
HAL Id: hal-03221440
https://hal.science/hal-03221440v1

Submitted on 8 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure Compilation of Constant-Resource Programs
Gilles Barthe, Sandrine Blazy, Rémi Hutin, David Pichardie

To cite this version:
Gilles Barthe, Sandrine Blazy, Rémi Hutin, David Pichardie. Secure Compilation of Constant-
Resource Programs. CSF 2021 - 34th IEEE Computer Security Foundations Symposium, Jun 2021,
Dubrovnik, Croatia. pp.1-12. �hal-03221440�

https://hal.science/hal-03221440v1
https://hal.archives-ouvertes.fr

Secure Compilation of Constant-Resource Programs
Gilles Barthe

MPI Security and Privacy, Germany
IMDEA Software Institute, Spain

gbarthe@mpi-sp.org

Sandrine Blazy
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
sandrine.blazy@irisa.fr

Rémi Hutin
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
remi.hutin@ens-rennes.fr

David Pichardie
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
david.pichardie@ens-rennes.fr

Abstract—Observational non-interference (ONI) is a generic
information-flow policy for side-channel leakage. Informally, a
program is ONI-secure if observing program leakage during
execution does not reveal any information about secrets. For-
mally, ONI is parametrized by a leakage function `, and different
instances of ONI can be recovered through different instantia-
tions of `. One popular instance of ONI is the cryptographic
constant-time (CCT) policy, which is widely used in cryptographic
libraries to protect against timing and cache attacks. Informally,
a program is CCT-secure if it does not branch on secrets and
does not perform secret-dependent memory accesses. Another
instance of ONI is the constant-resource (CR) policy, a relaxation
of the CCT policy which is used in Amazon’s s2n implementation
of TLS and in several other security applications. Informally, a
program is CR-secure if its cost (modelled by a tick operator
over an arbitrary semi-group) does not depend on secrets.

In this paper, we consider the problem of preserving ONI
by compilation. Prior work on the preservation of the CCT
policy develops proof techniques for showing that main compiler
optimisations preserve the CCT policy. However, these proof
techniques critically rely on the fact that the semi-group used
for modelling leakage satisfies the property:

`1 + `′1 = `2 + `′2 =⇒ `1 = `2 ∧ `′1 = `′2

Unfortunately, this non-cancelling property fails for the CR
policy, because its underlying semi-group is (N,+) and it is
currently not known how to extend existing techniques to policies
that do not satisfy non-cancellation.

We propose a methodology for proving the preservation of
the CR policy during a program transformation. We present an
implementation of some elementary compiler passes, and apply
the methodology to prove the preservation of these passes. Our
results have been mechanically verified using the Coq proof
assistant.

Index Terms—Secure Compilation, Verified Compilation

I. INTRODUCTION

Over the last two decades, correctness of (moderately) opti-
mising compilers has turned from a distant goal into a tangible
reality. Even better, many of these compiler correctness proofs
are mechanically verified using proof assistants. Prominent ex-
amples of formally verified compilers include CompCert [18],
CakeML [17], Vellvm [27] and Jasmin [4]. Formally verified
compilers are appealing because they eliminate the possibility
of compiler bugs, which can be devastating.

Unfortunately, provably correct compilers may still fail to
preserve security properties. This is because many security
properties reason about pairs of program executions, whereas
compiler correctness reasons about single program execution.
For instance, the baseline policy for confidentiality, called non-
interference, informally requires that two executions started
from low-equivalent states (diverge or) terminate in low-
equivalent states, where two states are low-equivalent if they
only differ in their secrets. This property ensures that an
adversary learns no information from observing the input-
output behaviour of programs. It is not difficult to see that
under some mild assumptions compiler correctness entails
preservation of non-interference. However this good news does
not extend to other policies. For instance, it is folklore [22]
that compilers do not generally preserve the cryptographic
constant-time policy (CCT), a popular policy for protecting
against cache and timing side-channel attacks [10]. More gen-
erally, it is well-known [15] that many compiler optimisations
fall into a correctness/security gap, i.e., break the security of
programs while preserving their semantics.

Secure compilation is an emerging area that aims to address
the correctness/security gap, by developing compilers that
preserve security properties, and formal techniques for preser-
vation proofs. A significant challenge in secure compilation is
to formalise the notion of secure compiler [2], [1]. Another
challenge, and the focus of this paper, is to prove preservation
for a specific compiler and a specific security policy. Prior
work along this line [9], [7] has focused on CCT policy. Their
main tool for proving preservation of CCT is the notion of
2-simulation, an adaptation of the notion of simulation used
for compiler correctness proofs. Whereas simulations consider
one source execution and one target execution, 2-simulations
consider two source executions and two target executions. The
notion of 2-simulation works well for proving preservation of
the CCT policy, thanks to a key property: leakage cancellation.
Recall that a program is CCT if it does not branch on secrets
and does not make secret-dependent memory accesses. The
formal definition of CCT security is captured using the notion
of CCT leakage: informally, the CCT leakage of a program
execution is the list of boolean guards (boolean values) and

if(secret) { x+=2; } else { y+=3; }
(a) A program with balanced branches

if(secret) { p1 } else { p2 } ; p3

(b) A program with an atomic annotation

Fig. 1: Examples of CR-secure programs

memory accesses (memory locations) in an execution. Using
CCT leakage, it is then easy to define CCT security: a program
is CCT if executions from any two low-equivalent states yield
the same CCT leakage. Informally, the CCT leakage is non-
cancelling because two executions that have differing CCT
leakages at a program point cannot have equal CCT leakage
at a further program point. More formally, CCT leakage is
non-cancelling because its underlying semi-group (lists with
concatenation) satisfies the following property:

l1 + l′1 = l2 + l′2 =⇒ l1 = l2 ∧ l′1 = l′2

(under the assumptions that the lists l1 and l2 have the same
length, and so have the lists l′1 and l′2). This property does
not hold for notions of leakage based on cost, such as the
constant-resource (CR) policy defined in [20].

The CR policy defines a notion of resource consumed during
the execution of program. A resource can be a counter mea-
suring the number of arithmetic operations, memory accesses
or function calls. A more precise resource model can take
branch prediction and cache into account to model execution
time on a given architecture. The CR policy states that an
attacker capable of measuring the resources consumed during
the execution of a program cannot deduce any information on
the secrets of the program.

The code snippet presented in Figure 1a consists of a
branching on a secret value, and two branches performing the
same kind of operations (i.e., incrementing a variable by a
constant value). In a resource model counting the number of
arithmetic operations, this snippet is considered CR-secure, as
the resource consumption is constant and does not depend on
the secret value of the snippet. Unlike the CCT policy, the CR
policy tolerates a branching depending on a secret value, as
long as the branches are balanced in terms of costs. Because
leakages are not constrained in these branches, the CR policy
does not satisfy the non-cancellation property.

In this paper, we study the preservation by compilation of
the CR policy and present a proof methodology to prove that
a transformation preserves the CR policy. Compiler optimisa-
tions may easily break the CR policy. Indeed, as a CR-secure
program may contain balanced branches, any optimisation
that reduces the resource consumption in one of the branches
would directly break the balance.

To solve this issue, a first solution is to use information-flow
typing to guide the transformation. Type systems can detect
high branches and forbid or restrict optimisation inside them.
For example, in [3] a standard type system [26] is used to

repair a typable program that may contain unbalanced high
branches. This an elegant approach but in our work we want
to avoid the use of an information-flow type-system inside
the compilation chain. Modern compilers perform their opti-
misations at a low-level program representation and running a
taint analysis at this abstraction level is likely to conservatively
declare all the contents of the memory as secret-dependent.

