl3 = 4
for l1 < l2 < l3 the last three maximal parts, as in the definition of the ǫ-
condition. We use pivot-factorisation with respect to the third-last maximal
part xl1 .

Proposition 12.4 shows that associated left compositions have growth-rate
strictly smaller than ω.

In order to study right compositions, we consider the graph Γ with m−
1−l1 vertices labelled l1+1, . . . , m−1 and edges {i, j} if i+j−m ∈ {l1, l2, l3}.
More precisely, the graph Γ is the restriction to {l1 + 1, . . . , m − 1} of the
orbit-graph underlying the group generated by the three real reflections x 7−→
m+ li−x with half-integral fix-points (m+ li)/2 in 1

2
N. Removing from Γ the

central set {⌊(l1+m)/2⌋, . . . , ⌈l3+m)/2⌉} (called the set of central vertices)
containing all fix-points, the graph Γ is a finite union of hexagonal tilings
on cylinders (up to neglecting a few incomplete hexagons at boundaries), see
Section 12.4. These hexagonal tilings contain parallel lanes of proper type
consisting of a roughly equal number of at least (m − l1)/(2(l3 − l1)) − c
hexagons for some small constant c (choosing c = 10 certainly works). For ǫ
small enough, we have thus a lower bound of 1

4ǫ
for the number of hexagons

of all lanes.
Proposition 12.10 shows thus that the contribution of most vertices of Γ

(except central vertices and a few vertices near the other boundaries of these
finite cylinder-tilings) can be bounded by

∑∞
n=⌊1/(4ǫ)⌋

Sn

1−Sn
(for Sn given by

(28)) which has growth-rate strictly smaller than ω by Proposition 12.10 and
Lemma 8.2.
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The contribution of the remaining a = O(l3− l1) vertices can be bounded
trivially by (q + q2 + q3)aq2 (with the factor q2 accounting for the values
xl2 = xl3 = 4 6∈ {1, 2, 3}). Such vertices contribute thus at most a proportion
of ǫ to the (degree of) the total contribution of such a NSG-composition. We
can thus apply the arguments used for the series given by (21) during the
proof of Proposition 12.5.

12.7 Proof of Proposition 12.1

The main ingredient for proving Proposition 12.1 is the following result:

Proposition 12.14. There exists a natural integer A such that NSG-compositions
with at least A parts of maximal size 4 have growth-rate strictly smaller than
ω.

Proof. We δ such that Proposition 12.5 holds. We chose ǫ such that Propo-
sition 12.13 holds for ǫ′ = ǫ

1−ǫ
. We choose now a natural integer N such that

(1− ǫ)N < δ. We are going to prove that A = 2N + 1 works.
Let x = x1+· · ·+xm−1 be a NSG-composition having at least A = 2N+1

maximal parts of size 4. For i = 0, . . . , N − 1 we denote by Ii the set of all
integers of the real interval

[⌈m− 1− (1− ǫ)i(m− 1)⌉, ⌊m− 1− (1− ǫ)i+1(m− 1)⌋] .

We set IN = [⌈m − 1 − (1 − ǫ)N (m − 1)⌉, m − 1] ∩ N. We have of course
∪N
i=0Ii = {1, . . . , m− 1}. We denote by L the set of the A = 2N + 1 largest

elements in the set {i |1 ≤ i ≤ m − 1, xi = 4} indexing maximal parts
of x. Proposition 12.5 and the definition of IN show that the set of such
NSG-compositions with L intersecting IN has growth-rate smaller than ω.

We can thus assume that L does not intersect IN . The pigeon-hole prin-
ciple implies thus that there exists a set Ij among the N sets I0, . . . , IN−1

containing at least three elements of L. Let l1 < l2 < l3 be the three largest
elements of L ∩ Ij . We denote by a = ♯{i ∈ L | i > l3} ≤ A− 3 the number
of elements of L which are larger than l3. Adjoining a times the Frobe-
nius element to (the numerical semigroup associated to) x, we get a NSG-
composition x of genus g − a with parts xi = xi if i ≤ l3 and xi = min(3, xi)
if i > l3. Since three last maximal parts xl1 = xl2 = xl3 = 4 of x have indices
l1, l2, l3 in Ij we get

l3 − l1 ≤
(1− (1− ǫ))

1− ǫ
(1− ǫ)i+1(m− 1) ≤ ǫ

1− ǫ
(m− 1− l1)
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which implies that x satisfies the ǫ′-condition for ǫ′ = ǫ
1−ǫ

. The generating
series of such NSG-compositions is bounded by the series

A−3
∑

k=0

q2k
dk

dqk
Gǫ′(q)

with Gǫ′ denoting the generating series for all NSG-compositions of maximum
4 satisfying the ǫ′-condition. Since Gǫ′ has growth-rate strictly smaller than
ω for ǫ′ small enough (see Proposition 12.13) and since algebraic differential
operators do not increase the growth-rate we get the result.

Proof of Proposition 12.1. Combine Propositions 12.14 and 12.2.

