
HAL Id: hal-03221391
https://hal.science/hal-03221391v1

Preprint submitted on 8 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and Asymptotically-efficient estimation in a
Fractional autoregressive process

Samir Ben Hariz, Alexandre Brouste, Chunhao Cai, Marius Soltane

To cite this version:
Samir Ben Hariz, Alexandre Brouste, Chunhao Cai, Marius Soltane. Fast and Asymptotically-efficient
estimation in a Fractional autoregressive process. 2021. �hal-03221391�

https://hal.science/hal-03221391v1
https://hal.archives-ouvertes.fr


FAST AND ASYMPTOTICALLY-EFFICIENT ESTIMATION IN A FRACTIONAL

AUTOREGRESSIVE PROCESS

SAMIR BEN HARIZ, ALEXANDRE BROUSTE, CHUNHAO CAI, AND MARIUS SOLTANE

Abstract. This paper considers the joint estimation of the parameters of a first-order fractional autore-

gressive model by constructing an initial estimator with convergence speed lower than
√
n and singular

asymptotic joint distribution. The one-step procedure is then used in order to obtain an asymptotically-

efficient estimator. This estimator is computed faster than the maximum likelihood or Whittle estimator
and therefore allows for faster inference on large samples. The paper illustrates the performance of this

method on finite-size samples via Monte Carlo simulations.

1. Introduction

Parametric estimation in fractional Gaussian processes has been widely studied over recent decades. The
asymptotic properties of the maximum likelihood estimator (MLE) have been derived under conditions of
regularity on the spectral density of the process [Fox and Taqqu, 1986, Dahlhaus, 1989, Dahlhaus, 2006,
Lieberman et al., 2012]. Moreover, for a stationary Gaussian process observed in the large sample scheme,
the local asymptotic normality (LAN) of the likelihood ratio was derived by [Cohen et al., 2013]. In this
setting, the MLE is asymptotically efficient but is not in a closed form, such that numerical optimization of
the likelihood is then necessary to compute the estimate for an observation sample. This step is particularly
time consuming and numerically unstable. It is therefore worth seeking an alternative estimator which can
be computed faster and keeps efficient asymptotic properties.

To achieve this, we extend the method presented in [Le Cam, 1956] for independent and identically-
distributed random variables. Under this procedure, a single Fisher scoring step on the loglikelihood is
applied, starting from an initial

√
n-consistent estimator. This is performed in order to obtain a new estima-

tor (called the one-step estimator) whose asymptotic variance is optimal in the Fisher sense. This procedure
has already been successfully extended for diffusion processes [Kamatani and Masayuki, 2015, Gloter and
Yoshida, 2021], ergodic Markov chains [Kutoyants and Motrunich, 2016], fractional Gaussian noise observed
at high frequency [Brouste et al., 2020b] and stable noise [Brouste and Masuda, 2018], for instance. Gener-
ally, we derive the asymptotic properties of the one-step estimator under the Sweeting conditions [Sweeting,
1980] and the properties of the initial guess estimator depend on the statistical experiment which is consid-

ered. It should also be noted that the one-step procedure has only recently been extended to n
δ
2 -consistent

initial guess estimators by [Kamatani and Masayuki, 2015].

In this paper, we consider a special case of fractional Gaussian process (Xt), satisfying for any t ∈ Z the
recursive relation

(1.1) Xt = αXt−1 +
√
σ2ε

H
t

where |α| < 1, σ2 > 0 and (εHt ) is the fractional Gaussian noise of the Hurst exponent, H ∈]0; 1[. The
process (εHt ) is a stationary Gaussian sequence with autocovariance function

(1.2) ρ (k) =
1

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
.

Key words and phrases. Geweke Porter-Hudak estimator, LAN property, Log periodogram, Maximum Likelihood estimator,
One-step estimator, Quadratic form of Gaussian process, Semi-parametric estimation, Toeplitz matrix, Whittle estimator.
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The estimation of the parameter α in the autoregressive process directed by a fractional Gaussian noise (1.1)
has been studied by [Brouste et al., 2014, Soltane, 2018]. In these papers, the Hurst exponent, H, is assumed
to be known and the asymptotic properties of the MLE are studied. Generalized least square estimators
(GLSEs) of α were studied in [Esstafa, 2019] and the Hurst exponent was again assumed to be known. This
type of process has therefore been widely used to model realized volatility in stochastic volatility models (see
[Gatheral et al., 2018] and the reference therein). In this application, large datasets are treated conducting
to the impossibility of carrying out numerical optimization for the MLE. This study therefore extends the
one-step procedure in this context.

As is demonstrated in Section 2, the covariance function of the process X is not in a closed form, such that
the computation of the MLE is time consuming and the MLE emerges numerically unstable. In this paper,
an initial guess semi-parametric estimator of H is considered, as inspired by the work of [Hurvich et al., 1998]
for fractional integrated Gaussian processes. The paper then considers an estimator of α by plugging-in the
estimate of H into the GLSE presented in [Esstafa, 2019]. It then estimates σ2 via the residual process in
the same spirit as a standard AR model by the same plug-in. The unexpected result of this method is that
the asymptotic joint law of the initial estimators is a singular Gaussian vector. It is then evidenced that this
derives from the statistical error of the last two estimators (of α and σ2), being a function of the statistical
error of H modulo a negligible remainder term.

As the aforementioned initial estimator has a slow convergence speed and as it is difficult to construct a joint
asymptotic confidence region for this initial estimate because of the singularity, the one-step procedure is
applied on the initial estimate in order to build asymptotically-efficient estimator. To obtain the asymptotic
properties of an the one-step estimator with rate improvement, we need stronger conditions than those of
Sweeting [Sweeting, 1980], which in our case are estimates of the convergence rate of Toeplitz’s matrix trace,
as described in [Lieberman et al., 2012]. We formulate a generic condition on the spectral density to apply
the results of [Cohen et al., 2013] and [Lieberman et al., 2012] in the proof of the asymptotic properties of
the one-step estimator.

The paper is organized as follows. Section 2 presents the main results, divided into two subsections: the
first presents the initial estimator and states its asymptotic properties, and the second presents the one-
step procedure and states its asymptotic properties. Section 3 displays the performance of the estimators
on finite-size samples via the Monte Carlo simulations presented. Section 4 concludes and considers the
perspectives raised by this research. 5 provides the numerous technical lemmas necessary to prove the main
results. Section 6 lists proofs of the results presented in Section 2.