Our methodology introduces a new atomic special construct
that guides the compiler, without asking it to perform a taint
analysis before optimisation. The atomic constructs can be
inserted at source level using a source type system or any
program logic that detects high branches. We introduce a
stronger policy, called CR#, which combines elements from
the CCT [5] and CR [20] policies (i.e., leakages and costs).
CR# leakages track costs as well as the CCT boolean leakages
of some branchings. The atomic construct is used to decide
whether or not the CR# policy tracks a branching statement.

Like other ONI policies, the CR# policy enforces that two
executions started in equivalent states yield the same leakage,
but only branches inside atomic constructs are allowed to
depend on secrets. These program regions have to be optimised
without breaking cost balance between any execution path
inside them. Figure 1b shows an example of an atomic anno-
tation, depicted with a box notation around the if statement.
Intuitively, the annotation is used to restrain the compiler on
the first part of the program: p1 and p2 will only be optimised
if they preserve the balance between the branches; p3 will be
optimised without restriction.

Our inspiration for atomic annotations comes from concur-
rent programs where memory barriers (or fences) are used
as a synchronisation method, and as a compiler annotation to
enforce an ordering constraint on memory operations. They
save the compiler from performing a difficult alias analysis
to detect data races. Intuitively, an atomic annotation protects
an area of the program, instructing the compiler to restrain its
optimisations in this area. It has no impact on its execution,
and we assume that a prior analysis introduced the atomic
annotations. They are used to syntactically identify the high-
security parts of the program, that are also identified by a
previous analysis of the program. The compiler does not need
to perform any taint analysis to check the atomic annotations.
Informally, secret (i.e., private) branching conditions must
appear inside of atomic annotations, while public (i.e., non-
secret) branching condition must appear outside of them.
Atomic annotations are then used to indicate where to optimise
differently the program in order to preserve the CR# policy.

Last, some common compiler passes, such as the common
sub-expression elimination (abbreviated to CSE) preserve the
CCT policy, but are likely not to preserve the CR# policy.
We explain how to modify them so that they preserve the
CR# policy. Our approach consists in introducing a minimal
amount of padding in the program. We detail the associated
proof methodology we designed to tackle the main issue that
CR# leakages are not non-cancelling. In order to facilitate
our proofs, we split our optimisations into elementary trans-
formations, that are individually proved CR# preserving. As a

consequence, most of this work could be reused to study any
optimisation (e.g., constant propagation, partial redundancy
elimination) that does not insert new branchings and is able to
maintain the consumed resources of some parts of a program
using padding.

All results presented in this paper have been mechanically
verified using the Coq proof assistant. The complete devel-
opment is available as a supplementary material. This paper
makes the following contributions.
• We formalise the notion of a security policy called CR#.
• We introduce an annotation called atomic, allowing to

flexibly identify the high-security parts of the program.
• We adapt common compiler optimisations so that they

preserve the CR# policy; this relies on padding insertion
followed by padding minimisation.

• We define elementary passes that are used to build the
previous optimisations and we prove that these passes
preserve the CR# policy.

• We prove that padding minimisation preserves the CR#

policy.
This paper is organised as follows. First, Section II il-

lustrates through a motivating example how we adapt the
CSE optimisation so that it becomes CR-preserving. Then,
we motivate our CR# policy in Section III, before giving
precise definitions in Section IV. Section V explains how to
decompose three common compiler optimisations into general
elementary transformations that preserve the CR# policy,
which is proved in Section VI. Moreover, Section VII is
devoted to padding minimisation, our trickiest transformation
to prove CR#-preserving. Related work is described in Sec-
tion VIII, followed by conclusions.

II. PRESERVING THE CR POLICY THROUGH COMPILATION

This section first gives examples of CR-secure programs.
Then, it explains through the example of CSE how to adapt a
transformation to make it CR-preserving. It relies on a policy
stronger than CR, that we call the CR# policy.

A. Example of CR-secure Programs

Figure 2 presents some code snippets written in C syntax.
In the first one, if the condition cond is secret, then this
snippet is considered unsecure by the CCT policy. In general,
branchings on secrets are unsecure because an attacker able
to measure their execution time could determine which branch
was executed, and thus the secret condition. However, because
both branches consume the same amount of resources (i.e., six
accesses to variables, two additions, two multiplications, and
two assignments), we better consider that these branches are
indistinguishable from the perspective of such an attacker. This
program is then an example of CR-secure program.

The code snippet in Figure 2a presents some redundant
computations, and it is a good candidate for the CSE optimi-
sation. Figure 2b shows the optimised code snippet, which is
not CR-secure. Indeed, both branches perform five accesses to
variables and two assignments, but the then branch performs
two additions and one multiplication, while the else branch

performs one addition and two multiplications. Hence, these
branches are no longer balanced. This illustrates how a simple
transformation can break the CR policy.

B. A CSE Optimisation that Preserves the CR Policy

Preserving the CR policy requires to carefully keep track of
all the branches of the program. Any optimisation performed
only in one branch could unbalance the whole program. Our
approach consists in preserving the balance by introducing a
minimal amount of padding in every unbalanced branch. We
illustrate it with the example of the CSE optimisation.

We add two steps to the CSE optimisation to make it
CR-preserving. First, our new CSE adds padding to balance
the consumption of resources between the branches, using a
new padding instruction called δδδ. It is parametrized by an
integer n and executing δδδ(n) consumes n resources. Second,
our CSE performs a pass calledM that minimises the padding
by factorising and removing as many δδδ instructions as possible,
as long as the CR policy is preserved. More precisely, any
modification of the resource consumption stemming from CSE
is compensated by an adequate δδδ instruction.

In the then branch of Figure 2c, our CSE factorises a
redundant evaluation and modifies the resource consumption:
the optimised program has one less multiplication and one
less variable access. So, our CSE compensates these changes
by adding the instruction δδδ(T1) in the then branch, with
T1 = Kmult + Kvar, where the Kmult and Kvar constants
are statically computed and represent the cost of respectively
a multiplication and a variable access. The added δδδ instruction
consumes the same amount of resources spared by CSE, hence
preserving the resource consumption of the whole program.
Similarly, the padding instruction δδδ(T2) is added in the else

branch, with T2 = Kadd + Kvar. Figure 2d shows the final
code snippet, where the padding of both branches is reduced
by T = min(T1, T2). This last step minimises the padding
while keeping both branches balanced.

Our modified version of the CSE optimisation introduces
padding to preserve the balance of costs between branches.
Then, it minimises the inserted padding as much as possible,
while preserving the CR policy. However, this behaviour
may not always be desired, as it makes the output program
less efficient in terms of consumed resources. Indeed, some
branches could be secret dependent and balanced, while some
other branches could be non secret-dependent. The former
branches would need a careful and restrained optimisation,
similar to the example above. However, the latter branches
could benefit from a more aggressive optimisation, without
requiring any padding. To distinguish between both cases,
we introduce a syntactic annotation, called atomic, which
delimit the areas of the program to be carefully optimised.
The padding insertion and minimisation passes are then only
performed in these areas.