13 NSG-compositions with maximum 3

Proposition 13.1. The generating series for the number of all NSG-compositions
with maximum 3 is given by

∑∞
j=3 c̃jq

j

1− q − q2

where C̃ =
∑∞

g=3 c̃gq
g is the generating series of all NSG-compositions with

maximum 3 ending with a maximal part.

Remark 13.2. The number c̃g is the number of numerical semigroups S of
genus g = ♯(N \ S) with Frobenius number f = 3m− 1.

Proof of Proposition 13.1. All NSG-inequalities xm−s−t ≤ xm−s + xm−t + 1
(with 1 ≤ s, t ≤ s + t < m) of the second line in (6) are satisfied for
compositions with maximum at most 3.

Any NSG-composition x1 + . . .+ xm−1 of maximum 3 has thus a unique
pivot-factorisation

(x1 + · · ·+ xl−1 + 3) + (xl+1 + · · ·+ xm−1)

with pivot-part the last occurrence xl = 3 of a maximal part into a left com-
position defining a NSG-composition with parts in {1, 2, 3} ending with the
pivot part xl = 3 (defined as the last maximal part) and a right composition
defining a NSG-composition with all parts in {1, 2}. This decomposition is
bijective: Concatenating a NSG-composition ending with a maximal part 3
with a composition having all parts in {1, 2} yields an NSG-composition of
maximum 3.

The result follows since the numerator accounts for the initial NSG-
composition ending with 3. Possibilities for the final composition with all
parts in {1, 2} are enumerated by the denominator, see Proposition 3.1.
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13.1 Convergencency of C̃ at ω−1

Theorem 13.3. The generating series C̃ =
∑∞

j=3 c̃jq
j for NSG-compositions

ending with a maximal part of size 3 has growth-rate strictly smaller than ω.

Proof. Given ǫ > 0, a NSG-composition x1+· · ·+xm−1 ending with a maximal
part xm−1 = 3 satisfies the ǫ-condition if it has at least three maximal parts
and if we have (m− k) < ǫm for the third last maximal part xk = 3.

A slight modification of the proof of Proposition 12.13 shows that NSG-
compositions satisfying the ǫ-condition have growth-rate smaller than ω for
ǫ small enough. We fix ǫ to a strictly positive value which is small enough.

We consider now NSG-compositions ending with a maximal part xm−1 =
3 which do not satisfy the ǫ-condition (for our fixed value of ǫ). Adding to
(the numerical semigroup of) such a composition the second largest gap if
it corresponds to an index l at least equal to (1 − ǫ)m, we are reduced to
consider NSG-compositions x1 + · · · + xm−1 of maximum 3 ending with a
maximal part such that we have k < (1− ǫ)m for the (perhaps non-existing)
index k of the second last maximal part.

We consider the graph Γ with vertices 1, . . . , m−2 and edges {i, j} if the
sum i+j belongs to {k,m−1} (with k missing if xm−1 is the unique maximal
part of x1 + · · ·+ xm−1. Connected components are paths of lengths at most
equal to 2/ǫ + 1 with endpoints in k, k + 1, . . . , m − 2, except for (perhaps
existing) exceptional components ending at an element of {k/2, (m−1)/2}∩
N. The associated constrained Ising model has spins in {1, 2, 3} except for
endpoints k+ 1, . . . , m− 2 corresponding to spins in {1, 2}. (If such a NSG-
composition has a unique part of maximal size 3, these paths are simply
of length 1, given by edges {m − i, i}, together with the (not necessarily
existing) isolated vertex (m− 1)/2.) The generating function for such paths
of length n is given by

P̃n =
(

1 1
)

(

0 q
q2 + q3 q2 + q3

)n(
q
q2

)

and we have P̃n(ω
−1) ≤ P̃2(ω

−1) = 13−5
√
5

2
< 1 for all n ≥ 1. Observe now

that the number of NSG-compositions under consideration is bounded by the
coefficients of the rational function

(

1 + q2
d

dq

)



(1 + q2 + q3)(1 + q)





⌈2/ǫ+1⌉
∑

j=1

1

1− P̃j





4

q3





with convergency radius strictly larger than ω−1. (The differential operator
accounts for a perhaps suppressed second-last maximal part, the factor (1 +
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q2 + q3) takes into account a perhaps existing isolated vertex (m − 1)/2 of
Γ, the factor (1 + q) corrects for a (perhaps non-existing) path with initial
vertex starting at the second-last maximal part with index at least (1− ǫ)m,
the fourth power accounts for all possible paths of length at least 1 (there
are at most four different possible lengths, all bounded by 2/ǫ+ 1), the final
factor q3 corresponds of course to the part xm−1 = 3.)

Remark 13.4. The upper bound 2/ǫ+ 1 on lengths of paths in Γ is crucial
in the previous proof: The evaluations P̃n(ω

−1) tend to a strictly positive
limit for n → ∞ (the corresponding transfer-matrix has an eigenvalue 1 at
q = ω−1).

14 Proof of Theorem 1.2

Proposition 14.1. The generating series for all NSG-compositions with
maximum at most 3 is given by

1 + C̃

1− q − q2

where C̃ is the generating series for all NSG-compositions ending with a
maximal part of size 3.