2. Main results

2.1. Initial estimator. The spectral density of the fractional Gaussian noise
(
εHt
)

is given by

(2.1) fH (λ) = CH,σ2
2 (1− cosλ)

∑
k∈Z

1

|λ+ 2kπ|2H+1
,

where CH,σ2
= σ2

2πΓ(2H + 1) sin(πH) and λ ∈ [−π;π]. Thus, we consider the following parametric space

(2.2) ϑ = (H,α, σ2) ∈ Θ = [a; b]×]− 1; 1[×]0; +∞[,

where [a, b] is any compact set in ]0; 1[. Therefore, the spectral density of the process (Xt) is given by the
following proposition.

Proposition 2.1. Letting gH,α,σ2
be the spectral density of (Xt), then

(2.3) gϑ (λ) = gH,α,σ2
(λ) =

(
1− 2α cos(λ) + α2

)−1
fH (λ)

Proof. See Section 6.1. �
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We estimate H via the log-periodogram method presented in [Geweke and Porter-Hudak, 1983, Hurvich
et al., 1998] for general integrated Gaussian series (GPH estimator). The choice of this method is motivated
by Theorem 1, as provided in [Geweke and Porter-Hudak, 1983], which states that a general integrated
Gaussian series of memory parameter d = H − 1

2 can be represented (via its spectral density) by a general
fractional Gaussian noise of Hurst exponent H and vice versa. The addition of the autoregressive part will
not disturb this method, as the spectral density of a standard autoregressive process is regular and bounded.
The spectral density of (Xt) will be the product of that of

(
εHt
)

by the autoregressive part.

Letting (X1, X2, . . . , Xn) be an observation sample generated via the relation (1.1) and considering an integer
m satisfying m < n., we define

(2.4) I (λ) =
1

2πn

∣∣∣∣∣
n∑
t=1

Xt exp (itλ)

∣∣∣∣∣
2

(2.5) λj =
2πj

n
where j ∈ {1, . . . ,m}

aj = log

(
2 sin

(
λj
2

))
, am =

1

m

m∑
j=1

aj , Sm =

m∑
j=1

(aj − am)
2
.

We estimate d by regressing log I (λj) with respect to aj , such that

(2.6) d̂n = − 1

2Sm

m∑
j=1

(aj − am) log I (λj) .

The estimator Ĥn of H is defined by

(2.7) Ĥn = d̂n +
1

2
.

Remark 2.1. Another semi-parametric method based on the log-periodogram regression is proposed by
[Robinson, 1995b]. This method does not take into account Fourier frequencies close to 0, which induces
a stronger bias in the estimation of H than the GPH estimator.

Remark 2.2. For the discretely observed fractional Ornstein-Uhlenbeck process (which is similar to our
model), an estimator of H was studied using the variogram of (Xt) (see [Brouste and Iacus, 2013]). However,
we cannot use this type of approach as we are working on a large-sample statistical experiment.

We now return to estimate α and σ2 by first considering a GLSE of α and then building the residual process
to estimate σ2 as in a classical autoregressive model. We let

Φji = (Xi, . . . , Xj)
∗

for i 6 j,

and

(2.8) Γn (H) = ρ (|i− j|){16i,j6n} .

The estimators α̂n and σ̂2,n are defined by

(2.9) α̂n =
Φn2
∗Γ−1

n−1

(
Ĥn

)
Φn−1

1

Φn−1
1

∗
Γ−1
n−1

(
Ĥn

)
Φn−1

1

,

and

(2.10) σ̂2,n =
1

n− 1

(
Φn2 − α̂nΦn−1

1

)∗
Γ−1
n−1

(
Ĥn

) (
Φn2 − α̂nΦn−1

1

)
,

respectively.

From this point we use the generic notations ϑ = (H,α, σ2) and its estimator ϑ̂n =
(
Ĥn, α̂n, σ̂2,n

)
to present

our first result:
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Theorem 2.1. Letting m =
[
nδ
]

for some 1
2 < δ < 2

3 , the initial estimator ϑ̂n is weakly consistent.
Moreover, when n −→∞, we have,

(2.11)
√
m

 Ĥn −H
α̂n − α
σ̂2,n − σ2

 L−−−−→
n→∞

N (0; Σϑ) .

The covariance matrix Σϑ is of the form

(2.12) Σϑ = VHΣ̃ϑ,

where VH is the asymptotic variance of
√
m(Ĥn −H), π2

24 and Σ̃ϑ is a built-in singular matrix (6.29).

Proof. See Section 6.2 �

Remark 2.3. It is possible to estimate H via the local Whittle method presented in [Robinson, 1995a,
Shimotsu and Phillips, 2005]. These methods lead us to an estimator which does not adopt an explicit form
but is less sensitive to the parameters and more suitable for small samples.

Remark 2.4. Theorem 2.1 remains valid for any asymptotic Gaussian estimator of H whose rate satisfies
the conditions of this Theorem. The limiting covariance matrix is then obtained by replacing VH with the
asymptotic variance of the estimator of H considered here.

Remark 2.5. These results can be extended to the fractional AR(p) case using the causal representation of
an AR(p) process in the vectorial case.

Remark 2.6. Theorem 2.1 remains valid if the initial estimate of α and σ2 is carried out on a subsample of
size nβ with β > δ. The convergence in law towards the singular Gaussian vector will be in this case slower
than when the estimation is carried out on the whole sample.

Remark 2.7. We can also use the method used in [Brouste et al., 2014, Soltane, 2018] to estimate α.

2.2. One-step estimator. We assume in this subsection that (Yn) is a stationary centred Gaussian process
with spectral density fϑ for some unknown parameter ϑ ∈ Rd. We consider fϑ to satisfy regularity conditions
if the following conditions are satisfied.

We let Θ be an open subset of Rd,
• For any ϑ ∈ Θ, fϑ (λ) is three-times continuously differentiable on Θ. In addition, for any 0 6 ` 6 3

and j1, . . . , jm, the partial derivate

∂`

∂ϑj1 . . . ∂ϑj`
fϑ (λ) ,

is continuous on Θ × [−π;π]\{0}, is continuously differentiable with respect to λ and its partial
derivate

∂`+1

∂λ∂ϑj1 . . . ∂ϑj`
fϑ (λ) ,

and is continuous on Θ× [−π;π]\{0}.
• There also exists a continuous function α : Θ −→]− 1, 1[, such that for any compact set Θ∗ ⊂ Θ and
δ > 0, the following conditions hold for every (ϑ, λ) ∈ Θ∗ × [−π;π]\{0}.

c1,δ,Θ∗ |λ|−α(ϑ)+δ 6 fϑ (λ) 6 c2,δ,Θ∗ |λ|−α(ϑ)−δ

and ∣∣∣∣ ∂∂λfϑ (λ)

∣∣∣∣ 6 c2,δ,Θ∗ |λ|−α(ϑ)−1−δ
.