The proof that our modified CSE preserves the CR policy
consists of the individual proofs of each of its steps. This
proof effort led us to define a stronger security policy, that
we call CR#, and whose definition depends on the atomic

if (cond) {

x = a*b;

y = (a*b)+c+d;

} else {

x = a+b;

y = (a+b)*c*d;

}

(a) A balanced program with
common subexpressions a*b
and a+b

if (cond) {

x = a*b;

y = x+c+d;

} else {

x = a+b;

y = x*c*d;

}

(b) The unbalanced optimised
program (with CSE)

if (cond) {

δδδ(T1);
x = a*b;

y = x+c+d;

} else {

δδδ(T2);
x = a+b;

y = x*c*d;

}

(c) The padded optimised pro-
gram

if (cond) {

δδδ(T1 − T);
x = a*b;

y = x+c+d;

} else {

δδδ(T2 − T);
x = a+b;

y = x*c*d;

}

(d) The padded optimised pro-
gram with minimal padding

Fig. 2: Example of branching programs, where T1 = Kmult +Kvar, T2 = Kadd +Kvar and T = min(T1, T2).

annotations. This CR# policy is discussed in the next section.
Some proofs are trickier than others, and we define in this
paper (see Section VI and Section VII) two other policies that
are stronger than the CR# policy but facilitate our proofs.
In particular, we decompose M into two steps, and each of
them is proved using a different policy. We also prove that any
of these policies implies the CR# policy. Interestingly, these
policies are not peculiar to CSE and could be reused to prove
other optimisations.

III. THE CR# POLICY

This section first motivates the choice of our security policy.
Our work is based on the constant-resource (CR) security
property presented in [20], which we describe first. We then
present a stronger property, called CR#, and motivate this
definition. CR# is the security property we will focus on
during the rest of the paper.

A. The CR Policy

In [20], the authors present the CR policy. It captures the
fact that a given notion of resources consumed during the
execution of a program does not reveal any information on
the secret values of this program.

More formally, let us first consider a language L, and its
big-step semantics judgement 〈p, σ〉 ⇓ σ′, q instrumented to
observe the resource consumption of an execution. We read it
as follows: the execution of a program p ∈ L from an initial
state σ to a final state σ′ consumes q resources, where q is
an integer. States map variable identifiers to values, and every
variable is marked as either secret or public.

Next, we consider a notion of indistinguishability between
semantic states. Two states σ1 and σ2 are indistinguishable,
written as σ1 ∼ σ2, if every public variable has the same
value in both states.

Then, the CR policy is defined as follows. A program is
CR if any pair of executions whose initial states only differ
on secret values consume the same amount of resources. This
captures the idea that resource consumption does not reveal
any information on the secrets of a CR program.

Definition III.1 (CR security). Let p be a program, and states
σ1 and σ2 such that σ1 ∼ σ2. Suppose that we have two
executions of p: 〈p, σ1〉 ⇓ σ′1, q1 and 〈p, σ2〉 ⇓ σ′2, q2. The
program p is CR-secure (written as CR(p)) when q1 = q2.

B. Secure Compilation of CR Programs

Our goal is to implement program transformations that
preserve the CR policy, then prove that these transformations
always preserve the policy. Formally, we say that a transfor-
mation T is CR-preserving if for any program p, we have
CR(p) =⇒ CR(T (p)).

A first possibility to prove that a transformation T is CR
is to use a type system, as in [20], where the type system is
designed so that any well-typed program p, denoted as ` p,
is CR-preserving: ` p =⇒ CR(p). We could then prove that
T preserves such a type system. Formally, we would prove
the following property: ` p =⇒ ` T (p), stating that the type
system enforces the CR policy on both source and transformed
programs. This approach would work in the context of a simple
type system and a simple language. However, we argue that it
would not scale to a more realistic compiler, such as CompCert
or LLVM, as type-preserving compilers typically do not scale
to realistic languages. As far as we know, no realistic compiler
includes a type system to verify the preservation of non-
interference properties. Another drawback of this approach is
that the compiler must explicitly know the security level (i.e.,
secret or public) of every variable.

Our methodology to prove that a transformation is
CR-preserving does not rely on a type system, but rather on an
extended language and its instrumented semantics. Firstly, we
extend the language L with a syntactic annotation, that we call
an atomic annotation (see Section I). Secondly, we extend the
semantics of L, by instrumenting it with leakages that track the
branchings encountered during the execution. The information
leaked is a partial control-flow of the program, represented by
a list of booleans values, that contains some of the guards
evaluated during the execution. The choice of leaked control-
flow depends on the atomic annotations, as secret branching
conditions only appear inside of atomic annotations. Last, we
extend the CR policy to facilitate our proofs. We introduce

a stronger policy, called CR#, that is defined with respect to
this newly introduced leakage.

We use the CR# policy in the following way. Firstly, we an-
notate any program p into p#, so that CR(p) =⇒ CR#(p#).
This will be discussed in IV. Secondly, we prove that the
transformation T we are focusing on preserves the CR# pol-
icy. Formally, for any program p, CR#(p) =⇒ CR#(T (p)).
Last, as CR# is stronger than CR, we directly have for any
program p, CR#(p) =⇒ CR(p).

The CR# policy is a proof artefact. However, we argue that
it is a relevant security property by itself. This idea will be
discussed in the following section, that also contains precise
definitions of our example language, of its extension with
atomic annotations, of its instrumented semantics and of the
CR# property, along with several examples.

IV. FORMAL SEMANTICS AND CR# POLICY

We focus on a While language that highlights the salient
features of our approach. This section first defines While. We
formalise our CR# policy and its preservation by program
transformations. Then, we discuss the relation between the
CCT, CR and CR# policies. Last, useful semantic properties
of While are detailed.

A. Instrumented Semantics of the While Language

The syntax of While (see Figure 3a) contains common
features, such as expressions over integers and usual arithmetic
operations, skip statements, assignments, sequences of state-
ments, and branches within if and while statements. We add
two peculiar statements, a padding instruction δδδ parametrized
by a quantity of consumed resources (i.e., the execution of
δδδ(n) where n is a constant consumes n resources) and an
atomic annotation, denoted using a box notation: p is the
atomic version of p.

The semantics of While is defined in Figure 3 using a big-
step style, that we instrument with the amount of consumed
resources and a boolean leakage emitted by an execution.
A boolean leakage is a list of boolean values, representing
the values of all the boolean guards encountered during the
execution. As such, it fully describes the execution path. This
notion of boolean leakage is commonly used to capture the
definition of the CCT policy [5]. We use notation l1 · l2 to
denote concatenation of boolean leakages, and empty leakage
is denoted by ε. Moreover, the semantics is parametrized by a
set of constants denoted by K ... and representing the unitary
costs of basic syntactic constructs. We assume that our notion
of resource is additive, as shown in rule OP BIN of Figure 3b,
where the evaluation of the arithmetic operation � consumes
K� resources. Rule SEQ of Figure 3c highlights the additivity
of resource consumption. In the rules, a state σ maps variable
identifiers to values. If a variable identifier is not defined in
a state, evaluating the variable returns the default value 0. A
leakage is a pair (q, l) with q the consumed resources and l
the emitted boolean leakage.