Proof. Follows from Proposition 3.1 and Proposition 13.1.

Corollary 14.2. We have

lim
g→∞

n≤3(g)
(

1+
√
5

2

)g =
5 +

√
5

2

(

1 + C̃((
√
5− 1)/2)

)

for the number n≤3(g) of NSG-compositions with genus g and maximum at
most 3.

Proof of Corollary 14.2. The algebraic identity

1

1− q − q2
=

5 +
√
5

10

1

1− 1+
√
5

2
q
+

5−
√
5

10

1

1− 1−
√
5

2
q

and Theorem 13.3 show that

1 + C̃(q)

1− q − q2
− 5 +

√
5

10

(

1 + C̃(ω−1)
)

1− ωq
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is holomorphic in a open disc of radius strictly larger than ω−1. We have
thus

n≤3(g) =
5 +

√
5

10

(

1 + C̃(ω−1)
)

ωg(1 + o(1/g))

for coefficients n≥3(g) of (1+ C̃(q))/(1− q− q2) enumerating NSG-partitions
of genus g with parts in {1, 2, 3}.

Proof of Theorem 1.2. Corollary 14.2 implies that it is enough to show that
NSG-compositions of maximum ≥ 4 have growth-rate strictly smaller than
ω. Theorem 13.3 and Proposition 12.1 ensure a growth-rate strictly smaller
than ω for NSG-compositions with maximum 4. By Proposition 11.1 we get
then the result for NSG-compositions with maximum 5 and Proposition 10.1
completes the proof.

15 NSG-compositions ending with a maximal

part of size 3

A good understanding of NSG-compositions ending with a maximal part of
size 3 associated to the generating series C̃ is desirable in view of Theorem
1.2 and Proposition 13.1. This Section has four distinct parts:

In a first part we prove the following result:

Theorem 15.1. The coefficient c̃g of the generating series C̃ is at most equal
to the coefficient αg of the rational series A =

∑∞
g=3 αgq

g defined by

A =
1 + q2 + q3

1− (q2 + q3)(q + q2 + q3)
q3 . (29)

In particular, the convergency radius of C̃ is at most equal to the convergency
radius ρA = 0.659982 . . . of A given by the positive real root ρ of 1 − (q2 +
q3)(q + q2 + q3).

In a second part we list a few initial coefficients of C̃.
In a third part we give generating sequences for all contributions to C̃

with only one or two maximal parts (of size 3).
The fourth part is speculative and non-rigourous: We believe that the

upper bound ρA given by Theorem 15.1 on the convergency radius on C̃ is
sharp and we describe (in a non-rigourous way) a family of NSG-contributions
ending with a maximal part 3 which should give the bulk of contributions to
c̃g for g → ∞.
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15.1 Proof of Theorem 15.1

Proof. We consider the set of all compositions x1 + . . . + xm−1 ending with
a maximal part xm−1 = 3, with x1, x2, . . . , x⌊(m−1)/2⌋ in {2, 3} and with
x⌊(m−1)/2⌋+1, . . . , xm−2 in {1, 2, 3}. If i and j are two strictly positive integers
such that i + j ≤ m − 1, then min(i, j) ≤ ⌊(m − 1)/2⌋ and we have thus
xi+xj ≥ 2+1 = 3 showing that all such compositions are NSG-compositions
ending with a maximal part 3. Regrouping parts xi, xm−1−i and taking into
account the central part x(m−1)/2 (which exists only for odd m) we get the
generating series

A =
1 + (q2 + q3)

1− (q2 + q3)(q + q2 + q3)
q3

for the set of all such NSG-compositions. This proves the inequality αg ≤ c̃g.
The convergency radius of A is given by the smallest pole at the positive

real root ρA of the denominator of the rational series A. Since all real positive
coefficients of C̃ are bounded below by the corresponding coefficients of A,
the convergency radius of C̃ is at most equal to the convergency radius ρA
of A.

15.2 A few initial coefficients for C̃

The following tables list a few numbers c̃g counting NSG-compositions of
genus g ending with a maximal part of size 3. The first table contains also
the corresponding compositions, encoded as words in {1, 2, 3}∗ (with omitted
addition-signs):

g c̃g compositions
3 1 3
4 0
5 1 23
6 3 33, 123, 213
7 2 223, 313
8 4 233, 323, 1223, 2213
9 9 333, 1233, 2223, 2313, 3213, 11223, 12123, 21213, 22113
10 12 2233, 2323, 3223, 3313, 12223,

21223, 21313, 22123, 22213, 23113, 31213, 32113

Coefficients c̃1, . . . , c̃50 of C̃ are given by

1− 10 0 0 1 0 1 3 2 4 9 12
11− 20 20 32 50 84 132 208 331 526 841 1333
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21− 25 2145 3401 5314 8396 13279
26− 30 20952 33029 51927 81527 128102
31− 35 201700 317461 498911 782868 1226255
36− 40 1919070 3000905 4687213 7315975 11419861
41− 45 17833383 27857264 43511423 67908811 105857661
46− 50 164837336 256493732 398937594 620308837 964299016

A sequence starting with initial coefficients of C̃ does presently not appear
in [3].

