
HAL Id: hal-03221408
https://hal.science/hal-03221408

Submitted on 20 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A numerical study on the entropy noise generated in
sudden cross-sectional area changes

Juan Guzman-Inigo, Dong Yang, R Gaudron, Aimee S. Morgans

To cite this version:
Juan Guzman-Inigo, Dong Yang, R Gaudron, Aimee S. Morgans. A numerical study on the entropy
noise generated in sudden cross-sectional area changes. eForum Acusticum, Dec 2020, Lyon, France.
pp.379-381, �10.48465/fa.2020.0816�. �hal-03221408�

https://hal.science/hal-03221408
https://hal.archives-ouvertes.fr


A NUMERICAL STUDY ON THE ENTROPY NOISE GENERATED IN A
SUDDEN AREA EXPANSION
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ABSTRACT

In this work, we investigate numerically the sound gen-
erated when incoming entropy waves are decelerated in a
sudden area expansion. To this end, we linearise the com-
pressible Navier-Stokes equations around a turbulent mean
flow. The mean flow is obtained as a solution of the RANS
equations. The linearised equations are then solved in the
frequency domain to determine the acoustic variables. Fi-
nally, the transmission and reflection coefficients are ob-
tained and compared with the predictions of two different
quasi-steady models.

1. INTRODUCTION

Entropy noise refers to the sound generated when ad-
vective temperature fluctuations (entropy waves) are ac-
celerated/decelerated by non-uniform mean flows [1]. A
number of analytical models [2, 3] are available to pre-
dict entropy noise when the flow is accelerated through
smooth cross-sectional area changes, i.e. nozzle flows.
However, recent experimental studies [4, 5] have shown
that such models, which rely on quasi-one-dimensional
and isentropic assumptions, are inadequate when the area
change is sudden. In these studies, the flow is acceler-
ated/decelerated through a hole, comprising a sudden area
contraction followed by an expansion. In the contraction
portion, the flow remains essentially attached and isen-
tropic. In the expansion part, on the other hand, the flow
massively separates, creating a large recirculation zone
which leads to strong mean-entropy gradients at the down-
stream side.

Using an acoustic analogy, Yang et al. [6] showed that
the results for the expansion part significantly differ from
the classical theory of Marble and Candel [2]. At low Mach
numbers, the mismatch can be explained solely by the exis-
tence and extension of the recirculation region. The afore-
mentioned model, however, is based on a Green’s function
method and is only applicable to low-Mach-number flows.
In this work, we study the entropy noise generated in a sud-
den area expansion at different Mach numbers by numeri-
cal means. The results show that the predictions of Marble
and Candel [2] significantly deviate from the numerical re-
sults and that this deviation becomes more severe when the
Mach number is increased.
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Figure 1. Schematic of the configuration. The subindices
()u and ()d denote variables defined in the upstream and
downstream ducts, respectively.

2. METHODOLOGY

We consider an axysimmetric area expansion as depicted
in Fig. 1. The geometry is defined by an expansion ratio
Au/Ad = 0.346. The area of the upstream duct is given by
Au = πR2

u,withRu the radius of the duct. A uniform flow
of normalised speed Mu = uu/cu is imposed at the inlet
upstream of the expansion, giving aRe = uuRu/ν = 106.
The steady mean flow is then obtained as the solution of the
compressible Reynolds-Averaged Navier-Stokes (RANS)
equations using the finite volume solver OpenFOAM [7]
(version 4.1). The turbulent Reynolds stresses are mod-
elled by the k-ω SST turbulence model. The mean-flow
variables are denoted by ().

A time-harmonic, small-amplitude entropic fluctuation
s′u = s̃+u e

iωt is superimposed at the upstream inlet. (̃)
denotes time-harmonic perturbation variables and ω is the
angular frequency. The acoustic response is subsequently
obtained as the solution of the linearised Navier-Stokes
equations (LNSEs). The LNSEs are recast in frequency
domain and solved using a finite element method stabilised
with a least-squares formulation [8]. The equations are im-
plemented in the open-source computing framework FEn-
iCS [9, 10]. At the inlet and outlet of the domain, non-
reflecting boundary conditions are imposed. Finally, the
downstream-propagating acoustic wave in the downstream
duct p̃+d , and the upstream-propagating one in the up-
stream duct p̃−u are computed using the multi-microphone
method [11].

The numerical results are compared with the theory
of Marble and Candel [2]. This model is valid in the
zero-frequency limit and proposes upstream-downstream
matching conditions obtained by applying the conserva-
tion of mass, stagnation enthalphy and entropy. A second
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quasi-steady model is also proposed. This model, here-
after termed Model 2, derives the equivalent jump condi-
tions, but using the conservation of mass, stagnation en-
thalphy and momentum. An additional unknown term ap-
pears in the momentum equation, the pressure at the back-
plate, which is assumed equal to the pressure at the up-
stream duct pu [12].

3. RESULTS

The reflection and transmission coefficients are defined, re-
spectively, as

P−u = p̃−u /γpu, P+
d = p̃+d /γpd, (1)

where γ denotes the ratio of the specific heat capacities of
the gas at constant pressure and constant volume. Fig. 2
shows the reflection and transmission coefficients obtained
when a normalised entropy perturbation is imposed at the
inlet σ = s̃+u /cp, with cp the specific heat capacity at con-
stant pressure. Fig. 2(a) shows that the reflection coeffi-
cient predicted by the LNSEs is nearly constant at low
frequencies (St < 0.03), but its value is about 1/3 of
the predictions of Marble and Candel. At higher frequen-
cies, non-compact effects cause the coefficient to drop in
the form of a low-pass filter. The transmission coefficient
Fig. 2(b) also presents a plateau at very low frequencies.
However, non-compact effects arise at lower frequencies
(St ≈ 0.01), and a peak is reached at St ≈ 0.1. After that
value the coefficient drops and tends to a small value at
higher frequencies. The difference with Marble and Can-
del is less acute in this case, but it is still quite large.

The predictions of Model 2 are also included in Fig. 2.
It is apparent that these values are quite close to the numer-
ical values, showing that this model is more adequate for
sudden area expansions than the previous one.

4. CONCLUSION

We have performed numerical simulations of small-
amplitude entropy waves decelerated in a sudden area ex-
pansion. The results show that quasi-one-dimensional and
isentropic modelling is not adequate for this configura-
tion. An alternative quasi-steady model has been proposed
based on the conservation of mass, momentum and stagna-
tion enthalpy. This model predicts accurately the reflection
and transmission coefficients at low frequencies.
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Figure 2. (a) Reflection and (b) transmission coefficients
obtained from (black solid) the simulations, (blue dotted)
predicted by Marble and Candel [2] and (red dashed) pre-
dicted by Model 2. The Mach number in the upstream
duct is Mu = 0.5. The Strouhal number is defined as
St = ωRu/uu.
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