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ABSTRACT

For applications dealing with dissipative acoustic waveg-
uides strong modal attenuation are often achieved close
to exceptional points (EP). These EP correspond to a par-
ticular tuning of certain design parameters which render
the associated eigenvalue problem degenerate where both
eigenvalues, i.e. the wavenumber, and eigenvectors of a
pair of guided modes coalesce. These non-Hermitian de-
generacies have raised considerable attention in the scien-
tific community as these can have a great impact in a va-
riety of physical problems. Here, a new algorithm is pro-
posed to quickly explore the parametric space and to locate
EPs. The method requires the computation of successive
derivatives of two selected eigenpairs with respect to the
parameter so that, after recombination, regular functions
can be constructed. This algebraic manipulation permits
the EP localization, using standard root-finding algorithms
and the computation of the associated Puiseux series up to
an arbitrary order, useful to follow modal branches. Ex-
amples related to the acousic propagation in straight ducts
with absorbing walls and in periodic guiding structures are
given to illustrate the versatility of the proposed method
and its ability to handle large size matrices arising from
finite element discretization techniques.

1. INTRODUCTION

In presence of losses, gain or with open systems, the fi-
nite element discretization of the wave equation typically
yields sparse non-hermitian eigenvalue problem depending
smoothly on a single complex parameters ν

L(λ(ν), ν)x(ν) = 0. (1)

Here λ(ν) is the eigenvalue, x(ν) 6= 0 is the right eigen-
vector. In the context of duct acoustics, the description of
waves is usually accomplished using mode decomposition
and L takes the form of a quadratic eigenvalue problem [1]
and λ represents the axial wave number.

Depending on the configuration, the parameter can be,
for instance, a wall impedance associated with a locally re-
acting liner or the effective density of a porous material as
illustrated in Fig. 1. For some specific values ν∗ the ma-
trix (1) is defective, and in the case of an isolated defective

eigenvalue λ∗ of algebraical multiplicity 2, we can antici-
pate the local behavior of the two branches of solution by
using Puiseux series expansion [2]. These can be written
formally as

λ1(ν) = λ∗ +

∞∑
k=1

ak

(
(ν − ν∗)

1
2

)k
, (2a)

λ2(ν) = λ∗ +

∞∑
k=1

ak

(
− (ν − ν∗)

1
2

)k
. (2b)

As stated in [3], as long as a1 6= 0 the two branches co-
alesce at a branch point singularity as ν tends to ν∗. The
branch point ν∗ in the ν-complex plane is called an excep-
tional point [2].

In the vicinity of the EP, eigenvalues coalesce in oppo-
site directions, and this has remarkable effects on modal
attenuation [1, 4, 5] and on stability issues like the flutter
phenomenon [6]. EPs also arises in quantum mechanics [7]
or in phase transition in PT-symmetric systems.

In this work, we are interested in finding ν∗ as well in
computing the coefficients of the Puiseux series up to a
certain order.
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Impedance Porous lining Periodic inclusion

c)

Figure 1. Examples of acoustical waveguides.

2. EP LOCALIZATION

The proposed algorithm, detailed in [8], exploits the
knowledge of high order derivatives of two selected eigen-
values (λ1, λ2) calculated at an arbitrary value ν0. In order
to circumvent the branch point singularity (2) two auxiliary
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functions are defined

g(ν) = λ1 + λ2, and h(ν) = (λ1 − λ2)2 . (3)

By construction, these functions are holomorphic in the
vicinity of ν∗ (as this was already mentioned in [7] and
in [2, p. 66]). The method consists of 3 steps:

1. Computation of the derivatives of two selected
eigenpairs (λi,xi) (i = 1, 2) following the tech-
nique presented in [9]. This serves to construct the
truncated Taylor series Tg and Th of g and h with re-
spect to the arbitrary value ν0. This step is the most
computationally expensive.

2. Application of standard root-finding algorithms for
polynomials in order to find the zeros of Th and lo-
cate the branch point ν∗.

3. Find the connecting coefficients between the Taylor
series Tg and Th with those given by the Puiseux
series (2).

To illustrate the method, we consider a bidimensional
acoustic waveguide with one treated wall (at y = 0). The
eigenvalue problem is obtained from the discretization of
the weak formulation

(k2 − λ)〈ψ, φ〉 − 〈ψ′, φ′〉+ 1

ν
ψ(0)φ(0) = 0. (4)

As illustrated in Fig. 2, the spurious roots of Th tend
to be aligned on a circle (which is known to be connected
with the radius of convergence of the series) and genuine
zeros corresponding to the EP located inside the circle of
convergence. The computed value ν∗ is a good approxi-
mation of the true value with a relative error of 0.4% for a
significantly distant initial value ν0 ≈ 2.3ν∗.

The proposed approach has been implemented in
a dedicated open source python library available at
github.com/nennigb/EasterEig. This lined waveguide ex-
ample is included in EasterEig the test suite.

Work is ongoing to extend the radius of converge of
the approximation and to tackle several parameters to lo-
cate higher order EPs. This algorithm can also be used
to extend perturbation methods for real random eigenvalue
problems, when veering is present as in [10], or more gen-
erally, to speed up parametric eigenvalue problem with ex-
plicit dependencies.
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Figure 2. Roots of Th. Example of EP localization in the
case of locally reacting liner with 13 derivatives with ν0 =
0.5825− 0.6412i. Roots of Th (·), initial value ν0 (+) and
Tester’s reference solution ν∗ref = (1.6506 + 2.0599i)−1

(◦) for the merging of the two least attenuated modes.
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