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ABSTRACT

Acoustical liners are one of the main solutions to re-
duce noise in modern aircraft turbofan engines. Numer-
ical analysis such as computational aeroacoustics proved
to be an accurate and reliable tool for predicting liners
performance. The impedance (or, in another form, reflec-
tion coefficient) parameter is used to evaluate the acous-
tic absorption capability of a surface. As the impedance
is a frequency dependent variable and defined based on
acoustic quantities, its calculation is a difficult challenge
for traditional CFD solvers, which are time-domain based
and encompass both acoustic and hydrodynamic fluctuat-
ing quantities. Recent works allowed a new representation
of the impedance under the form of a fractional multi-poles
Time-Domain Impedance Boundary Condition (TDIBC)
with a reflection coefficient formulation. The present work
deals with the implementation of such TDIBC in a Finite-
Volume CFD solver, with particular attention to confine the
additional computational cost. Multiple validations against
analytic (1D) and experimental (2D) data confirm the ex-
cellent reproduction of the noise reduction achieved by the
lined wall.

1. INTRODUCTION

Aircraft noise is considered as a high-profile issue when
dealing with aviation marketing attractiveness and public
opinion in the air traffic development. In modern aircraft,
noise sources are mostly due to landing gear, high-lift sys-
tems and engine. Concerning the engine, the major noise
contributor is the fan, which in the next engine genera-
tion with ultra-high bypass ratio could be responsible for
up to 70% of the overall engine noise in take-off condi-
tions. The main technical solution to acoustic problems in
turbofan engines is to cover specific noisy structures with
sound-absorbing materials, named ”liners”. Since their in-
troduction in industrial application, acoustical liners have
been object of severe studying and improvement. The sim-
ple structure of the Ceramic Tubular (CT) liner made it a
prominent tool for academic and benchmark validations.
It consists of an array of narrow cavities backed by a hard
wall at one end, then acting as a quarter-wavelength res-
onator with significant visco-thermal losses at the cavity

walls. Arrays of wider cavities with addition of a perfo-
rated sheet on top creates the currently widespread Single
Degree Of Freedom (SDOF) liner, which see most of its
sound absorption due to resonance at specific frequencies
and globally enhanced by visco-thermal losses through the
short perforations. Fan inlet and bypass ducts are typi-
cal regions object of acoustical lining with SDOF liners.
Manufacturing and testing of liners is a time consuming
and expensive practice, reason why an appropriate numer-
ical approach is fundamental for the design. Computa-
tional AeroAcoustics (CAA) is a deep and complex sub-
ject of research still under the reflector of many industries
and laboratories. The dependency of acoustic physics to
the frequency domain always posed a complication when
coupling it with classical Computational Fluid Dynamics
(CFD) simulations in time-domain. In order to numeri-
cally reproduce the sound absorption mechanism of a lined
wall, Impedance Boundary Conditions (IBC) have been
developed. Broadband Time-Domain IBC (TDIBC), ca-
pable of both capturing complicated acoustic physics and
being coupled to a classical time domain solver, have been
a challenging topic for the last two decades. First attempts
emerged with the work of Tam and Auriault [1], then fol-
lowed by different models, based on physical parameters
[2–5] or on numerical multi-poles schemes [6–9]. Mod-
els combining physics and multi-poles appeared in the last
decade [10, 11]. In particular, the recent work of Mon-
teghetti [12, 13] provides a reliable modelling based on
a mathematical technique referred to as the Oscillatory-
Diffuse Representation (ODR), which adopts auxiliary dif-
ferential equations to model the lined wall effect and relies
directly on the liner’s geometry. This approach is currently
validated for linear liners, where the impedance is indepen-
dent of the acoustic level; preliminary studies have inves-
tigated how to extend the model to the non-linear response
of the material, without extended validation at this stage.
TDIBC have been initially developed in the framework of
CAA, in the simulation of (linearized) Euler equations.
Applying them to CFD solvers is a challenging task. An
example for impedance laws with a simple dynamics, such
as the damped Helmholtz oscillator, is brought in [14] on
a multipole model applied to a delayed reflection [15].
A first successful implementation of the fully broadband
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ODR model has been recently achieved with a Spectral-
Difference CFD code [16]. A Finite-Volume (FV) ap-
proach has been tested in [17], where Linearized Navier-
Stokes equations (on time and frequency domains) and
Large Eddy Simulations (LES) codes used the impedance
condition of [1] to reproduce an experimental data set,
however demanding either a cumbersome formulation re-
lying on two solvers or heavy calculation times due to the
fine grid requirements of a LES. The all-new work from
Shur et al. [18] introduces, in a FV solver, a purely nu-
merical multipole TDIBC model derived as extension from
Dragna’s [19], thus using Auxiliary Derived Equations to
surround the convolution problem. After a benchmark val-
idation, they successfully assessed its capabilities on noise
absorption of a turbofan scaled geometry.
In the present work, a Navier-Stokes Characteristic Bound-
ary Condition (NSCBC) type of acoustic treatment has
been implemented with an ODR in the FV Euler and
Navier-Stokes CFD solver elsA , jointly owned by Air-
bus, Safran and ONERA. From an aeronautical business
point view, its capability to simulate the attenuation of
broadband noise phenomenae makes it a valuable choice
when building an industrial numerical method and its as-
sociated tools. The paper is structured as follows. First,
nods on liner’s acoustic theory and time domain modeling
are given, as well as a resume of the ODR method. The
NSCBC approach is reviewed, from which the TDIBC is
derived and implemented in the CFD solver. CFD valida-
tion is carried on a mono- and bi-dimensional cases against
benchmark data. Conclusive remarks on the achieved re-
sults and expected advancements conclude the paper.