Executing skip does not consume any resource and
emits an empty boolean leakage. Executing a padding

〈exp〉 ::= 〈int〉 | 〈ident〉 | 〈exp〉 � 〈exp〉
〈stmt〉 ::= skip | δδδ(〈int〉)

| 〈ident〉 := 〈exp〉 | 〈stmt〉 ; 〈stmt〉
| if(〈exp〉) { 〈stmt〉 } else { 〈stmt〉 }
| while(〈exp〉) { 〈stmt〉 } | 〈stmt〉

(a) Syntax

〈e, σ〉 ⇓ n, q evaluating e in state σ yields value n and
consumes q resources

CONST

〈n, σ〉 ⇓ n, Kint

VAR
σ[id] = n

〈id, σ〉 ⇓ n, Kvar

OP BIN

〈e1, σ〉 ⇓ n1, q1 〈e2, σ〉 ⇓ n2, q2
〈e1 � e2, σ〉 ⇓ n1 � n2, K� + q1 + q2

(b) Evaluation of expressions

〈s, σ〉 ⇓ σ′, q, l executing s in state σ leads to state σ′ and
emits a leakage (q, l)

SKIP

〈skip, σ〉 ⇓ σ, 0, ε

PADDING

〈δδδ(n), σ〉 ⇓ σ, n, ε

ASSIGN
〈e, σ〉 ⇓ n, q

〈id:=e, σ〉 ⇓ σ[id← n], Kasn + q, ε

SEQ

〈p1, σ〉 ⇓ σ′, q1, l1 〈p2, σ′〉 ⇓ σ′′, q2, l2
〈(p1; p2), σ〉 ⇓ σ′′, q1 + q2, l1 · l2

IF TRUE

〈e, σ〉 ⇓ n, qe n 6= 0 〈p1, σ〉 ⇓ σ′, q, l
〈if(e) {p1} else {p2}, σ〉 ⇓ σ′, qe + q, [true] · l

IF FALSE

〈e, σ〉 ⇓ n, qe n = 0 〈p2, σ〉 ⇓ σ′, q, l
〈if(e) {p1} else {p2}, σ〉 ⇓ σ′, qe + q, [false] · l

WHILE TRUE

〈e, σ〉 ⇓ n, qe n 6= 0
〈p, σ〉 ⇓ σ′, q, l 〈while(e){p}, σ′〉 ⇓ σ′′, q′, l′

〈while(e){p}, σ〉 ⇓ σ′′, qe + q + q′, [true] · l · l′

WHILE FALSE

〈e, σ〉 ⇓ n, qe n = 0

〈while(e){p}, σ〉 ⇓ σ, qe, [false]

ATOMIC
〈p, σ〉 ⇓ σ′, q, l
〈 p , σ〉 ⇓ σ′, q, ε

(c) Execution of statements, instrumented with leakages and resource
consumption

Fig. 3: Syntax and big-step instrumented semantics of While

instruction δδδ(n) only consumes n resources. Executing
if(e) {s1} else {s2} first evaluates e into n, which con-
sumes qe resources. If n is true (i.e., differs from zero),
then s1 is evaluated, which consumes q resources and emits
a boolean leakage l. Therefore, the execution of the whole
branch consumes qe + q resources. The boolean leakage is l,
to which we append the value true.

Last, the execution of p executes p, and erases the boolean
leakage emitted by p (i.e., returns an empty boolean leakage).
Indeed, contrary to the CCT policy that forbids branches
depending on secret values, in our CR#policy, branches may
depend on secrets as long as they are balanced. However, such
branches must be inside of an atomic annotation, hence the
leakage erasure in atomic annotations.

B. Semantic Definition of the CR# Policy

We consider an attacker capable of observing the amount of
resources consumed during any execution; he can exploit the
consumption of resources as a side-channel attack, to deduce
information about the program. Our objective is to prevent
him to learn anything about the secret data manipulated by
the program. In other words, we do not want the resource
consumption to leak any secret data. To that purpose, we define
a policy called CR#; it characterises two different executions
of a program from two initial states sharing the same values
of public variables. If the attacker can not distinguish both
executions, then the program is considered to be CR#-secure.
Moreover, we consider a program where secret (i.e., non
public) input values are already known.

Definition IV.1 (Indistinguishability). Two states σ1 and σ2
are indistinguishable w.r.t. a list Γ of public identifiers (written
as Γ ` σ1 ∼ σ2) if for any public identifier id ∈ Γ, we have
σ1[id] = σ2[id].

Two executions starting from two indistinguishable states
will also be called two indistinguishable executions.

Definition IV.2 (CR# security). Let p be a program, Γ be a list
of public identifiers and states σ1 and σ2 such that Γ ` σ1 ∼
σ2. Suppose that we have an execution of p from each state:
〈p, σ1〉 ⇓ σ′1, q1, l1 and 〈p, σ2〉 ⇓ σ′2, q2, l2. The program p is
CR#-secure w.r.t. Γ (written as Γ ` CR#(p)) when (q1, l1) =
(q2, l2).

In the rest of this paper, we fix a list of public identifiers Γ
once for all. As Γ is never modified, we will abuse notations
by omitting it, thus denoting a CR# program p with CR#(p).

Our CR# policy expects two indistinguishable executions to
emit the same boolean leakage and consume the same amount
of resources. Expecting two executions to emit the same
boolean leakage resembles the definition of the CCT policy
(i.e., the program must not branch on secrets), and forces
two indistinguishable executions to follow the same control-
flow. The CR# policy relaxes this constraint with our atomic
annotations. By erasing the boolean leakage emitted inside
of atomic annotations, the CR# policy no longer requires
indistinguishable executions to follow the same control-flow.

Instead, it allows the control flow to differ inside of atomic
annotations, thus allowing secret-dependent branchings.

However, our CR# policy always expects two indistinguish-
able executions to have an equivalent resource consumption.
As a consequence, all secret-dependent branches in a program
will have to be balanced, or to balance each other, in order
to maintain a constant global resource consumption for these
executions.

C. Examples of CR#-secure programs

Figure 4 presents examples of CR#-secure programs. For
a program without atomic statement, the CR# policy is
equivalent to the CCT policy. Therefore, P1 is CR# if and only
if its condition b is public. Both branches of P2 are balanced
with a cost of 3. P2 is CR# if and only if its condition is
public, just like P1. However, P2 is always CR#-secure, as
its branches are balanced and inside atomic statements. P3

contains two unbalanced atomic branches that balance each
other. Indeed, whatever the initial value of b, the total amount
of consumed resources is 7. Therefore, P3 is always CR#-
secure. This example illustrates the fact that CR# leakages are
not non-cancelling: a CR#-secure program can be composed
of several non-CR# programs, that balance each other. P4 is
similar to P3, but only its second branch is atomic. If b is
public, then P4 is CR#-secure. However, if b is secret, P4

may never be CR#-secure because of the first branch, even if
as previously, branches balance each other. It illustrates that
only atomic branches can be used to balance each other.

Last, a transformation T is CR#-preserving when given a
CR# program P , then T (P) is a CR# program. The under-
lying hypothesis is that P starts from two indistinguishable
states and so does T (P). So, there is no relation between
these two pairs of states. In the same way, there is no relation
between the two leakages observed during the two executions
of P and T (P). This definition expresses the preservation of
our CR# policy, but it is too general to be proved in a simple
way. For that reason, we define in Section VI and Section VII
less general preservation properties that fit to our program
transformations and are easier to prove.

Definition IV.3 (CR# preservation). A transformation T is
CR#-preserving when, for any public input Γ and any program
p, Γ ` CR#(p) =⇒ Γ ` CR#(T (p)).

D. Relations between CCT, CR and CR#

We highlight here some interesting consequences of the
definition of the CR# policy. Firstly, we can express the
CR policy with the CR# policy. For a program p, we have
CR(p) ⇐⇒ CR#(p). In other words, CR is an instance
of CR#, obtained by annotating the whole program with an
atomic annotation. Secondly, we can also express the CCT pol-
icy with the CR# policy. For a program p without any atomic
annotation, then CR#(p) forbids any secret-dependent branch
in p. For such a program p, we then have the equivalence
CCT(p) ⇐⇒ CR#(p).

As a consequence, it is relevant to consider the CR# policy
as a flexible mix between the CR and the CCT policies.