For any ` ∈ {1, 2, 3} and any j ∈ (1, . . . ,m)
`
,∣∣∣∣ ∂`

∂ϑj1 . . . ∂j`
fϑ (λ)

∣∣∣∣ 6 c2,δ,Θ∗ |λ|−α(ϑ)−δ
,

where ci,δ,Θ∗ is some positive finite constant which only depends upon δ and Θ∗.

We now consider the local asymptotic normality property of the likelihood ratio.
4



Proposition 2.2. We let `n be the log-likelihood function of a stationary Gaussian process (which can be
expressed using spectral density, like in Proposition 2.1 from [Cohen et al., 2013]). We assume that fϑ
satisfies the regularity conditions and let B (ϑ,R) (open ball of centre ϑ and radius R) for some R > 0. For
any t ∈ B (ϑ,R) ,

`n

(
ϑ+

t√
n

)
− `n (ϑ) = t

∇`n (ϑ)√
n
− tI (ϑ) t∗

2
+ rn,ϑ (t) ,

where, under P(n)
ϑ , the score function ∇ (· · · ) satisfies

(2.13)
∇`n (ϑ)√

n

L−−−−→
n→∞

N (0; I (ϑ)),

and

(2.14) rn,ϑ (t)
a.s.−−−−→
n→∞

0

uniformly on each compact set. The Fisher information matrix is given in our case by

(2.15) I (ϑ) =
1

4π

(∫ π

−π

∂ log gϑ (λ)

∂ϑk

∂ log gϑ (λ)

∂ϑj
dλ

)
16k,j6d

.

Proof. See Section 6.3. �

Remark 2.8. When the LAN property is verified, it is possible to define a notion of asymptotic efficiency for
the estimators (see [Ibragimov and Has’minskii, 1981]). It is also possible in a such a statistical experiment
to determine the estimators maximum speed of convergence (

√
n in our case).

Remark 2.9. Proposition 2.2 is derived from Theorem 3.4, as proposed by [Cohen et al., 2013], in which
weaker conditions are given for the application α. In our case, we employ this Theorem in order to derive
the asymptotic properties of the one-step estimator.

We now build an estimator whose asymptotic properties are similar to the maximum likelihood (in terms of
convergence rate and asymptotic variance).

Proposition 2.3. Fist, we assume

• ϑ̂(1)
n is an initial estimator of ϑ, such that, for some 1

2 < δ 6 1,

n
δ
2

(
ϑ̂(1)
n − ϑ

)
= OP (1) ,

• fϑ satisfies the regularity conditions.

We then consider the estimator

(2.16) ϑ̃(1)
n = ϑ̂(1)

n + I
(
ϑ̂(1)
n

)−1 1

n
∇`n

(
ϑ̂(1)
n

)
where ∇`n (·) and I (·) are defined in Proposition 2.2. Then,

(2.17)
√
n
(
ϑ̃(1)
n − ϑ

)
L−−−−→

n→∞
N
(

0, I (ϑ)
−1
)
.

Proof. See Section 6.4. �

Remark 2.10. To apply Proposition 2.3, it is not necessary to know the asymptotic distribution of the initial
estimator but only a convergence rate of statistical errors. When the convergence rate of the initial estimator
is too slow, it is possible to apply a multi-step procedure to obtain an asymptotically-efficient estimator at
optimal speed.

Remark 2.11. The one-step estimator can be easily extended to other classes of stationary Gaussian pro-
cesses, satisfying the assumptions of Proposition 2.3.

Remark 2.12. In the Gaussian setting, we can use a similar one-step procedure, replacing the classical
score by the Whittle score. This procedure is faster to compute and does not require the inversion of the
covariance matrix. However, we leave analysis of this method for future studies.
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Theorem 2.2. The initial estimator ϑ̂n satisfies the conditions of Theorem 2.3 and the spectral density gϑ
meets the regularity conditions. Proposition 2.3 allows us to deduce that the one-step estimator of ϑ̂n is
asymptotically efficient with speed

√
n.

3. Simulations study

The log-likelihood function produced by the sample X(n) = (X1, X2, . . . , Xn)
∗

which satisfies the recursive
relation (1.1) is given by

`n (ϑ) = −1

2
log (det (Γn (ϑ)))− 1

2
X(n)∗Γ−1

n (ϑ)X(n),

where Γn (ϑ) is the covariance matrix of X(n). For any k ∈ N,

E (X0Xk) =

∫ π

−π
exp (ikλ) gϑ (λ) dλ

The score function with respect to ϑ for i ∈ {1, 2, 3} is given by

∂`n (ϑ)

∂ϑi
= −1

2
Tr

(
Γ−1
n (ϑ)

∂

ϑi
Γn (ϑ)

)
+

1

2
X(n)∗Γ−1

n (ϑ)
∂

∂ϑi
Γn (ϑ) Γ−1

n (ϑ)X(n),

where Tr is the trace operator and the Fisher information matrix is defined by (2.15). To compute the
score, as well as the Fisher information, we numerically evaluate the integral of the spectral density (and its
derivatives) using the Paxson method described in [Fukasawa and Tetsuya, 2019].

For each set of parameters, we perform M = 10000 Monte Carlo simulations for samples of size n = 1000.
The number of Fourier frequencies for the initial estimation is fixed at m =

[
n0.6

]
.
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Figure 1. Statistical error of the estimators multiplied by
√
n speed, where ϑ = (0.3, 0.3, 1).

The first line corresponds to the initial estimator and the second line to the one-step estima-
tor. The blue curves correspond to the density of the centred normal distribution where the
theoretical variance is approximated by the empirical variance. The curves in red correspond
to the limit law of the one-step estimator.
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Initial estimator of H = 0.7
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Figure 2. Statistical error of the estimators multiplied by
√
n speed, where ϑ =

(0.7, 0.3, 1) . The first line corresponds to the initial estimator and the second line to the
one-step estimator. The blue curves correspond to the density of the centred normal dis-
tribution where the theoretical variance is approximated by the empirical variance. The
curves in red correspond to the limit law of the one-step estimator.
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Initial estimator of H = 0.3
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Figure 3. Statistical error of the estimators multiplied by
√
n speed, where ϑ =

(0.3,−0.6, 1) . The first line corresponds to the initial estimator and the second line to
the one-step estimator. The blue curves correspond to the density of the centred normal
distribution where the theoretical variance is approximated by the empirical variance. The
curves in red correspond to the limit law of the one-step estimator.
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Initial estimator of H = 0.7
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Figure 4. Statistical error of the estimators multiplied by
√
n speed, where ϑ =

(0.7,−0.6, 1) . The first line corresponds to the initial estimator and the second line to
the one-step estimator. The blue curves correspond to the density of the centred normal
distribution where the theoretical variance is approximated by the empirical variance. The
curves in red correspond to the limit law of the one-step estimator.