Figure 2: Quotients c̃i/(iai) for i = 10, . . . , 50.

These coefficients were computed using the algorithm outlined in Section
16.2. Figure 2 displays some quotients c̃i/(iai) for

∑∞
n=3 anq

n the rational
series defined by Formula (29) of Theorem 15.1.

Initial coefficients for C̃ suggest the inequalities

3.57 < C < 3.93

for the constant C occuring in Formula (2) of Theorem 1.2. The left in-
equality is proven since it was obtained by considering a large subset of
NSG-compositions contributing to C̃. The right side is somewhat conjec-
tural: It was obtained by assuming c̃i/c̃i−1 < c̃50/c̃49 and by replacing the

missing coefficients c̃i for i > 50 with c̃50

(

c̃50
c̃49

)i−50

.
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15.3 Contributions to C̃ with k maximal parts

We denote by c̃g,k the number of NSG-compositions of genus ending with a
maximal part of size 3 and having a total number of k maximal parts.

Setting

τ(k) =
∑

g

c̃g,kω
−g (30)

we have C̃(ω−1) =
∑∞

k=1 τ(k) and Theorem 1.2 implies immediately the
following result:

Proposition 15.2. The proportion of NSG-compositions with k maximal
parts of size 3 is asymptotically given by

τ(k)

1 +
∑∞

k=1 τ(k)
.

We describe in this section the easy value of τ(1) and we give a useful
formula for the already complicated case of τ(2).

Proposition 15.3. We have

∞
∑

g=3

c̃g,1q
g =

1 + q2

1− (2q3 + q4)
q3 . (31)

We get in particular the evaluation

τ(1) =
1

ω
+

1

ω3
= 0.85410196624968454461376 . . . .

Proof. We consider graphs with vertices 1, . . . , m− 2 and edges i,m− 1− i.
Connected components are isolated edges and perhaps an isolated vertex
(m − 1)/2. We consider the spin model with spins 1 or 2 summing up at
least to 3 along edges. The isolated vertex (m − 1)/2 (which exists only for
odd m) is required to have spin 2. The corresponding partition function,
corrected by the final factor q3 in order to account for the last maximal part
xm−1 = 3 is easily seen to be given by (31).

Proposition 15.4. The generating series
∑∞

g=6 c̃g,2q
g counting all NSG-

compositions ending with a last maximal part of size 3 and having a unique
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additional maximal part is given by

1 + q3 + q4

1− (3q6 + 4q7 + q8)
q3
(

1 + (q + q2)
1 + q2

1− (2q3 + q4)

)

q3

+ q4
∞
∑

n=1

Pn,0,0

+ q4
∞
∑

n=2

P2n−1,0,1(1 + Pn−1,1,0)

1− P2n−1,1,1

+ q4
∞
∑

n=3

(

P2n−1,1,1 + Pn−1,1,0

1− P2n−1,1,1

)

Pn−2,0,0

+ q4
∞
∑

n=3

(

P2n−1,1,1 + Pn−1,1,0

1− P2n−1,1,1

)

P2n−3,0,1(1 + Pn−2,1,0)

1− P2n−3,1,1

where

Pn,ǫα,ǫω =
(

ǫω 1
)

(

0 q
q2 q2

)n(
ǫαq
q2

)

.

We have in particular

τ(2) = .7628736853796206184361443135239953344793590 . . . .

Coefficients c̃g,2 for g = 1, . . . , 20 are given by

0, 0, 0, 0, 0, 1, 1, 2, 3, 7, 10, 11, 25, 38, 43, 75, 123, 153, 233, 383 .

Sketch of proof for Proposition 15.4. Let x1 + · · · + xk + · · · + xm−1 be a
NSG-composition with xk = xm−1 = 3 and all remaining parts in {1, 2}. We
assume first that 2k ≤ m− 1. Removing all ’central’ parts xk+1, . . . , xm−2−k

following xk reduces such a NSG-composition to a NSG-composition with
m−1 = 2k. The associated graph with vertices 1, . . . , m−2 and edges {i, j}
such that i + j ∈ {k, 2k} gives rise to a spin-model with partition function
(1 + q3 + q4)q6/(1− 3q6 + 4q7 + q8). Possibly removed central parts account
for a factor of (1 + (q + q2)(1 + q2)/(1− (2q3 + q4)).

We can now suppose 2k > m−1. We consider the associated graph Γ with
vertices 1, . . . , m − 2 and edges {i, j} with i + j ∈ {k,m − 1}. Connected
components of this graph are line-segments of length 2n − 1, 2n − 3 and
perhaps an exceptional line-segment of length n− 1 and an exceptional line-
segment of length n−2. More precisely, connected components of length 2n−
1 start at the last vertices of Γ and are ’wrapped around’ a (not necessarily
existing) exceptional component of length n − 1. Components of length
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2n− 3 wrapped around the (not necessarily existing) exeptional component
of length n− 2 have the same structure.