P1: if(b) {δδδ(1) } else {δδδ(2) }

P2: if(b) {δδδ(1); δδδ(2) } else {δδδ(3) }

P3: if(b) {δδδ(2) } else {δδδ(3) } ; δδδ(4); if(b) {δδδ(4) } else {δδδ(3) }

P4: if(b) {δδδ(2) } else {δδδ(3) }; δδδ(4); if(b) {δδδ(4) } else {δδδ(3) }

P1 is CR#-secure iff b is public. P2 is CR#-secure iff b is public, but P2 is CR#-secure. P3 is a balanced CR#-secure program with
unbalanced atomic annotations. P4 is CR#-secure iff b is public.

Fig. 4: Example of CR#-secure programs.

The CR# policy can observe both behaviours, depending on
the added atomic annotations. It behaves as CR inside of
annotations, and as CCT outside of them.

Last, if we consider a program p which is CR-secure, then it
is always safe to assume that there exists a way to annotate it
(denoted p#) so that we have CR#(p#). Indeed, p is always
a valid candidate. However, as atomic annotations also restrict
the compiler, finding candidates that contain fewer annotations
yields more effective optimisations.

E. Semantic Properties of While

We conclude this section by stating two semantic properties
of While that are required to prove the preservation of our
security policy. First, the semantics is deterministic, both for
the output state and the emitted leakage.

Lemma IV.1 (Determinism). Let p be a program and σ an
initial state. If we have two executions 〈p, σ〉 ⇓ σ1, q1, l1 and
〈p, σ〉 ⇓ σ2, q2, l2, we then have σ1 = σ2 and (q1, l1) =
(q2, l2).

The second property focuses on the non-cancellation of the
boolean leakage emitted by a sequence of programs. It states
that if two executions of a sequence of programs (s; p) emit
the same boolean leakage, then the two associated executions
of s emit the same boolean leakage, and so do the two
associated executions of p. This property is only verified by
the emitted boolean leakage, but is not verified by the whole
leakage (that includes the resource consumption).

Lemma IV.2 (Non-cancellation). If we have the following
executions :

(S1) 〈s, σ1〉 ⇓ σ′1, q1, l1
(P1) 〈p, σ′1〉 ⇓ σ′′1 , q′1, l′1
(S2) 〈s, σ2〉 ⇓ σ′2, q2, l2
(P2) 〈p, σ′2〉 ⇓ σ′′2 , q′2, l′2
(EQ) l1 · l′1 = l2 · l′2,

then we have l1 = l2 and l′1 = l′2.

Proof. We prove this lemma by reasoning by induction on
the execution (S1). We focus on some representative cases;
the other cases use similar reasoning.

• Case SEQ. s is then a sequence of statements, say
s = (s1; s2). We apply the induction hypothesis on
statements s1 and (s2; p) to find that both executions of
s1 emit the same boolean leakage, and both executions of
(s1; s2) emit the same boolean leakage. We then apply
the induction hypothesis on s2 and p to conclude.

• Case IF. s is then an if-branch, say s =
if(e) {s1} else {s2}. From the hypothesis (EQ),
we can deduce that e evaluates to the same value in
both executions of s. We consider that e evaluates to
true. We then necessarily have two executions of s1.
We conclude by applying the induction hypothesis on s1
and p.

V. THREE CR#-PRESERVING TRANSFORMATIONS

This section explains how to adapt in a CR#-preserving
way three optimisations that are likely not to preserve the CR#

policy: constant folding, CSE and dead-store elimination. Con-
stant folding replaces any expression evaluating to a constant
value by the value itself. Every expression e1�e2, where e1 and
e2 evaluate respectively to n1 and n2 is replaced by n1 � n2.
This transformation modifies expressions (e.g., 1+2 becomes
3), hence the resource consumption, and is thus likely to break
to CR# policy. For example, this transformation transforms
x:=1+2 into x:=3, whose evaluation cost is lower. If the
instruction x:=1+2 appears in a balanced secret-dependent if-
branch, the balance could be broken.

CSE computes available expressions at every program point.
Any available expression is replaced by the variable storing
the result of its evaluation. CSE also introduces assignments
to store intermediary results, hence modifying the resource
consumption. Dead-store elimination aims at removing any
occurrence of an assignment that is not used later. Again,
removing an instruction reduces the resource consumption and
may break our security policy.

The above examples share a similar structure: the com-
position of a data-flow analysis, which does not modify the
program, and of elementary transformations performing the
optimisation. They consist mainly of substituting an expression

with another expression, introducing an assignment instruc-
tion, and removing an assignment instruction.

We implement each elementary transformation by compen-
sating any modification in the resource consumption with a
padding δδδ instruction. Introducing an adequate padding re-
quires to compute the resource consumption of the evaluation
of an expression. The resource consumption of the execution
of an expression does not depend on the current state. We
thus introduce a cost function Q : exp → Z, that statically
computes the cost of an expression.

Given an expression e, the substitution transformation S
replaces the expression in the right-hand side of an assignment
with e. In order to preserve the resource consumption, S uses
Q to add padding, hence S is parametrized by an expression
e and a statement, and we denote Se the substitution S with
parameter e. Se : stmt → stmt is defined as follows:
Se(id:=e′) = id:=e; δδδ(Q(e′)−Q(e)).

The insertion transformation stores the result of a temporary
computation e into a fresh variable. It inserts an assignment
before an arbitrary statement. The insertion is compensated
with a negative padding. The way optimisations such as CSE
are designed ensures that this padding will be compensated
by a greater positive padding, hence the absence of negative
padding in the final optimised program. The insertion trans-
formation Ie : stmt → stmt is defined as follows: Ie(p) =
tmp:=e; δδδ(−Kasn−Q(e)); p, where tmp is a fresh variable
identifier never used in p. The removal transformation replaces
an assignment with an adequate padding. R : stmt → stmt
is defined as R(id:=e) = δδδ(Kasn +Q(e)).

VI. USING LEAKAGE PRESERVATION TO PROVE CR#

PRESERVATION

In order to prove that the previously defined transformations
S, I and R are CR#-preserving, we can not use standard
induction reasoning. This is a consequence of the fact that
CR# leakages are not non-cancelling. Our solution is to
proceed in two steps and conduct simpler proofs. First, we
define a property called leakage preservation that is more
constrained than CR#-preservation, and we prove that each
transformation is leakage preserving. Then, we prove once
for all that leakage preservation implies CR preservation.
Moreover, we apply this proof scheme to the first pass of
the M transformation introduced in Section II-B to minimise
padding.

A. Leakage Preservation implies CR# Preservation

We define a transformation as leakage preserving when it
does not modify the leakage (i.e., resource consumption and
emitted boolean leakages). It is then more constrained than
the CR# preservation. We define leakage preservation as a
backward property that is required by theorem VI.2: given a
property of the transformed program, it states a property of
the source program.

Definition VI.1 (Leakage preservation). A transformation T is
leakage preserving if, for any program p, given an execution

〈T (p), σ〉 ⇓ σ′, q, l of the transformed program, there exists
an state σ′′ such that we have 〈p, σ〉 ⇓ σ′′, q, l.

Theorem VI.1. Transformations S, I and R are
leakage preserving.

Proof. This is a direct consequence of the definition of the
transformations S, I and R.

Theorem VI.2. Any leakage preserving transformation is
CR#-preserving.