4. Conclusion and perspectives

In this paper, we propose a simple and easy-to-implement estimator for the parameters of an AR(1)
process with dependent errors. We prove the joint asymptotic normality of the vector of estimators to a
Gaussian degenerate law. Furthermore, we observe that the Hurst parameter estimators drive and dominate
other estimators.

Using a gradient descent approach, we improve on the first estimator with one iteration. The resulting
estimator, called one step, achieves the

√
n rate with optimal variance. Hence, we reproduce the performance

of the maximum likelihood estimator. As such, not only does the one-step process improve upon the rate of
the initial estimator, but it also achieves the inverse of the Fisher information as a limiting variance. This
is especially relevant when dealing with large sample sizes.

Our result can be extended to other process classes, including ARFIMA models. Furthermore, it is notable
that the initial poor estimator could be replaced by anyone with a sufficient speed of convergence.

In addition, a procedure for detecting breaks in parameters, as achieved by [Brouste et al., 2020a], could
be developed for the autoregressive parameter. On the application level, we could implement functions in R
that perform this estimation, as managed by the OneStep package described in [Brouste et al., ].
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5. Auxiliary results

For clarity, we separate the technical results into two subsections. The first details the technical lemmas
related to the initial estimator and the second details those related to the one-step estimator.

5.1. Technical results related to Section 2.1.

Lemma 5.1. For any t ∈ Z, the process

(5.1) Xt =

+∞∑
j=0

αjεHt−j , a.s.

is a stationary and ergodic process.

Proof. As we know, for any time series {Yt} under the monotone convergence theorem, we have

(5.2) E

( ∞∑
t=−∞

|Yt|

)
= lim
n→∞

E

(
n∑

t=−n
|Yt|

)
=

+∞∑
t=−∞

E|Yt|.

With this equation and the Schwarz inequality we have

E

+∞∑
j=0

∣∣αjεHt−j∣∣
 =

∞∑
t=0

|αj |E|εHt−j | ≤ C
∞∑
t=0

|αj | <∞.

This demonstrates that the right side of Equation 5.1 converges absolutely and thus converges a.s.. Consid-
ering that ∣∣∣∣∣∣

n∑
j=0

αjεHt−j

∣∣∣∣∣∣ ≤
∞∑
j=0

∣∣αjεHt−j∣∣ ,
with the dominated convergence theorem,

E (Xt) = lim
n→∞

E

 n∑
j=0

αjεHt−j

 = 0.

Now, for t, s ∈ Z we define

ξn =

n∑
j=0

αjεHt−j , ηn =
n∑
k=0

αkεHs−k.

From the previous conclusion, we have ξnηn → XtXs a.s. and |ξnηn| ≤ V , where V is defined by

V =

∞∑
j=0

∞∑
k=0

∣∣αjαkεHt−jεHs−k∣∣ .
Now, from Equation (5.2) we know that

E (V ) =

∞∑
j=0

∞∑
k=0

|αjαk|E|εHt−jεHs−k| ≤ σ2

 ∞∑
j=0

|αj |

2

<∞.

Finally, Theorem 5.3.8 in [Stout, 1974] ensures that (Xt) is stationary and ergodic. �

Lemma 5.2. The process {Xt} defined in (5.1) is a Gaussian process.
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Proof. Here, we only need to prove that for any m ∈ N+ we have the vector

(5.3) X = (X1, X2, · · · , Xm)T ∼ N (0,Σm),

where Σm = (γj−k)m×m and γk is the auto-covariance of Xt and Xt+k. In fact, if we define

ηk(n) =

n∑
j=0

αjεHk−j ,

then it follows that
E|ηk(n)−Xk| → 0, n→∞.

Now, for any real vector b = (b1, b2, · · · , bm)T , we define

Y = bTX =

m∑
k=1

bkXk, ηn =

m∑
k=1

bkηk(n).

When n→∞, we have

E(|Y − ηn|) = E

(∣∣∣∣∣
m∑
k=1

bk(Xk − ηk(n))

∣∣∣∣∣
)
≤

m∑
k=1

|bk|E[|Xk − ηk(n)|]→ 0,

where L1 convergence implies convergence in distribution, such that ηn converges in distribution to Y . As
ηn satisfies the normal distribution and Y ∼ N (E(Y ),Var(Y )), where E(Y ) = 0 and Var(Y ) = bTΣmb, we
have the conclusion of (5.3). �

Lemma 5.3. Letting Yn ∈ Rn be a centred Gaussian vector with covariance matrix Σn and any symmetric
matrix An of size n× n, then

φ(Yn) = Y ∗nAnYn.

As a result,

E (φ(Yn)) = Tr (AnΣn) and Var (φ(Yn)) = 2Tr
(

(AnΣn)
2
)
.

Proof. See Lemma A1 of [Cohen et al., 2013]. �

Lemma 5.4. Under the hypothesis on the parametric space we have the following conclusions:

1) For any H ∈ [a; b] and j ∈ {0, 1, 2, 3}, ∂
∂λ

∂j

∂jH fH (λ) are continuous functions on [ a; b] ×[−π;π], \{0}.
2) For any j ∈ {0, 1, 2, 3} the functions ∂j

∂jH fH (λ) are symmetric with respect to λ.
3) For any δ > 0 and all (H,λ) ∈ [a; b]× [−π;π]\{0},

a) K1,δ|λ|1−2H+δ 6 fH (λ) 6 K2,δ|λ|1−2H−δ,

b)
∣∣ ∂
∂λfH (λ)

∣∣ 6 K3,δ|λ|−2H−δ

c) and for any j ∈ {1, 2, 3},
∣∣∣ ∂j∂jH fH(λ)

∣∣∣ 6 K4,δ|λ|1−2H−δ
.

Where Ki,δ are some finite positive constants which only depend upon δ and the parametric space
of H, namely [ a; b] .,

4) ∂jρ(k)
∂jH =

∫ π
−π exp (ikλ) ∂

jf(λ)
∂jH dλ

Proof. We start by proving the assertion 3) a). We write

fH (λ) = CH,σ2 (1− cosλ)

(
1

|λ|2H+1
+
∑
k∈Z∗

fk (λ)

)
,

where

fk (λ) =
1

|λ+ 2kπ|2H+1
.