Exceptional line-segments end at a vertex of spin 2. The connected com-
ponent with endpoint k corresponds also to a spin 2 point after diminishing
xk = 3 by 1. Endpoints with spins restricted to 2 are accounted for by set-
ting one or both of the parameters ǫα, ǫβ in the polynomials Pn,ǫα,ǫω (counting
possibilities for spins in {1, 2} summing up at least to 3 along edges in a line-
graph of length n) to 0. The different combinatorial possibilities correspond
to the next four summands. The somewhat lengthy but straightforward de-
tails are left to the reader.

15.4 Speculations on typical asymptotic contributions

to C̃

We say that a class of NSG-compositions ending with a last maximal part of
size 3 is a asymptotically C̃-typical if the proportion of NSG-compositions of
the class contributing to c̃g tends to 1 for g → ∞.

The aim of this Section is to describe a class which should be asymptot-
ically C̃-typical. The class is given by the set of all NSG-compositions close
to all NSG-compositions occuring in the proof of Theorem 15.1. Somewhat
informally, an asymptotically C̃-typical NSG-composition x1+ · · ·+xm−1 has
two large regular chunks: The first chunk starts with x1 and ends somewhere
slightly before x⌊(m−1)/2⌋. Its parts are independent random variables, equal
to 2 with probability 1/(1 + ρA) (for ρA as in Theorem 15.1) and equal to
3 with probability ρA/(1 + ρA). It contains no parts of size 1. This part is
followed by a small transitional region centered around (m−1)/2 (containing
parts 1 with gradually increasing density) ending at the beginning of the sec-
ond large chunk with parts given by independent random variables equal to
α ∈ {1, 2, 3} with probabilities ρα−1

A /(1+ ρA+ ρ2A). The very last parts of an
asymptotically C̃-typical NSG-composition form again a transitional region
containing parts of size 3 with gradually decreasing density. (The presence
of pairs xi = xj = 1 of parts 1 with indices i + j < m − 1 in the central
transitional region forces xi+j ≤ 2.)

An asymptotically C̃-typical NSG-composition x1 + . . . + xm−1 of large

multiplicity m has genus 1
2

(

2+3ρA
1+ρA

+
1+2ρA+3ρ2

A

1+ρA+ρ2
A

)

m+O(
√
m).

We ignore the typical size of the central and final transitional parts.
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16 Generic numerical semigroups

We call NSG-compositions with maximum at most 3 asymptotically generic
or simply generic since they prevail proportionally in large genus.

16.1 A combinatorial model

Generic NSG-compositions (NSG-compositions of maximum at most 3) can
be extended by adding a last part 1 or 2. Depending on the configuration of
parts equal to 1 an extension by a last part of size 3 is sometimes possible.
We encode this by a rooted binary tree with left descendants corresponding
to parts 1, right descendants corresponding to parts 2 or (sometimes) 3.
We represent this by drawing thin edges for right descendants corresponding
only to extensions by a part of size 2 and by drawing fat edges for right
descendants corresponding to extensions by an additional last part of size
2 or 3. A finite downward path starting at the root represents 2f generic
NSG-compositions if it contains f fat edges. All contributions to C̃ can be
computed as follows. A given fat edge (representing a final part of size 3)
joined by f (different) fat edges, l left edges and s slim right edges to the
root corresponds to 2f generic NSG-compositions ending with a last part 3
yielding a total contribution of q3+l+2s+2f(1 + q)f to C̃.

Figure 3: The tree of generic NSG-compositions.

16.2 An algorithm of complexity 32g/3 for c̃g

The tree of generic NSG-compositions suggests the following elementary al-
gorithm of complexity 32g/3 for computing c̃g.

Let x1 + · · ·+ xm−1 be an NSG-composition ending with a maximal part
xm−1 = 3. Since xi + xm−1−i ≥ 3, we have

g = x1 + · · ·+ xm−1 ≥ 3 + 3(m− 2)/2
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equivalent to the inequality m ≤ 2g/3.
Computing all initial coefficients of C̃ up to c̃g can thus be achieved by

considering all NSG-compositions of multiplicity m ≤ 2g/3 which end with
a maximal part of size 3.

This can be achieved as follows: We fix m ≤ 2g/3. We restrict first
x1, . . . , xm−2 to values in {1, 2}. Since xi + xm−1−i ≥ 3, pairs (xi, xm−1−i)
of distinct parts belong to the set {(1, 2), (2, 1), (2, 2)}. If m ≥ 3 is odd, we
set x(m−1)/2 = 2. Given such a fixed choice of x1, . . . , xm−2, we compute the
number

f = {k ≤ m− 1 | xk = 2 < xi + xk−i, i = 1, . . . , ⌊k/2⌋}

of corresponding fat edges (representing parts of size 2 which can be replaced
by parts of size 3) in the tree of generic NSG-compositions. Such a choice
yields a total contribution of

q
∑

m−1

i=1
xi(1 + q)f

to C̃.
The computation of f is quadratic in g and does thus not increase the

exponential complexity which comes from the roughly 3g/3 possible choices
for the pairs (xi, xm−1−i).