Proof. Let T be a leakage-preserving transformation, we want
to prove that T is CR#-preserving. Let p be a CR#-secure
program, we need to prove that T (p) is CR#-secure as
well. To this end, we assume having two indistinguishable
executions of the transformed program T (p), and we then need
to prove that both executions emit the same leakage. As T is
leakage preserving, we can find two similar executions of p,
which are indistinguishable as well; this highlights the fact
that we need leakage preserving to be a backward property.
Next, as we know that p is CR#-secure, we can deduce that
both executions of p emit the same leakage. As these leakages
are identical to the one emitted by the two executions of T (p),
this concludes the proof.

B. Leakage Preservation of the Normalisation Transformation

This section defines the normalisation transformation N and
shows that it is a leakage-preserving pass. The transformations
S, I and R may introduce many δδδ instructions, that increase
the overall resource consumption, and are then factorised and
minimised by the M pass. M is designed to minimize δδδ
instructions locally to every atomic block, and will not try
to balance out δδδ instructions across different atomic blocks.
We decompose M into a normalisation pass N followed by
a deletion pass D and we prove that N is leakage preserving,
contrary to D (that is discussed in Section VII). The N
pass repeatedly performs the four following basic operations
until convergence, in order to merge and factorise as many
δδδ instructions as possible. These four operations preserve the
resources consumed during an execution, and are defined as
rewrite rules.
(1) Move upwards. First, δδδ instructions are moved as upward

as possible, in order to further group them together.
Formally, N performs the following operation:

p; δδδ(n) VN δδδ(n); p

(2) Merge. Then, δδδ instructions are merged:

δδδ(n); δδδ(m) VN δδδ(n+m)

(3) Factorise ticks out of branches. Next, whenever a δδδ
instruction appears in an if-branch, it is factorised when
it appears on the opposite branch as well. Formally:

if(b) {δδδ(n1); p1} else {δδδ(n2); p2} VN

δδδ(n); if(b) {δδδ(n1−n); p1} else {δδδ(n2−n); p2}

where n is the minimum between n1 and n2. Any
resulting δδδ(0) instruction is deleted. For example, we
have:

if(b) {δδδ(3); p} else {δδδ(5); s} VN

δδδ(3); if(b) {p} else {δδδ(2); s}

(4) Move out of atomic. Whenever a δδδ appears in an atomic
annotation, outside of a branch, we move it out. This is
the main step of the normalisation pass; it reduces the
amount of δδδ instructions inside of atomic annotations, to
prepare for the deletion pass D. Formally:

δδδ(n); p VN δδδ(n); p

N performs these operations, along with recursive calls for
the sequence of two instructions, if-branch, while loop, and
atomic constructs. We can additionally notice that N does not
move any δδδ instruction outside of a loop. We argue that it is
not necessary to try to do so, for the following reason. If a
loop is present outside an atomic annotation, the following D
transformation will optimise it identically (see Section VII).
If a loop is present inside an atomic annotation, it may appear
in a secret-dependent branch. This practice may be dangerous,
but is still tolerated by our CR# policy: such a choice is
the programmer’s responsibility. However, we prefer not to
optimise the loop in this case, as this situation is not realistic.

Lemma VI.3. N is leakage preserving.

Proof. Let p be a program and 〈N (p), σ〉 ⇓ σ′, q, l an
arbitrary execution of the transformed program. We need to
show that p has the same execution: 〈p, σ〉 ⇓ σ′, q, l. We
proceed by induction on p and examine the numerous possible
cases, that all strictly preserve the leakage.

Theorem VI.4. N is CR#-preserving.

Proof. By lemmas VI.2 and VI.3.

VII. A CORNERSTONE NON LEAKAGE-PRESERVING
TRANSFORMATION

This section is devoted to our last and trickiest transforma-
tion to prove CR# preserving, the second pass D of the M
minimisation of δδδ instructions (introduced in Section II-B). D
deletes unnecessary δδδ instructions while preserving balanced
branches in atomic annotations. First, this section defines
D. Then, it justifies why it is CR#-preserving. Once again,
we decompose the proof in two parts and define a stronger
property than CR# preservation.

A. Deletion Pass D
The D pass is defined in Figure 5 using rewrite rules.

Our CR# policy considers that balance between branches
must only hold inside of atomic annotations. So, deleting a
δδδ instruction outside of an atomic annotation has no effect on
any balanced branch. The transformation D thus deletes any
occurrence of a δδδ instruction outside of an atomic annotation.
However, δδδ instructions inside of atomic annotations are not

skip VD skip δδδ(n) VD skip

p1 VD p
′
1 p2 VD p

′
2

p1; p2 VD p
′
1; p′2

p1 VD p
′
1 p2 VD p

′
2

if(c) {p1} else {p2}VD if(c) {p′1} else {p′2}

pVD p
′

while(c){p}VD while(c){p′} p VD p

Fig. 5: Definition of the D transformation, with rewrite rules.

deleted, in order to preserve the balance between potential
balanced secret-dependent branches. For example, we have
δδδ(2); δδδ(3) VD δδδ(3) . Let us recall that they result from
the factorisation of δδδ instructions by the previous pass N of
the M minimisation.

B. Proving that the Deletion Pass is CR# Preserving

Contrary to all the passes presented so far, D deletes
some δδδ instructions, hence explicitly modifying the resource
consumption. So, D is not leakage preserving. Instead, we rely
on the property that D only removes δδδ instructions that are
outside of atomic annotations. As a consequence, its impact on
resource consumption must not depend on secret input values,
as all secret dependent if-branches appear inside an atomic
annotation.

More precisely, for a given program, let us consider two
executions emitting the same boolean leakage, meaning that
outside of atomic annotations, both executions follow the
same path during the execution. Transforming both executions
with D will have the same impact on resource consumption.
Indeed, outside of atomic annotations, as both executions
follow the same path, the transformation will have a similar
impact on resource consumption. Moreover, inside of atomic
annotations, the program is not modified, and neither are the
executions. So, we define a new policy called LPo for “leakage
preservation with constant resource offset”, which captures this
behaviour.

Definition VII.1 (LPo). A transformation T is LPo if, for any
program p and two of its executions 〈p, σ1〉 ⇓ σ′1, q1, l and
〈p, σ2〉 ⇓ σ′2, q2, l, then there exists a resource offset r ∈ Z
(i.e., a same offset in resource consumption) such that we have
〈T (p), σ1〉 ⇓ σ′1, q1 + r, l and 〈T (p), σ2〉 ⇓ σ′2, q2 + r, l.

LPo is not sufficient to imply that the transformation is
CR#-preserving. We further require the transformation to
satisfy a property called “termination preservation”. It states
that if an execution of a transformed program from an initial
state σ terminates, then an execution of the source program
from the same initial state σ also terminates. Similarly to
leakage preservation, termination preservation is a backward
property.

Definition VII.2 (Termination preservation). A transformation
T is termination preserving if, for any program p, suppos-
ing that we have an execution 〈T (p), σ1〉 ⇓ σ2, q, l of
the transformed program, then there exists an output state
σ′ and a leakage (q′, l′) such that we have the execution
〈p, σ1〉 ⇓ σ′, q′, l′.

The following lemma states that any transformation com-
plying to the two previous properties is CR#-preserving. We
then prove that D complies to both properties, hence to CR#

preservation.

Theorem VII.1. Any LPo and termination preserving trans-
formation is CR preserving.

Proof. Let T be a transformation, that is LPo and termination
preserving. Let p be a CR#-secure program, we need to prove
that T (p) is CR#-secure as well. To this end, we assume
having two indistinguishable executions E1 and E2 of T (p),
and we then need to prove that they emit the same leakage.
As T is termination preserving, we can find two executions of
p emitting unknown leakages. However, as p is CR#-secure,
these unknown leakages are equal. Let (q, l) be such a leakage.