We observe that
fk (λ) 6 CH |k|−1−2H

and so
∑
k∈Z∗ fk (λ) converge to a continuous bounded function uniformly in [−π;π]. Then, for some C > 0

CH,σ2
(1− cosλ)

(
1

|λ|2H+1
− C

)
6 fH (λ) 6 CH,σ2

(1− cosλ)

(
1

|λ|2H+1
+ C

)
.

12



As λ2 = O
(
|λ|1−2H

)
, we have the conclusion of 3)a).

Assertion 3)b) is demonstrated in the same way.

Now we prove assertion 3) c). For all λ ∈ [−π;π], fk is continuous with respect to λ and H with

∂j

∂jH
fk(λ) =

∏j
`=1 (−2 log (|λ+ 2kπ|))
|λ+ 2kπ|2H+1

.

For all δ1 > 0 there exists a positive constant Cδ1 , such that, for a sufficiently large k,∣∣∣∣ ∂j∂jH
fk(λ)

∣∣∣∣ 6 Cδ1 kδ1

k2a+1
= O

(
k−1−2a+δ1

)
.

Choosing δ1 such that δ1−2a < 0, then
∑
k∈Z∗

∂jfk(λ)
∂jH converge uniformly in (λ,H) to a continuous, bounded

function, and

(1− cosλ)
∂j

∂jH

(∑
k∈Z∗

fk (λ)

)
= (1− cosλ)

∑
k∈Z∗

∂j

∂jH
fk (λ) = O(λ2).

In the same way, for almost all λ,

∂j

∂jH

(
1− cosλ

|λ|2H+1

)
=

(1− cosλ)
∏j
`=1−2 log(|λ|)

|λ|2H+1
= O

(
|λ|1−2b−δ2

)
for any δ2 > 0 and sufficiently small λ. Note that the constant CH,σ2

depends on H very regularly and
therefore does not affect the next estimates. We now choose δ2 such that 2b+ δ2 < 2 in order to produce a
positive function, h. As such, h is integrable with respect to λ and, for any j ∈ {1, 2, 3},∣∣∣∣ ∂j∂jH

fH(λ)

∣∣∣∣ 6 h (λ) and

∣∣∣∣ ∂j∂jH
fH(λ)

∣∣∣∣ 6 K4,δ |λ|1−2H−δ
for any δ > 0.

Assertion 1) is demonstrated using uniform convergence, as in the proof of 3)a) and 3) c).

Assertion 2) is demonstrated by nothing that, for any j ∈ {0, 1, 2, 3}, ∂j

∂jH fk (−λ) = ∂j

∂jH f−k (λ) .

Assertion 4) is demonstrated using the derivation theorem under the integral, which is possible because of
the last estimation on the proof of 3)c). �

Lemma 5.5. We let g be a function defined on [−π;π], such that

(5.4) g (λ) =

∣∣∣∣sin(λ2
)∣∣∣∣1−2H

g∗ (λ) .

We assume that

1) g∗ (λ) > 0 ∀λ ∈ [−π;π].
2) g∗ is continuous and bounded in a neighbourhood of 0.
3) ∂

∂λg
∗ is well defined, continuous and bounded in a neighbourhood of 0.

4) m −→∞, n −→∞ with m
n −→ 0 and m logm

n −→ 0.

Then,

(5.5)

∣∣∣∣∣∣− 1

2Sm

m∑
j=1

(aj − am) log g∗ (λj)

∣∣∣∣∣∣ = O
(m
n

)
.

Proof. This proof is based on that of Lemma 1 in [Hurvich et al., 1998]. We have

− 1

2Sm

m∑
j=1

(aj − am) log g∗ (λj) = − 1

2Sm

m∑
j=1

(aj − am)
∂
∂λg
∗ (ωj)

g∗ (ωj)
λj ,

13



where for all j ∈ {1, . . . ,m}, 0 < ωj < λj . We can find a finite constant, such that
∣∣∣ ∂
∂λ g

∗(ωj)

g∗(ωj)

∣∣∣ 6 C for all j.

The Cauchy-Schwarz inequality implies that

1

2Sm

∣∣∣∣∣∣
m∑
j=1

(aj − am)Cλj

∣∣∣∣∣∣ 6 C

2Sm

 m∑
j=1

(aj − am)
2

 1
2
 m∑
j=1

λ2
j

 1
2

.

It is shown in Lemma 1 of [Hurvich and Beltrao, 1994] that

Sm = m (1 + o(1)) ;

then

C

2Sm

 m∑
j=1

(aj − am)
2

 1
2
 m∑
j=1

λ2
j

 1
2

=
C

2

(∑m
j=1 λ

2
j

Sm

) 1
2

= C

( ∑m
j=1 j

2

m(1 + o(1))n2

) 1
2

= C

(
(m+ 1)(2m+ 1

n2(1 + o(1))

) 1
2

= O
(m
n

)
.

�

5.2. Technical results related to Section 2.2. The following lemmas are needed to derive the asymptotic
properties of the one-step estimator in a general centred stationary Gaussian process. The lemmas of this
subsection are valid under the regularity conditions.

Lemma 5.6. We let ϑ0 ∈ Θ∗ and δ > 0, such that B (ϑ0, δ) ⊂ Θ∗. For any ϑ ∈ B (ϑ0, δ) ,

‖I (ϑ)− I (ϑ0) ‖ 6 K‖ϑ− ϑ0‖
for some constant K.

Proof. We verified Conditions(A.1) and (A.2) of [Cohen et al., 2013] during the proof of Lemma 5.4. These
imply that, for any k, j ∈ {1, 2, . . . , d}, with the mean value inequality,∣∣∣∣ 1

4π

(∫ π

−π

∂ log gϑ (λ)

∂ϑk

∂ log gϑ (λ)

∂ϑj
dλ

)
− 1

4π

(∫ π

−π

∂ log gϑ0 (λ)

∂ϑ0,k

∂ log gϑ0 (λ)

∂ϑ0,j
dλ

)∣∣∣∣ 6 K{k,j} ‖ϑ− ϑ0‖ ,

where

K{k,j} = sup
ϑ∈B(ϑ0,δ)

∥∥∥∥∥
(

∂

∂ϑi

(∫ π

−π

∂ log gϑ (λ)

∂ϑk

∂ log gϑ (λ)

∂ϑj
dλ

))
16i6d

∥∥∥∥∥ .
Note that B (ϑ0, δ) is a convex subset of R3. Owing to Conditions (A.1) and (A.2) of [Cohen et al., 2013]
that for any k, j ∈ {1, 2, . . . , d}, K{k,j} <∞, the proof is finished. �

Lemma 5.7. For any ϑ in Θ, under the law induced by ϑ,

∆`n (ϑ)√
n

+
√
nI (ϑ) = OP (1) .