2. ACOUSTIC LINER MODELING

2.1 Impedance Definition

The acoustic concept determining the capability of a sur-
face of reducing sound level is called impedance, defined
as the ratio between pressure fluctuations p′ and wall-
normal velocity fluctuations u′n in the frequency domain:

Ẑ(x, ω) =
p̂′(x, ω)
û′n(x, ω)

(1)

being �̂ a generic variable in the frequency domain, x the
location vector and ω the angular frequency. A similar
parameter, here named ”reflection coefficient”, can be de-
rived from (1) and it reads:

β̂ =
Ẑ − ρ0c0
Ẑ + ρ0c0

(2)

being ρ0 and c0 relatively the density and speed of sound
of the medium. An alternative formulation reads:

β̂ =
ẑ − 1

ẑ + 1
(3)

with ẑ = Ẑ/z0 the non-dimensional impedance (z0 =
ρ0c0 is the medium characteristic impedance).

2.2 Time-Domain Impedance Representation

Regardless its natural belonging to the frequency domain,
it is convenient to translate the impedance (or reflection co-
efficient) operator in the time domain, so that it can be cou-
pled with classical numerical fluid simulations. This con-
version reveals to be cumbersome, as instantaneous pres-
sure depends on the convolution product:

p(t) = Z ? un(t) (4)

To this end, various time-domain models have been pro-
posed either to simplify or surround the convolution prob-
lem. Among the most recurrent categories are:

• rational multi-parameter, single polynomial or frac-
tional models characterized by coefficients linked to
the liner’s physics (resistance, reactance, ...) [1–5].
They are of easy translation in time-domain but lim-
ited in the frequency range able to reproduce;

• numerical models, sum of elementary dynamical
systems of first and second order obtained through
mathematical approximations, hence losing physical
meaning [6–9]. Their capability of capturing broad-
band signals is countered by the need of solving ex-
pensive convolution products and storing an accu-
mulator.