17 Asymptotic properties for special compo-

sitions

The k-th part xk of a composition x1 + . . . with very large sum g =
∑

j xj

with respect to the index k, chosen uniformly among all compositions of g has
obviously an asymptotic limit-distribution5: It is equal to n with asymptotic
probability 2−n for g → ∞.

Such asymptotic limit-distributions for parts exist more generally for
partitions with parts satisfying suitable restrictions (satisfying some mild
hypotheses) depending at most on the index of parts (the resulting limit-
distributions depend then also on the index of the part under consideration).
An example is given by compositions x1 + · · · with a non-zero part xk in
{1, . . . , k}. Such compositions are enumerated by the sequence A8930 of [3].

From an enumerative point of view, one can ask for generating series
of compositions satisfying some restrictions. The answer, given by 1/(1 −

5Disclaimer: Probability theory is a branch of mathematics where I tend to be abso-
lutely sure and completely wrong.
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∑

a∈A qa) is easy for compositions with all parts xi in a common subset A
of non-zero elements in N. More generally, for xi restricted to non-empty
subsets Ai of N \ {0}, we get

∞
∑

n=0

n
∏

k=1

(

∑

a∈Ak

qa

)

.

Remark 17.1. It is possible to consider more generalised compositions where
parts of equal size can have a finite number of different ’colours’ (depending
perhaps on the index of the part). We leave the details to the reader.

Putting restrictions on parts depending not only on the index of parts
but also of all previous parts is more challenging: Let us consider com-
positions x1 + · · · whose k-th non-zero part belongs to some non-empty
subset A(x1, . . . , xk−1) of strictly positive integers. The existence of limit-
distributions for parts x1, x2, . . . is probably no longer easy to decide: A(x1, . . . , xk−1) =
{1, 2, . . . , xk−1} (and no restriction for the first part) leads for example to
partitions (compositions with decreasing parts) which have no asymptotic
limit-distribution. Ordering parts of partitions in increasing order (by con-
sidering compositions with finitely many parts such that x1 ≤ x2 ≤ x3 . . .)
yields to a trivial asymptotic distribution: xk = 1 asymptotically for almost
all such compositions of sufficiently large integers.

A pseudo-example is given by x1 = 1 (if it exists) and xk ∈ {1, xk−1 +
1}. Regrouping suitable terms of such compositions yields a bijection with
compositions having all parts xi in the set {1, 1+ 2, 1+ 2+ 3, . . . ,

(

k
2

)

, . . .} of
triangular numbers.

Since the setA(x1, . . . , xk−1) of possible values for xk depends on x1, . . . , xk−1,
perhaps existing limit-distributions for different parts xi, xj (in compositions
with xk in A(x1, . . . , xk−1)) are no longer independent and we can also con-
sider asymptotic probabilities that a given random compositions starts with
x1+ . . .+xk. The corresponding asymptotic probabilities (and related quan-
tities) will be discussed in the next Section for generic NSG-compositions.

An example where an asymptotic limit-distribution exists is given by
generic NSG-compositions: A(x1, . . . , xk−1) = {1, 2} if xi = xk−i = 1 for
some i < k and A(x1, . . . , xk−1) = {1, 2, 3} otherwise. We will give a few
more details below.

An asymptotic limit distribution should also exist for

A(x1, . . . , xk−1) = {1, 2, . . . , min
i,1≤i<k

xi + xi−k}, (32)

i.e. for composition satisfying only the NSG-inequalities given by the first line
of (6). The methods of this paper give however no rigorous proof for the exis-
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tence of limit-distributions in this case since our proofs for compositions with
parts of size larger than 3 involve also right factors in pivot-factorisations.

In particular, the numbers νg (defined as the number of compositions
x1 + . . . + xm with

∑

i xi = g and xi + xj ≥ xi+j whenever i + j ≤ m) of
such compositions of g have probably nice asymptotics. The first 25 values
ν1, . . . , ν25 are

1, 2, 4, 7, 13, 25, 43, 79, 142, 254, 449, 800, 1407, 2475, 4339, 7590, 13222,
23009, 39898, 69068, 119353, 205842, 354267, 608805, 1044528.

.

A fairly easy example with respect to enumeration is given by A1 =
{1, 2, 3, . . .} and Ak(x1, . . . , xk−1) = {1, . . . , xk−1 + 1}. Denoting by Gk the
generating series of all such compositions ending with a last part of size k we
have

Gk = xk



1 +

∞
∑

i=max(k−1,1)

Gi



 .

This allows to compute finite series-expansions of G1, G2, . . . by ’bootstrap-
ping’. The generating series for all such compositions (with xi ≤ xi−1 + 1)
is of course defined by 1 +

∑∞
i=1Gi. Its coefficients define the series A3116

(by definition) of [3] and seem to have asymptotics of the form γ · λn with
γ = 0.52893714 . . . and λ = 1.7356628 . . ..