Proof. The proof of Lemma 3.6 in [Cohen et al., 2013] shows that, under the law induced by ϑ,

E
(

∆`n (ϑ)

n

)
−−−−→
n→∞

−I (ϑ) .

The above convergence is obtained from Theorem 2.3 in [Cohen et al., 2013] and we need a convergence rate
in this Theorem to prove this Lemma. Lemmas 3 and 4 in [Lieberman et al., 2012] lead us to state that

E
(

∆`n (ϑ)

n

)
+ I (ϑ) = O

(
n−1+δ

)
14



for any δ > 0, and hence

E
(

∆`n (ϑ)√
n

)
+
√
nI (ϑ) = O

(
n−

1
2 +δ
)
.

Again using the proof of Lemma 3.6 in [Cohen et al., 2013], we have

Var
(

∆`n (ϑ)√
n

)
= O (1) ,

which completes the proof. �

Lemma 5.8. We let
(
ϑn
)
n

be a random sequence, such that, under the law induced by ϑ, ϑn − ϑ = oP (1) .
Then, under the law induced by ϑ, for any κ > 0,

∆`n
(
ϑn
)

n
− ∆`n (ϑ)

n
= OP

(
nκ
(
ϑn − ϑ

))
.

Proof. We let κ > 0 and Cϑ,κ be a convex compact set which depends on κ and contains ϑ. Using the proof

of Lemma 3.7 in [Cohen et al., 2013], we can state that, conditional upon ϑn ∈ Cϑ,κ,

sup
ϑn∈Cϑ,κ

∣∣∣∣∣ ∂3

∂i1ϑ1∂i2ϑ2 . . . ∂idϑd

`n
(
ϑn
)

n1+κ

∣∣∣∣∣ = O(1) a.s..

For any (i1, i2, . . . , id) ∈ {0, 1, 2, 3}d, such that i1 + i2 + · · · + id = 3. Using the mean value inequality, for
some positive finite random value K, we produce

P

(∥∥∥∥∥∆`n
(
ϑn
)

n
− ∆`n (ϑ)

n

∥∥∥∥∥ 6 Knκ ∥∥ϑn − ϑ∥∥
)
> P

(
ϑn ∈ Cϑ,κ

)
,

which finishes the proof. �

6. Proofs of the main results

6.1. Proof of proposition 2.1. We use Theorem 4.4.1 in [Brockwell and Davis, 1981] together with Lemma
5.1 to directly prove Proposition 2.1.

6.2. Proof of theorem 2.1. Consistency of Ĥn We start by giving the process (Xn) a representation of

spectral density identical to that of Equation (1) in [Hurvich et al., 1998]. We note that 1−cosλ = 2 sin
(
λ
2

)2
and we rewrite gH,α,σ2 in the form

(6.1) gH,α,σ2
=

(
2 sin

(
λ

2

))−2d

g∗H,α,σ2
(λ) ,

where d = H − 1
2 and

(6.2) g∗H,α,σ2
(λ) =

2CH,σ2

1− 2α cos(λ) + α2
×

(
sin
(
λ
2

)
λ
2

)2H+1

×

(
1 +

∑
k∈Z∗

|λ|2H+1

|λ+ 2kπ|2H+1

)
.

We note that the first two terms of (6.2) are very regular in a neighbourhood of 0 and the last term is
differentiable at first order with a bounded derivative in the neighbourhood of 0 (with respect to λ). This
can be shown using uniform convergence of the derivate as in the proof of Lemma 5.4. Unfortunately, g∗H,θ,σ2

does not satisfy Condition 2 in [Hurvich et al., 1998], as the function |λ|2H+1 is not second order derivable
for any H. The bias terms convergence rate of 0 is therefore slower than in [Hurvich et al., 1998] and the
choice of m is consequently restricted. It follows that

(6.3) d̂n − d = − 1

2Sm

m∑
j=1

(aj − am) log
(
g∗H,α,σ2

(λj)
)
− 1

2Sm

m∑
j=1

(aj − am) εj ,

where (εj) is the error process as defined in Equation (3) of [Hurvich et al., 1998]. Condition 2 in [Hurvich

et al., 1998] is required to treat only the behaviour of the first term in the decomposition of d̂n − d. The
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others are treated by only making assumptions about the behaviour for m and n. Lemma 5.5 and Theorem
1 in [Hurvich et al., 1998] lead to

d̂n
P−−−−→

n→∞
d

and hence
Ĥn

P−−−−→
n→∞

H.

We also require an estimate of convergence rate for Ĥn (in probability) for the rest of the proof. We therefore
apply Theorem 2 from [Hurvich et al., 1998] by treating the last term of Relation (A13) in [Hurvich et al.,
1998] as in the Lemma from 5.4) in order to deduce that

d̂n − d = OP

(
m−

1
2

)
and hence

Ĥn −H = OP

(
m−

1
2

)
.

Consistency of α̂n Letting

Φ̃ji =
(
εHi , . . . , ε

H
j

)∗
for i 6 j,

we have

(6.4) α̂n − α =
Φ̃n

∗

2 Γ−1
n−1

(
Ĥn

)
Φn−1

1

Φn−1
1

∗
Γ−1
n−1

(
Ĥn

)
Φn−1

1

.

We now focus on the asymptotic behaviour of the numerator. A Taylor expansion of Γn−1

(
Ĥn

)−1

at H

leads to

Φ̃n
∗

2 Γ−1
n−1

(
Ĥn

)
Φn−1

1 =Φ̃n
∗

2 Γ−1
n−1 (H) Φn−1

1 + Φ̃n
∗

2 A(1)
n (H) Φn−1

1

(
Ĥn −H

)
+

1

2
Φ̃n

∗

2 A(2)
n (H) Φn−1

1

(
Ĥn −H

)2

+
1

6
Φ̃n

∗

2 A(3)
n

(
Hn

)
Φn−1

1

(
Ĥn −H

)3

,

where

A(1)
n (H) = −Γ−1

n−1 (H)
∂Γn−1 (H)

∂H
Γ−1
n−1 (H) ,

A(2)
n (H) =Γ−1

n−1 (H)
∂2Γn−1 (H)

∂2H
Γ−1
n−1 (H)