As E1 and E2 emit the same boolean leakage l, we use
the fact that T is LPo to find a resource offset r ∈ Z such
that we have two executions of T (p) with similar initial states
and emitting the same leakage (q + r, l). Finally, as While is
deterministic (see lemma IV.1), these two executions of T (p)
are exactly the executions E1 and E2. As E1 and E2 emit the
same leakage (q + r, l), this concludes the proof.

Lemma VII.2. D is termination preserving.

Proof. By induction on the execution of the transformed
program.

Lemma VII.3. D is LPo.

Proof. Let p be a program, we assume to have two executions
of p emitting the same boolean leakage l, and consuming
respectively q1 and q2 resources. We need to find an offset
r ∈ Z, such that the associated executions of D(p) emit the
same boolean leakage l, and consume respectively q1 + r and
q2 + r resources. We reason by induction on the semantics
of one of the source executions. We focus on some of the
interesting cases.
• Case TICK. We have p = δδδ(n) and D(p) = skip. We

choose r = −n.
• Case SEQ. We have p = p1; p2, two executions of
p1 and two executions p2. As the boolean leakage is
non-cancelling (see lemma IV.2), we conclude that both
executions of p1 emit the same boolean leakage l1, and
both executions of p2 emit the same boolean leakage l2.
Then we use the induction hypothesis and these two pairs
of executions to conclude.

• Case IF. We have p = if(e) {p1} else {p2}. As both
executions have the same boolean leakage, e evaluates
to the same value in both executions. When e evaluates
to true (resp. false), we have two executions of p1 (resp.

p2), producing the same boolean leakage. We then use
the induction hypothesis on the executions of p1 (resp.
p2) to conclude.

Theorem VII.4. D is CR-preserving.

Proof. By lemmas VII.2 and VII.3, and theorem VII.1.

VIII. RELATED WORK

A. Timing non-interference

Our work focuses on a timing non-interference policy,
which was first introduced in [3]. In [3], the authors define
a type system in which well-typed programs do not leak
secret information. This is a direct adaptation of [26] but it
adds control of timing leaks on high branches. Their type
system is undecidable because they rely on an undecidable
semantic judgement to check that high branches have equal
timing costs. But their approach can be refined with a more
conservative judgement to become executable and directly
adapted to enforce the CR policy. When high branches are
not time-balanced but the program is typable with respect
to the type system of [26], they also show how to repair
the program by suitably padding both branches. Using this
approach in our setting could help repairing CR after a unse-
cure compiler transformation but will require running the type
checking of [26] after each compilation pass, even on low-
level languages where taint analysis is often too conservative
to succeed. Our approach avoids running a taint analysis inside
the compiler, thanks to our atomic annotations.

In [20], the authors introduce a timing non-interference
policy called CR. We extended this policy to also include
control-flow leakages. They present a type system used to
verify that an implementation respects their policy. They
also show how this type system can automatically remove
vulnerabilities from a program. In other works [16], [13],
the authors use a similar notion of resource consumption to
establish precise bounds for worst and best cases resource
usage. The main difference with our work is that we focus
on the preservation of a variation of this security policy. Our
current paper does not put to much emphasis on enforcing CR
and CR# at source level because the work of [3] can be easily
adapted to do it, by positioning carefully atomic annotations
at source level.

The work that is closest to ours is [6], where the authors use
another relaxation of the CCT policy called time balancing and
defined as negligibly influenced by secrets. To ensure that a
program respects this policy, a global timing counter is added
to measure the timing differences between branchings. Then,
the Boogie deductive verifier checks for each program the
constraints required by the policy. This work is not formally
verified with a proof assistant but a tool was implemented
to verify that the Amazon’s s2n implementation of TLS
respects the time-balancing policy. Similarly to our work,
the author use padding or dummy instructions in order to
balance branches in the program. Our work differs as we use

an instrumented operational semantics to model the timing
behavior of a program. Their policy also differs, as it allows
pairs of executions with different execution time, as long as
this difference is bounded by a given constant value.

In [24], the authors study a different but close policy, where
the strength of a side-channel leak is measured by a notion of
entropy, and then propose methods to reduce the entropy of
the leakage emitted by a program. These methods rely on the
insertion of padding instructions to increase the execution time
of branches of the program, which is similar to the padding we
use. The property they study can be seen as a generalisation
of the CR policy, as the latter expects a constant leakage, i.e.,
a leakage of null entropy.

B. Preservation of side-channel security through compilation

Our work focuses on the preservation of side-channel se-
curity during compilation, as our setting assumes the source
programs to be secure. This is a standard approach that
we used in [7]. We formally verified the problem of CCT
preservation in the CompCert compiler, using the Coq proof
assistant. We presented a modified version of the CompCert
compiler, and proved it preserves the CCT policy, applying
the proof methodology previously presented in [9], and us-
ing advanced 2-simulations relying on non-cancellation. Our
approach differs here as the leakage we consider does not
satisfies the non-cancellation property.

Other works consider the problem of CCT preservation. Jas-
min [4] is a programming framework, allowing the program-
mer to write programs in the Jasmin programming language.
The Jasmin compiler then compiles programs down to efficient
assembly code.

In [12], the authors present FaCT, a domain specific lan-
guage addressing the challenge of writing human-readable
constant-time cryptographic code. The language provides
high-level constructs, that are compiled by the FaCT compiler
down to constant-time LLVM bitcode. It is designed to make
cryptographic libraries easier to implement. Indeed, a FaCT
developer can focus on the correctness of the implementation,
and then rely on the compiler to apply usual recipes (such
as bitwise operations) yielding a constant-time compiled pro-
gram. The FaCT compiler relies on a static information-flow
type system. The type system allows to annotate variables as
secret or public, then reject unsafe programs. However, they
only rely on empirical evaluation, using dudect [21], to ensure
that the generated code has a constant-time behaviour.

In [19], the authors present a flow-sensitive dependent
type system for shared-memory programs, which enforces a
strong policy: timing-sensitive non-interference for concurrent
program. Then in [23], the authors study the preservation of
this policy during compilation. Similarly to our work, the
authors formally verify the preservation of their policy through
compilation from a while language. However, as our CR#

security policy does not rely on a type system at target level,
the proof of preservation of our policy is easier to achieve,
and our approach avoids the use of an information-flow type
system in the compilation chain.

In [11], the authors consider the preservation of
Information-Flow during compilation. The property they study
does not deal with timing side-channels, but rather considers
an attacker capable of observing an arbitrary amount of
information during an execution. Their policy ensures that
a compiled program doesn’t leak more information than the
associated source program, for instance by optimizing away
code erasing secret values in the memory. They also present
proof principles designed to prove that a transformation pre-
serves their security policy. It is not clear how their policy can
express the CR policy we study here. In recent work [14], the
authors consider a similar problem with a different approach.
They introduce an opaque annotation, and a security policy en-
forcing that any observation occurring in an opaque area must
be preserved through compilation, thus allowing to prevent
unwanted dead code elimination. They study the preservation
of their policy from C code to machine code. Interestingly,
their opaque annotation is similar to our atomic annotation, as
it disables aggressive optimizations, while the compiler does
not need to know the security taint of the variables.

C. Hardware instructions as mitigation.

Our paper introduces a source level annotation that can
restrain the compiler. However, these annotations may also
be interesting at low level machine code, to restrain hardware
mechanisms such as cache or speculative execution, and thus
make branch balancing more reliable. Ideally, we would like
to implement atomic annotations in a way that disables cache,
pipeline and speculative execution inside of atomic blocks. To
the best of our knowledge, such precise control over all these
hardware mechanisms is not possible on modern architectures.
Still, memory fence instructions are a first step toward our
goal, as they prevent speculative execution at a given program
point.