The modified Extended Helmholtz Resonator (mEHR) [5]
is a suitable physical model when dealing with CT or
SDOF liners. It expresses the physics through coefficients
linked to the perforations and cavities geometry of the
liner:

ZmEHR(s) =

perforation︷ ︸︸ ︷
1

σp
(a0 + a 1

2

√
s+ a1s)+

+
1

σc
coth(b0 + b 1

2

√
s+ b1s)︸ ︷︷ ︸

cavity

(5)

where s is the Laplacian variable, which can be related to
the angular frequency by: s = jω, with j =

√
−1. The

perforated sheet porosity is σp and the cavity porosity σc,
which can be supposed unitary. The parameters ai and
bi are the linking object to liner’s geometry and can find
different formulations. More generally, the a0, b0 coeffi-
cients are linked to frequency-independent losses, a1/2, b1/2
to frequency-dependent viscous-thermal losses and a1, b1
to mass reactance effects on phase shift. Herein, the co-
efficient sets proposed by Bruneau [20] and Crandall [21]
are used. Such coefficients can also be optimized (through
techniques like least-square fitting) to fit an experimental
data set.
It has been demonstrated that the impedance model (5) ac-
cepts an Oscillo-Diffusive Representation [12,13]. For the
sake of brevity, the reader is pointed to the original pa-
pers for a detailed description of the ODR, which adopts
a reflection coefficient approach rather than impedance-
based. This choice is justified by the advantage of han-
dling a bounded variable, facilitating poles numerical sta-
bility, and by an intrinsic CFL stability once discretized.
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The conversion is achieved through (3) and the resulting
reflection coefficient formulation reads:

β(s) = β∞ + h1(s) + e−sτh2(s) (6)

with β∞ the bulk reflection coefficient (i.e. the frequency-
independent reflection), τ the resonance delay given by the
back-and-forth time traveling inside the liner’s cavity and
each function hi given by:

hi =
∑
n∈Z

rk
s− sk

+

∫ ∞
0

µ(ξ)

s+ ξ
dξ (7)

The same nomenclature as in the original paper [13] has
been kept, identifying with sk and rk respectively the com-
plex conjugated pairs of oscillatory poles and weights and
with ξ and µ the real diffusive poles and weights. The link
with the modified EHR model (5) lies within the calcula-
tion of poles and weights, obtained from knowledge of the
coefficients ai and bi, which can provide exact solution of
the impedance model (5). The complete formulation after
discretization reads:

β(s) = β∞ +

Ns∑
n=1

r1,n
s− sn

+

Nξ∑
k=1

µ1,k

s+ ξk
+

+ e−sτ

 Ns∑
n=1

r2,n
s− sn

+

Nξ∑
k=1

µ2,k

s+ ξk

 (8)

being Ns and Nξ the number of complex conjugated
oscillatory and real diffusive poles, respectively.

The next step consists of converting (8) from Laplacian
(frequency-based) to time domain, in order for it to be im-
plemented in a CFD solver and resolve the acoustic ab-
sorption alongside the general flow solution. Instead of
solving the convolution product in (4), this is done in the
ODR method through additional auxiliary functions ϕ:

B(t) = β ? un(t) = β∞un(t)+

+

Nξ∑
k=1

µ1,kϕ(t, ξk) +

Nξ∑
k=1

µ2,kϕ(t− τ, ξk)+

+

Ns∑
n=1

r1,nϕ(t,−sn) +
Ns∑
n=1

r2,nϕ(t− τ,−sn)

(9)

which are solution of the ordinary differential equations:{
∂tϕ(t, sk) = −skϕ(t, sk) + un(t)

ϕ(t, 0) = ϕ(0, sk) = 0
(10)

with t > 0, sk ∈ (sk,−ξk) . As a result, as many auxiliary
ϕ functions as the number of poles of the liner discretiza-
tion are added. At last, the delay effect is converted into a
one-dimensional advection problem of the quantity ϕ con-
vected at the speed of sound c on a length Lτ = c/τ . A
second auxiliary function ψ is introduced, solution of the
partial differential equation:

∂tψ(t, sk, l) = c ∂lψ(t, sk, l)

ψ(t, sk, 0) = ϕ(t, sk)

ψ(0, sk, l) = 0

(11)

with l ∈ (0, Lτ ). This advection must be carried on the fic-
titious l-space dimension, numerically discretised with an
arbitrary number of cells NC . In the present development,
the number of cells is chosen depending on the inputNPPW,
cell points per wavelength, thus relating it to the maximum
frequency to resolve:

NC = NPPW τ fmax (12)

being NPPW a multiple of 2 to avoid aliasing. A higher
order scheme in the advection (such as spectral difference)
will require less points per wavelength, while a simpler
scheme (like a second order upwind scheme) will demand
a higher resolution to not be dissipative. The last value of
the mono-dimensional l-space array (at coordinate l = Lτ )
is stored in ψ as the delayed ϕ variable. The final time-
domain reflection coefficient model reads:

B(t) = β ? un(t) = β∞un(t)+

+

Nξ∑
k=1

µ1,kϕ(t, ξk) +

Nξ∑
k=1

µ2,kψ(t, ξk, Lτ )+

+

Ns∑
n=1

r1,nϕ(t,−sn) +
Ns∑
n=1

r2,nψ(t,−sn, Lτ )

(13)

The overall additional memory cost introduced by this
modeling for each concerned boundary mesh cell equals
(Ns.Nξ)NC . A further advantage of using an ODR, is its
need of a limited number of poles compared to other purely
numerical multipole models, hence reducing the memory
and calculation cost.

3. NUMERICAL IMPLEMENTATION

3.1 Characteristic Boundary Conditions in FV

In this work, it has been used a FV-CFD code solving
3D Navier-Stokes (N-S) equations in an integral conser-
vative form, evaluating flux difference at each cell inter-
face. One of the advantages of such formalism is its correct
enforcement of wave propagation, which finds ideal the
use of Navier-Stokes Characteristic Boundary Conditions
(NSCBC), a class of BC analysing the different waves
crossing the boundaries. Their original definition and
derivation is given in the work of Poinsot and Lele [22].
Rienstra and Hirschberg [23] further suggested their ad-
vantage in determining optimal discretization schemes and
stability conditions for acoustic problems. Even though
first NSCBCs were developed in Cartesian coordinates
x = (x, y, z), in the present solver a generalized boundary
surface χ = (χ, η, ζ) can be treated. Given the conserva-
tive variables in the vector U :

U =
(
ρ, ρu, ρv, ρw, ρ(e+ |u|

2
/2)
)ᵀ

(14)

with ρ density, u = (u, v, w)ᵀ velocity in Cartesian coor-
dinates and ρe gas internal energy, viscous compressible
Navier-Stokes equations in conservative form and general-
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ized coordinates read:

0 =
1

J

∂U
∂t

+
∂

∂χ

(
E
χx
J

+ F
χy
J

+ G
χz
J

)
+

+
∂

∂η

(
E
ηx
J

+ F
ηy
J

+ G
ηz
J

)
+

+
∂

∂ζ

(
E
ζx
J

+ F
ζy
J

+ G
ζz
J

) (15)

where J is the Jacobian matrix transporting from gener-
alized to Cartesian coordinates. The fluxes (E, F, G) are
sum of convective (Ec, Fc, Gc) and diffusive (Ed, Fd, Gd)
fluxes of U and are given by:

Ec =(ρu, ρu2 + p, ρuv, ρuw, u(ρe+ p))ᵀ (16a)

Fc =(ρv, ρuv, ρv2 + p, ρvw, v(ρe+ p))ᵀ (16b)

Gc =(ρw, ρuw, ρvw, ρw2 + p, w(ρe+ p))ᵀ (16c)

Ed =(0, p+ τ(1,1), τ(2,1), τ(3,1),

uτ(1,1) + vτ(2,1) + wτ(3,1) + CT∂xT )
ᵀ (16d)

Fd =(0, τ(1,2), p+ τ(2,2), τ(3,2),

uτ(1,2) + vτ(2,2) + wτ(3,2) + CT∂yT )
ᵀ (16e)

Gd =(0, τ(1,3), τ(2,3), p+ τ(3,3),

uτ(1,3) + vτ(2,3) + wτ(3,3) + CT∂zT )
ᵀ (16f)

with τi,j viscous stress tensor, CT thermal conductivity
and T temperature. By Jacobian matrix transformation,
(15) can be recast into:

0 =
∂U
∂t

+

(
χx
∂E
∂χ

+ χy
∂F
∂χ

+ χz
∂G
∂χ

)
+

+

(
ηx
∂E
∂η

+ ηy
∂F
∂η

+ ηz
∂G
∂η

)
+

+

(
ζx
∂E
∂ζ

+ ζy
∂F
∂ζ

+ ζz
∂G
∂ζ

) (17)

This allows to decompose the system as the sum of the
three directions fluxes. Taking as example the flux related
to the direction χ, it can be expressed in term of eigenvec-
tor and wave strength:(

χx
∂E
∂χ

+ χy
∂F
∂χ

+ χz
∂G
∂χ

)
= PUL (18)

where

• PU is the transformation matrix from conservative to
characteristics variables, or in other words the right
eigenvector of the jacobian χxA+χyB+χzC with:

A =
∂E
∂U

, B =
∂F
∂U

, C =
∂G
∂U

• L is the strength (or intensity, amplitude) of the
characteristic wave and is defined by:

L = λP−1U
∂U
∂χ

(19)

with λ the characteristic velocities, or the eigenvalue di-
agonal matrix. When λ is positive, the associated waves

are going outside the computational domain and can be di-
rectly computed from (19). When λ is negative, waves are
entering in the domain and additional boundary conditions
are required. In the following:

λ1 = λ2 = λ3 = un

λ4 = un + c

λ5 = un − c
(20)

being un = u.n the surface outgoing normal velocity
computed as projection in the three dimensions (n =
nx, ny, nz). λ1,2,3 relate to entropy waves, while λ4 and λ5
are respectively the forward and backward moving acous-
tic waves in the normal χ direction. Given the equivalence
between equations (17) and (18), the wave strength of the
χ-directed convective characteristics can be computed by:

L = P−1U

(
χx
∂Ec
∂χ

+ χy
∂Fc
∂χ

+ χz
∂Gc

∂χ

)
(21)

In the same fashion, diffusive flux according to χ and trans-
verse fluxes (comprehensive of a convective and a diffusive
part on both η and ζ directions) can be defined, alongside
with the conservative variables time-variation:

∂W
∂t

= P−1U
∂U
∂t

(22a)

D = P−1U

(
χx
∂Ed
∂χ

+ χy
∂Fd
∂χ

+ χz
∂Gd

∂χ

)
(22b)

T = P−1U

[(
ηx
∂E
∂η

+ ηy
∂F
∂η

+ ηz
∂G
∂η

)
+

+

(
ζx
∂E
∂ζ

+ ζy
∂F
∂ζ

+ ζz
∂G
∂ζ

)] (22c)

A simplified form of conservation equation (17) can now
be given:

∂W
∂t

+ L +D + T = 0 (23)

3.2 TDIBC implementation

Countless NSCBCs have been developed in the literature,
all deriving from the originals in [22] for the most classic
boundary types (inlet, outlet, wall, ...). Herein the deriva-
tion of the wall condition is reviewed with the purpose
of extending it to an acoustically absorbing wall. A no-
slip wall sees imposed the three-component velocity null
(λ1,2,3 = 0) and leaving the conditions on the exiting and
entering acoustic waves (linked to λ4,5):{

∂tWin = ∂tp− ρc∂tun
∂tWout = ∂tp+ ρc∂tun

(24)

where with ”out” is intended the outgoing (or incident)
acoustic wave and with ”in the ingoing (or reflected) acous-
tic wave. The incident wave can be computed inside the
domain, while the hard wall reflection condition gives us
the remaining relation to solve in the boundary condition:

∂tWin = ∂tWout (25)
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Therefore, an acoustically absorbing surface will dampen
the amplitude of the reflected wave by a (reflection) coef-
ficient:

∂tWin = B(∂tWout) (26)

For a rigid wall B = I (identity matrix), while for a com-
pletely absorbing surface B = O (zero-matrix). It is at this
stage that the previously derived TDIBC (13) finds its im-
plementation in the CFD solver. Remembering the relation
(23), and recollecting convective (L + D) and transverse
(T ) fluxes into a single flux variable (F), this reduces in
having:

F in = B(Fout) (27)

hence, developing the B-operator (13) and isolating the
convective characteristic wave amplitude entering the do-
main (i.e. the one to determine, L in):