+ 2Γ−1
n−1 (H)

∂Γn−1 (H)

∂H
Γ−1
n−1 (H)

∂Γn−1 (H)

∂H
Γ−1
n−1 (H) ,

A(3)
n (H) =− 6Γ−1

n−1 (H)
∂Γn−1 (H)

∂H
Γ−1
n−1 (H)

∂Γn−1 (H)

∂H
Γ−1
n−1 (H)

∂Γn−1 (H)

∂H
Γ−1
n−1 (H)

− 3Γ−1
n−1 (H)

∂2Γn−1 (H)

∂2H
Γ−1
n−1 (H)

∂Γn−1 (H)

∂H
Γ−1
n−1 (H)

− 3Γ−1
n−1 (H)

∂Γn−1 (H)

∂H
Γ−1
n−1 (H)

∂2Γn−1 (H)

∂2H
Γ−1
n−1 (H)

− Γ−1
n−1 (H)

∂3Γn−1 (H)

∂3H
Γ−1
n−1 (H) ,

and Hn ∈ B
(
H, |Ĥn −H|

)
. We now use the generic notation

φ
A

(i)
n

(
X(n−1), Y (n−1)

)
= X(n−1)∗A(i)

n Y (n−1)

for any
(
X(n−1), Y (n−1)

)
∈ Rn−1 × Rn−1 and i ∈ {1, 2, 3}. Then,

(6.5) φ
A

(i)
n

(
Φ̃n2 ,Φ

n−1
1

)
=

1

2

(
φ
A

(i)
n

(
Φn−1

1 + Φ̃n2 ,Φ
n−1
1 + Φ̃n2 )

)
− φ

A
(i)
n

(
Φn−1

1 ,Φn−1
1

)
− φ

A
(i)
n

(
Φ̃n2 , Φ̃

n
2 )
))
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We observe that each term of the right-hand side of the above equality is a quadratic form of a Gaussian
process whose matrix is expressed as a product of Toeplitz matrices (inverse of Toeplitz matrices) in which
the coefficients are Fourier coefficients of a certain function owing to Assertion 4) of Lemma 5.4. We use
Lemmas 5.3 and 5.4 with Theorem 2.3 of [Cohen et al., 2013] to obtain the asymptotic behaviour of these
terms (suitably renormalized).

Remark 6.1. Owing to the almost perfect linear representation given by Lemma 5.1, the process (Xn−1+εHn ),
(Xn) has a spectral density which exhibits exactly the same behaviour as that of the fractional Gaussian noise
in the neighbourhood of 0. Indeed, the spectral density of (Xn−1 + εHn ), (Xn) satisfies Conditions (1) and
(2) of Lemma 5.4 (although only j = 0 is necessary) and satisfies the estimates given in Condition (3c) of
Lemma 5.4.

Remark 6.2. With the notations of Theorem 2.3 in [Cohen et al., 2013], it is evident that, in our case,
the third assumption of this Theorem is satisfied for all p ∈ N∗ owing to Estimation (3) of Lemma 5.4 and
Remark 6.1.

To simplify the proof, we detail the treatment of one term, with the others following the same reasoning.
We let

1

n
φ
A

(2)
n

(
Φ̃n2 ,Φ

n−1
1

)
=

1

2n

(
φ
A

(2)
n

(
Φn−1

1 + Φ̃n2 ,Φ
n−1
1 + Φ̃n2 )

)
− φ

A
(2)
n

(
Φn−1

1 ,Φn−1
1

)
− φ

A
(2)
n

(
Φ̃n2 , Φ̃

n
2 )
))

and let Γn (H, θ, σ2) (respectively Γ̃n (H, θ, σ2)) be the covariance matrix of the Gaussian process (Xj){16j6n}
(respectively (Xj + εHj+1){16j6n}). From Lemma 5.3, we have

(6.6)
1

n
E
(
φ
A

(2)
n

(
Φn−1

1 + Φ̃n2 ,Φ
n−1
1 + Φ̃n2 )

))
=

1

n
Tr
(
A(2)
n (H) Γ̃n−1 (H,α, σ2)

)
(6.7)

1

n
E
(
φ
A

(2)
n

(
Φn−1

1 ,Φn−1
1

))
=

1

n
Tr
(
A(2)
n (H) Γn (H,α, σ2)

)
(6.8)

1

n
E
(
φ
A

(2)
n

(
Φ̃n2 , Φ̃

n
2 )
))

=
1

n
Tr
(
A(2)
n (H)σ2Γn−1 (H)

)

(6.9)
1

n2
Var

(
φ
A

(2)
n

(
Φn−1

1 + Φ̃n2 ,Φ
m−1
1 + Φ̃n2 )

))
=

1

n2
Tr

((
A(2)
n (H) Γ̃n−1 (H,α, σ2)

)2
)

(6.10)
1

n2
Var

(
φ
A

(2)
n

(
Φn−1

1 ,Φn−1
1

))
=

1

n2
Tr

((
A(2)
n (H) Γn (H,α, σ2)

)2
)

and

(6.11)
1

n2
Var

(
φ
A

(2)
n

(
Φ̃n2 , Φ̃

n
2 )
))

=
1

n2
Tr

((
A(2)
n (H)σ2Γn−1 (H)

)2
)

In view of Remarks 6.1, 6.2 and Lemma 5.4, we can apply Theorem 2.3 in [Cohen et al., 2013] and deduce
that

1

n
Tr
(
A(2)
n (H) Γ̃n−1 (H,α, σ2)

)
−−−−→
n→∞

1

2π

∫ π

−π

(
∂2

∂2H fH(λ)f̃H,θ,σ2
(λ)

fH(λ)2
+ 2

∂
∂H fH(λ)

2
f̃H,α,σ2

(λ)

fH(λ)3

)
dλ

and that

1

n
Tr

((
A(2)
n (H) Γ̃n−1 (H,α, σ2)

)2
)
−−−−→
m→∞

1

2π

∫ π

−π

(
∂2

∂2H fH(λ)f̃H,α,σ2
(λ)

fH(λ)2
+ 2

∂
∂H fH(λ)

2
f̃H,θ,σ2

(λ)

fH(λ)3

)2

dλ,
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where f̃H,α,σ2 is the spectral density of the process (Xn−1 + εHn ). Consequently, (6.9) converge to 0 and

1

n
φ
A

(2)
n

(
Φn−1

1 + Φ̃m2 ,Φ
m−1
1 + Φ̃n2 )

)
P−−−−→

m→∞

1

2π

∫ π

−π

(
∂2

∂2H fH(λ)f̃H,α,σ2
(λ)

fH(λ)2
+ 2

∂
∂H fH(λ)

2
f̃H,α,σ2

(λ)

fH(λ)3

)
dλ.