I ignore if parts of such compositions have asymptotic limit-distributions.
A last example with probably rather small exponential growth is given

by compositions with arbitrary x1 and with xk ∈ {1, 1 + xk−1, 1 + xk−1 +
xk−2, . . . , 1+

∑k−1
j=i xj , . . . , 1+

∑k−1
j=1 xj} (which forbids two consecutive parts

of identical size larger than 1).

18 Probabilities related to generic NSG-compositions

Given a composition x = x1 + x2 + · · · + xk, we denote by Pg(x) the pro-

portion of NSG-compositions of genus g ≥ ∑k
i=1 xi starting with x (among

all NSG-compositions of genus g). This proportion tends to a limit P (x) =
limg→∞ Pg(x) defining a natural probability law on generic compositions with
k parts in {1, 2, 3}. The limit-probability satisfies

P (x) = P (x+ 1) + P (x+ 2) + P (x+ 3)

and is non-zero on a composition x = x1 + · · · + xn if and only if all parts
x1, . . . , xn are elements of {1, 2, 3} and xi+j ≤ 2 whenever xi = xj = 1.
Equivalently, P (x) is non-zero if and only if x encodes a path starting at
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the root in the combinatorial model of Section 16.1 where parts of size 1
correspond to left edges, parts of size 2 to (slim or fat) right edges and parts
of size 3 to fat right edges. For simplicity, we call compositions x such that
P (x) > 0 henceforth generic NSG-compositions.

The limit-probability P encodes some aspects of the generic behaviour of
(uniformly distributed) NSG-compositions of large genus.

An interesting feature of these probabilities P is the following result:

Proposition 18.1. Given an arbitrary generic NSG-composition x, we have

P (x+ 3)

P (x+ 2)
∈ {0, ω−1} .

Proof. This ratio is obviously 0 if no additional part of size 3 can be appended
to x. Otherwise we get a bijection between NSG-compositions of genus g
ending with a last part 2 (by appending an additional part 2) and some
NSG-composition of genus g + 1 ending with a last part 3 (by appending an
additional part 3).

Theorem 1.2 ends the proof.

Proposition 18.1 shows that

ρ(x) =
P (x+ 1)

P (x+ 1) + P (x+ 2) + P (x+ 3)
(33)

are essentially the only interesting values: The combinatorics of x determines
if P (x + 3) = 0. Proposition 18.1 determines then P (x + 1), P (x + 2) and
P (x+3) uniquely in terms of ρ(x) and P (x) = P (x+1)+P (x+2)+P (x+3).

We have obviously ρ(x) → ω−1 for most generic NSG-compositions x

with multiplicity (or genus) tending to ∞.
Using the tree model of Section 16.1 and identifying infinite geodesics

starting at the root of the the binary tree with binary expansions of elements
in [0, 1], the probability laws P correspond to a continuous distribution func-
tion on [0, 1].

A random-variable related to these probabilities is the asymptotic number
of maximal parts equal to 3 in generic NSG-compositions: Let Ag(n) be the
proportion of generic NSG-compositions of genus g having exactly n parts of
size 3. We get asymptotic limit-probabilities

A(n) = lim
g→∞

Ag(n) =
τ(n)

1 + C̃(ω−1)

for τ(0) = 1 and τ(k) defined by (30) for k ≥ 1. The number A(n) is the
asymptotic proportion of NSG-composition with n parts of size 3 among all
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NSG-compositions of very large genus. (It is not necessarily to require that
the n parts of size 3 are of maximal size: NSG-compositions with larger parts
can be neglected when considering asymptotics.) Particularly interesting is
the value of A(0) (i.e. the proportion of NSG-compositions having all parts
in {1, 2}) since we have obviously the identity

1 + C̃(ω−1) =
1

A(0)

linking the probability A(0) to the value of the constant C = 5+
√
5

10A(0)
, cf.

Formula (3) in Theorem 1.2.
Similarly, we have

A(1)

A(0)
=

1 + ω−2

1− (2ω−3 + ω−4)
ω−3 =

1

ω
+

1

ω3

since 1+q2

1−(2q3+q4)
q3 is the generating series for all NSG-compositions x1+ · · ·+

xm−1 with xm−1 = 3 and x1, . . . , xm−2 in {1, 2} (satisfying xi + xm−1−i ≥ 3),
see Proposition 15.3.

Remark 18.2. Typical NSG-compositions of high genus have only very few
parts of size 3. They behave thus very differently from C̃-typical contributions
to C̃ which should have many maximal parts.

A similar random-variable (on Z\{0}) defined by generic NSG-compositions
is given by f − 2m (for f the Frobenius number and m the multiplicity).

Last parts of generic NSG-compositions have also an asymptotic limit
distribution, simply given by independent Bernoulli distributions yielding
final parts of size 1 with asymptotic probability ω−1 and final parts of size 2
with asymptotic probability ω−2. In particular, we have most of the time

lim
|x|, P (x)>0

ρ(x) = ω−1 (34)

with |x| denoting the length (number of summands) of x. (Exceptions can
occur if the repartition of parts of size 1 in the first half of x is atypical.)