L in = β∞Fout − (T +D)in+

+

Nξ∑
k=1

µ1,kϕξ,k +

Nξ∑
k=1

µ2,kψξ,k+

+

Ns∑
n=1

r1,nϕr,n +

Ns∑
n=1

r2,nψr,n

(28)

where ϕ is dependent on the flux value Fout and ψ is di-
rectly obtained through delay of the variable ϕ. This is
valid for purely acoustic problems; however, when a mean
flow is considered, the hypothesis of null velocity compo-
nents λ1,2,3 = 0 falls and the three relative characteristic
waves need to be extrapolated from the solution, as they
will interact with the flux balance.

4. RESULTS

The present work focuses on the implementation of the
TDIBC (13) previously developed by Monteghetti [12] in
the elsA software in a new fashion. Therefore and for the
sake of conciseness, the TDIBC model is assumed correct
from the validations carried in [12, 13]. Additional val-
idations have been carried aside by the authors on other
liner geometries comparable to those mounted on aircraft
engines, and all provided the same quality of results than
those found by Monteghetti. The implementation in elsA
software is herein validated against the benchmark case of
Jones et al. [24], so the same ODR coefficients set (poles
and weights) of Monteghetti have been used (namely β̃D
and β̃E of Table 2 in ref. [12]), in order to obtain differ-
ences only due to the numerical discretization and not to
coefficients or model choice.

4.1 1D CFD Validation

A one-dimensional wave reflection in a tube has been used
as first validation test, comparing the analytical solution,
available for this particular case, with the numerical out-
come of the CFD software with TDIBC. The setup con-
sists of a sinusoidal pulse of 1 Pa amplitude with charac-
teristic rightwards velocity u = p/(ρc0), initialized in the
middle of a 1D tube. The tube’s length is adapted to be

three times the pulse wavelength. Top and bottom bound-
aries are symmetry walls, not introducing any transverse
effect into the computational domain. Right boundary is an
acoustic absorbing wall modeled with the TDIBC (13) and
left boundary a non-reflective outlet condition as in (27)
with B(t) = O. A probe to capture the pressure signal in
time is placed right after the initialized pulse, at the green
dot location of Figure 1. The numerical setting is made
of an implicit dual-time step marching scheme, a second-
order Roe flux reconstruction with third-order limiter re-
solving Euler equations. Grid and time resolution have
been chosen at 40 cells per wavelength and 100 timesteps
per period, which showed to be enough to suppress any
spurious numerical dissipation. 8 points per wavelength
(PPW) have proven sufficient for resolving the delay ad-
vection problem with a spectral difference scheme. Figure
2 shows the pressure signal for frequencies of 1.0 and 2.0
kHz. A detailed analysis of the reflected signal shows that
the first dampened wave between 2 and 2.5 periods of time
comes from the liner’s direct sound absorption, while from
2.5 periods onwards the delay effect from the cavity reso-
nance is added, modifying the signal structure. Computa-
tional time is barely unaffected by the new TDIBC imple-
mentation in this 1D case, since the few additional calcu-
lations are done only in the single right boundary cell.

Figure 1: Numerical layout of the 1D case - rightwards
moving sinusoidal pulse of 1 Pa amplitude
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Figure 2: Comparison between analytical and numerical
(CFD) results of the 1D reflection case