Recent work [25] presents Blade, an automatic tool able to
repair a program vulnerable to speculative execution attacks,
by eliminating speculation-based leakage. Their approach is
based on the insertion of a minimal amount of protect anno-
tations in the source code, which may then be implemented
as memory fence instructions at low level machine code.

In [8], the authors formalize a notion of speculative seman-
tics and the speculative constant-time policy, which captures
programs whose every possible speculative execution respects
the constant-time policy. They then implement their methods
in the Jasmin verification framework, and use it to implement
speculatively constant-time cryptographic primitives. These
implementations also rely on memory fence instructions to
prevent speculative execution until prior instructions have
completed. The speculative semantics of the extended Jasmin
language also depends on a fence instruction that exists at
source level.

IX. CONCLUSION

We formalised the CR# security policy, a stronger policy
than the CR policy which is used by some cryptographic
practitioners. We also formalised a methodology to adapt

program transformations so that they become CR# preserving;
it relies on adding padding to balance secret branchings and
minimisation of padding. We proved that different transfor-
mations used by compiler optimisations are CR# preserving.
Last, we introduced an annotation called atomic, used to
delimit the high-security parts of the program. This annotation
indicates where to restrict the compiler optimisations in order
to preserve the CR# policy.

As future work, we will extend our security policy to handle
memory accesses. We suggest to reuse the work done for CCT
preservation, where it is forbidden to access memory when the
address depends on a secret, and also to prohibit it in secret-
dependent if-branches. We also plan to study more realistic
cost models, that can account for non-local behaviors, such
as cache misses and branch prediction. In a longer term, we
intend to apply our methodology to more realistic languages
such as those of the CompCert compiler.

ACKNOWLEDGMENTS

This work is supported by a European Research Council
(ERC) Consolidator Grant for the project “VESTA”, funded
under the European Union’s Horizon 2020 Framework Pro-
gramme (grant agreement no. 772568).

REFERENCES

[1] Abate, C., Blanco, R., Ciobâcă, Ş., Durier, A., Garg, D., Hritcu, C., Pa-
trignani, M., Tanter, É., Thibault, J.: Trace-relating compiler correctness
and secure compilation. In: Müller, P. (ed.) ESOP. LNCS, vol. 12075,
pp. 1–28. Springer (2020)

[2] Abate, C., Blanco, R., Garg, D., Hritcu, C., Patrignani, M., Thibault, J.:
Journey beyond full abstraction: Exploring robust property preservation
for secure compilation. In: Comp. Sec. Foundations Symposium, CSF.
pp. 256–271. IEEE (2019)

[3] Agat, J.: Transforming out timing leaks. In: POPL. p. 40–53. ACM
(2000)

[4] Almeida, J.B., Barbosa, M., Barthe, G., Blot, A., Grégoire, B., Laporte,
V., Oliveira, T., Pacheco, H., Schmidt, B., Strub, P.Y.: Jasmin: High-
assurance and high-speed cryptography. In: CCS. pp. 1807–1823. ACM
(2017)

[5] Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.:
Verifying constant-time implementations. In: USENIX Security Symp.
pp. 53–70 (2016)

[6] Athanasiou, K., Cook, B., Emmi, M., MacCarthaigh, C., Schwartz-
Narbonne, D., Tasiran, S.: Sidetrail: Verifying time-balancing of cryp-
tosystems. In: Verified Software, Theories, Tools, and Experiments
(VSTTE). pp. 215–228. Springer (2018)

[7] Barthe, G., Blazy, S., Grégoire, B., Hutin, R., Laporte, V., Pichardie, D.,
Trieu, A.: Formal verification of a constant-time preserving C compiler.
POPL 4, 1–30 (2019)

[8] Barthe, G., Cauligi, S., Grégoire, B., Koutsos, A., Liao, K., Oliveira,
T., Priya, S., Rezk, T., Schwabe, P.: High-assurance cryptography in the
spectre era (2021)

[9] Barthe, G., Grégoire, B., Laporte, V.: Secure compilation of side-
channel countermeasures: the case of cryptographic “constant-time”.
In: Computer Security Foundations Symp. (CSF). pp. 328–343. IEEE
(2018)

[10] Bernstein, D.J.: Cache-timing attacks on AES (2005),
http://cr.yp.to/papers.html

[11] Besson, F., Dang, A., Jensen, T.: Information-flow preservation in com-
piler optimisations. In: 2019 IEEE 32nd Computer Security Foundations
Symposium (CSF). pp. 230–23012. IEEE (2019)

[12] Cauligi, S., Soeller, G., Johannesmeyer, B., Brown, F., Wahby, R.S.,
Renner, J., Grégoire, B., Barthe, G., Jhala, R., Stefan, D.: FaCT: a DSL
for timing-sensitive computation. In: PLDI. pp. 174–189 (2019)

[13] Çiçek, E., Barthe, G., Gaboardi, M., Garg, D., Hoffmann, J.: Relational
cost analysis. ACM SIGPLAN Notices 52(1), 316–329 (2017)

[14] Cohen, A., De Grandmaison, A., Guillon, C., Heydemann, K., Vu, S.T.:
Secure optimization through opaque observations (2021)

[15] D’Silva, V., Payer, M., Song, D.X.: The correctness-security gap in
compiler optimization. In: Symp. on Security and Privacy Workshops.
pp. 73–87. IEEE (2015)

[16] Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource
analysis. In: POPL. pp. 357–370 (2011)

[17] Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified
implementation of ML. In: POPL. pp. 179–192. ACM (2014)

[18] Leroy, X.: A formally verified compiler back-end. Journal of Automated
Reasoning 43(4), 363–446 (2009)

[19] Murray, T., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional ver-
ification and refinement of concurrent value-dependent noninterference.
In: Computer Security Foundations Symp. (CSF). pp. 417–431. IEEE
(2016)

[20] Ngo, V.C., Dehesa-Azuara, M., Fredrikson, M., Hoffmann, J.: Verifying
and synthesizing constant-resource implementations with types. In:
Symp. on Security and Privacy (SP). pp. 710–728. IEEE (2017)

[21] Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant
time? In: Design, Automation & Test in Europe Conf. (DATE). pp.
1697–1702. IEEE (2017)

[22] Simon, L., Chisnall, D., Anderson, R.J.: What you get is what you C:
controlling side effects in mainstream C compilers. In: EuroS&P. pp.
1–15. IEEE (2018)

[23] Sison, R., Murray, T.: Verifying that a compiler preserves con-
current value-dependent information-flow security. arXiv preprint
arXiv:1907.00713 (2019)

[24] Tizpaz-Niari, S., Černỳ, P., Trivedi, A.: Quantitative mitigation of
timing side channels. In: International Conference on Computer Aided
Verification. pp. 140–160. Springer (2019)

[25] Vassena, M., Disselkoen, C., Gleissenthall, K.v., Cauligi, S., Kıcı, R.G.,
Jhala, R., Tullsen, D., Stefan, D.: Automatically eliminating speculative
leaks from cryptographic code with blade. Proceedings of the ACM on
Programming Languages 5(POPL), 1–30 (2021)

[26] Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow
analysis. Journal of computer security 4(2-3), 167–187 (1996)

[27] Zhao, J., Nagarakatte, S., Martin, M.M.K., Zdancewic, S.: Formalizing
the LLVM intermediate representation for verified program transforma-
tions. In: POPL. pp. 427–440. ACM (2012)