More precisely, a generic NSG-composition of large genus g has typically
multiplicity 5+

√
5

10
g + O(

√
g). It consists of g/

√
5 +O(

√
g) parts of size 1, of

5−
√
5

10
g +O(

√
g) parts of size 2 and of a small number (given by the random

variable A(n) considered above) of parts 3 among its initial parts.

Remark 18.3. One can also consider probability laws corresponding to largest
gaps in generic semigroups. The probability that an element f−a at distance
a of the Frobenius element (largest gap) f = max(N \S) of a generic numer-
ical semigroup S does not belong to S tends to ω−2 for a → ∞.
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18.1 A toy generator for NSG-compositions using un-

fair coin tosses

A naive way to generate NSG-composition with given multiplicity m is to
choose generators in {m + 1, m + 2, . . .} independently with probability λ
in (0, 1). This results in NSG-compositions with maximum 2 or 3 having
Frobenius numbers close to 2m and genus (2− λ)m+ O(

√
m).

For λ =
√
5−1
2

= ω−1 this should lead to more or less uniform random
NSG-compositions for large m, as suggested by (33) and (34).

The corresponding probabilities P̃λ(x) are easy to compute: Given x =
x1 + · · · + xk with x1, . . . , xk in {1, 2, 3}, the asymptotic probability (for
m → ∞) to generate a NSG-composition starting with x can be computed
as follows: P̃λ(x) = 0 if and only if there exists i, j (not necessarily distinct)
with i + j ≤ k such that xi = xj = 1 and xi+j = 3 (i.e. if x is not a
generic NSG-composition). Otherwise, the probability P̃λ(x) is a product of
k factors in {λ, (1− λ), λ(1− λ), (1− λ)2} defined as follows:

• Every summand xi = 1 contributes a factor λ.

• A summand xi = 2 contributes a factor (1 − λ) if there exists j < i
such that xj = xi−j = 1. It contributes a factor λ(1− λ) otherwise.

• A summand xi = 3 contributes a factor (1− λ)2.

It is easy to check that the probabilities P̃ω−1 defined in this way satisfy
Proposition 18.1. We have moreover

P̃ω−1(x+ 1)

P̃ω−1(x+ 1) + P̃ω−1(x+ 2) + P̃ω−1(x+ 1)
= ω−1, (35)

cf. (33) and (34).
NSG-compositions sampled in this way (for a given fixed λ in (0, 1)) have

typically only a small number of summands 3. Setting

µh(x1 + · · ·+ xk) =
∑

i,xi=3

ih ,

the limit-expectancy of µh (with respect to P̃λ(x) is easy to compute and is
given by

µh = (1− λ)2
∞
∑

n=0

(1− λ2)n
(

(2n+ 1)h + (1− λ)(2n+ 2)h
)
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(which is a rational function and can be rewritten in terms of dilogarithms).
Indeed, a part x2n+1, respectively x2n+2, can be equal to 3 (with probability
(1 − λ)2) if and only if {xi, x2n+1−i} 6= {1} (which happens with probability
1 − λ2), respectively {xi, x2n+2−i} 6= {1} which happens with probability
1 − λ in the case i = n + 1. In both cases, there are n such distinct pairs
{i, 2n+1−i}, respectively {i, 2n+2−i} containing two indices. Independency
of choices among parts of size 2, 3 whenever possible leads to the formula.

In particular, the expected asymptotic number of parts of size 3 in large
random NSG-compositions sampled accordingly to P̃λ(x) is equal to

µ0 =
(2− λ)(1− λ)2

λ2
(36)

which evaluates to 5− 2
√
5 = 0.52786 . . . at λ = ω−1.

The following variation generates NSG-compositions of genus g accord-
ingly to the law P̃λ: We do not fix m but consider it as an unknown, to be
fixed later. We add generators m+ i with independent uniform probability λ
and generators 2m+j again with uniform independent probability λ (most of
them will be of the form (m+i1)+(m+i2) for generatorsm+i1, m+i2 already
chosen). This defines the beginning of an NSG-composition x1 + x2 + · · · .
Stop if x1 + · · · + xk ≥ g. Set m = k + 1 and accept x = x1 + · · · + xk if
x1 + · · ·+ xk = g. Reject it and restart if x1 + · · ·+ xk > g (which happens
asymptotically with probability (1 − λ)/2). The expected multiplicity m is
asymptotically given by

g

2− λ
− µ0

with µ0 given by (36) denoting the asymptotic expectation for the number
of parts of size 3.

I ignore how to compute the asymptotic probability Ãλ(n) = limg→∞ Ãλ,g(n)
with Aλ,g(n) denoting the proportion of NSG-compositions of genus g sam-
pled as above which have n parts of size 3.

NSG-compositions generated by this algorithm with λ = ω−1 are not
(asymptotically) uniformly sampled. Indeed, the expected number of parts
of size 3 in uniformly sampled NSG-compositions is asymptotically equal to

∑∞
n=1 nτ(n)

1 +
∑∞

n=1 τ(n)
≥ τ(1) + 2τ(2)

1 + τ(1) + τ(2)
= 0.909389 . . .

which is larger than the corresponding expectation µ0 for the toy generator
with λ = ω−1.
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