4.2 2D CFD Validation

A two-dimensional validation has been run aiming at re-
producing the experimental results of the aforementioned
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benchmark [24]. Geometrical feature of the 2D rectan-
gular duct are as in the original article and the numerical
layout is presented in Figure 3. A continuous sinusoidal
sound signal of 130 dB is injected from the left side with
a reflective characteristic boundary condition (hence tak-
ing into consideration incoming waves due to the reflec-
tion at the impedance discontinuity) and ejected from the
right side with a non-reflective outlet. The TDIBC cov-
ers three fifth of the top boundary while all others bound-
aries are rigid wall. The structured rectangular grid has
been sized on the highest frequency 3.0 kHz: 300 × 35
mesh elements corresponding to approximately 40 points
per wavelength in the longitudinal direction. Figures 4a
to 4d present successive time frames of the sound signal
deformation caused by the TDIBC on the top wall. Imme-
diately after the TDIBC activation, pressure profiles start
to deform following the impedance law. After around 10
periods, pressure in the duct reaches a stabilized regime,
similarly to the one already obtained after 4 periods. 10
additional periods have been calculated for stability bullet-
proofing, for a total of 20 periods time simulation (or 2000
iterations). Six frequencies are herein tested (0.6, 1.0, 1.5,
2.0, 2.5, 3.0 kHz) at two different average Mach numbers
(0 and 0.255). The flow profile considered is at this first
stage uniform at the given average Mach number. Pressure
is extracted at 100 equidistant locations on the opposite
wall, as done in the experiment with microphones. Sound
Pressure Level (SPL) and its phase are obtained through
use of an FFT algorithm on the pressure signal and using
the following well-known rule:

SPL = 20 log10

(
p

pref

)
(29)

with pref = 20µPa. Signal phase is presented in Figure
5 (only for the 3.0 kHz case) and showed an impeccable
agreement both with experiment and previous DG (Dis-
continuous Galerkin) CAA calculation of [12]. Compar-
ison in terms of SPL reduction between the experimental
values, DG-CAA results and the current CFD implemen-
tation are in Figures 6 and 7, respectively for Mach 0 and
0.255. Vertical dashed lines indicate the liner’s limits. A
great accordance has been found with both references at
every frequency. Similar behaviors are found at same ex-
citation frequencies for both velocities, such as the under-
estimation at 2kHz and 3kHz. This can be justified from
using the same grid in all cases, so less points per wave-
length at high frequencies. On the other side, the 1000Hz
case is correctly resolved with its strong absorption of al-
most 50 dB.

Figure 3: Numerical layout of the 2D case - continuous
sinusoidal sound signal of 130 dB amplitude

(a) time = 0

(b) time = 0.5 period

(c) time = 1.5 periods

(d) time = 4 periods

Figure 4: 2D pressure time-evolution in the duct
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Figure 5: Phase comparison for the fundamental fre-
quency only (3000 Hz)

5. CONCLUSION

The implementation of a time-domain impedance bound-
ary condition in a Finite Volume CFD solver has been pre-
sented. Different validation cases proved its excellent be-
haviour, both in terms of phase and sound level prediction.
The additional computational time and memory have been
kept to minimal acceptable values. At the present stage, the
aforementioned model can be used to predict linear liners
behaviour for different frequencies and geometries. The
most evident progress on this subject is the extension of
the B-model to non-linearly reacting liners and nonlinear
physics, like shock waves propagation in fan inlets, where
the high SPL variations can influence the acoustic reaction
of the material. Even though many studies on non-linear
wave propagation can be already found in literature, very
little has been done about non-linear liners integrated in
non-linear environments, where models are expected to be
formulated in abscene of analytical expressions.

10.48465/fa.2020.0088 364 e-Forum Acusticum, December 7-11, 2020



0 100 200 300 400 500 600 700 800

x [mm]

115

120

125

130

135
S

P
L
 [
d
B

]
f = 600 Hz

Jones et al. (exp.)

Monteghetti (DG-LEE)

elsA (CFD)

0 100 200 300 400 500 600 700 800

x [mm]

60

80

100

120

140

S
P

L
 [

d
B

]

f = 1000 Hz

0 100 200 300 400 500 600 700 800

x [mm]

115

120

125

130

135

S
P

L
 [
d
B

]

f = 1500 Hz

0 100 200 300 400 500 600 700 800

x [mm]

120

122

124

126

128

130

132

S
P

L
 [

d
B

]

f = 2000 Hz

0 100 200 300 400 500 600 700 800

x [mm]

105

110

115

120

125

130

135

S
P

L
 [
d
B

]

f = 2500 Hz

0 100 200 300 400 500 600 700 800

x [mm]

90

100

110

120

130

140

S
P

L
 [

d
B

]

f = 3000 Hz

Figure 6: SPL comparison of experiment, CAA-DG and
the herein developed CFD (elsA) - average Mach = 0
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