The generalization of this reasoning leads to

(6.12)
Φ̃m

∗

2 A
(1)
n (H) Φn−1

1

n

P−−−−→
n→∞

K
(1)
H,α,σ2

and

(6.13)
Φ̃n

∗

2 A
(2)
n (H) Φn−1

1

n

P−−−−→
n→∞

K
(2)
H,α,σ2

where K
(1)
H,θ,σ2

and K
(2)
H,θ,σ2

are constants which can be expressed in integral form from Theorem 2.3 in [Cohen

et al., 2013]. We now turn to the most delicate term, which is

Φ̃n
∗

2 A(3)
n

(
Hn

)
Φn−1

1 = Φ̃n
∗

2 Γn−1 (H)
− 1

2 Γn−1 (H)
1
2A(3)

n

(
Hn

)
Γn−1 (H)

1
2 Γn−1 (H)

− 1
2 Φn−1

1 .

The Cauchy-Schwarz inequality implies that∣∣∣Φ̃n∗

2 A(3)
n

(
Hn

)
Φm−1

1

∣∣∣ 6 ∣∣∣Γ− 1
2

n−1 (H)Φ̃n
∗

2

∣∣∣ ∣∣∣Γn−1 (H)
1
2A(3)

n

(
Hn

)
Γ

1
2
n−1 (H)

∣∣∣ ∣∣∣Γ− 1
2

n−1 (H)Φn−1
1

∣∣∣ .
The quantities

∣∣∣Γn−1 (H)
− 1

2 Φ̃n
∗

2

∣∣∣2 and
∣∣∣Γn−1 (H)

− 1
2 Φn−1

1

∣∣∣2 are quadratic forms of Gaussian process. Using

Theorem 2.3 in [Cohen et al., 2013], we produce

1√
n

∣∣∣Γn−1 (H)
− 1

2 Φ̃n
∗

2

∣∣∣ = OP (1) and
1√
n

∣∣∣Γn−1 (H)
− 1

2 Φn−1
1

∣∣∣ = OP (1) .

Now, ∣∣∣Γn−1 (H)
1
2A(3)

n

(
Hn

)
Γm−1 (H)

1
2

∣∣∣ 6Tr((Γn−1 (H)
1
2A(3)

n

(
Hn

)
Γn−1 (H)

1
2

)2
)

= Tr
(
A(3)
m

(
Hn

)
Γn−1 (H)A(3)

m

(
Hn

)
Γn−1 (H)

)
.

We let δ > 0 and Aδ = {h ∈ R
∣∣h ∈ [H − δ;H + δ]}. Fixing K > 0, then

P
(

1

n
Tr
(
A(3)
n

(
Hn

)
Γm−1 (H)A(3)

n

(
Hn

)
Γn−1 (H)

)
6 K

)
>1{ 1

nTr
(
A

(3)
n (Hn)Γn−1(H)A

(3)
n (Hn)Γn−1(H)

)
6K

}
× P

(
Hn ∈ Aδ

)
Note that Aδ is a compact set, so we can choose a δ small enough to verify the third hypothesis of Theorem
2.3 in [Cohen et al., 2013] which works for uniform convergence. Owing to this Theorem, we have

lim
n→∞

sup
Hn∈Aδ

1

n
Tr
(
A(3)
n

(
Hn

)
Γn−1 (H)A(3)

n

(
Hn

)
Γn−1 (H)

)
6 KΘ∗ ,

where KΘ∗ is a constant depending on the set Aδ. This constant is finite because it expresses itself as a
supremum of an integral (i.e. it is distributed over a compact set) with respect to the λ of continuous
function with respect to H for almost any λ bounded by an integrable function not depending on H. We
deduce that

lim
n→∞

P
(

1

n
Tr
(
A(3)
n

(
Hn

)
Γn−1 (H)A(3)

n

(
Hn

)
Γn−1 (H)

)
6 KΘ∗

)
= 1

and hence

(6.14) n−
3
2 Φ̃n

∗

2 A(3)
n

(
Hn

)
Φn−1

1 = OP (1) .

It is shown in [Esstafa, 2019] (see Chapter 4, Lemma 4.4) that

(6.15)
1

n
Φ̃n

∗

2 Γ−1
n−1 (H) Φn−1

1
P−−−−→

n→∞
0.

The combination of (6.12),(6.13), (6.14) and (6.15) allows us to deduce that
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(6.16)
1

n
Φ̃n

∗

2 Γ−1
n−1

(
Ĥn

)
Φn−1

1
P−−−−→

n→∞
0.

We now consider the asymptotic behaviour of the denominator. We know that

Φn−1
1 Γ−1

n−1

(
Ĥn

)
Φn−1

1 =Φ̃n
∗

2 Γ−1
n−1 (H) Φn−1

1 + Φn−1
1 A(1)

n (H) Φn−1
1

(
Ĥn −H

)
+

1

2
Φn−1

1 A(2)
n

(
Hn

)
Φn−1

1

(
Ĥn −H

)2

.

The same reasoning which made it possible to obtain (6.12) and (6.13) also makes it possible to show that

(6.17)
1

n
Φn−1

1 A(1)
n (H) Φn−1

1
P−−−−→

n→∞
K

(3)
H,α,σ2

,

where K
(3)
H,α,σ2

is a positive constant. In the same manner as for the treatment of (6.14), we have

(6.18)
1

n
3
2

Φn−1
1 A(2)

n

(
Hn

)
Φn−1

1 = OP (1) .

It is shown in [Esstafa, 2019] (see Chapter 4, Lemma 4.3) that

(6.19)
1

n
Φ̃n

∗

2 Γ−1
n−1 (H) Φn−1

1
P−−−−→

n→∞

σ2

1− α2
.

Equations (6.17), (6.18) and (6.19) lead us to

(6.20)
1

n
Φn−1

1 Γ−1
n−1

(
Ĥn

)
Φn−1

1
P−−−−→

n→∞

σ2

1− α2
.

Finally, Equations (6.16) and (6.20) give us the consistency of α̂n.

Consistency of σ̂2,n. We know that

σ̂2,n − σ2 =
1

n− 1
Φ̃n

∗

2 Γ−1
n−1

(
Ĥn

)
Φ̃n2 − σ2 − (α̂n − α)

2

n− 1
Φ̃n

∗

2 Γ−1
n−1

(
Ĥn

)
Φn−1

1

+ (α̂n − α)
2 1

n− 1
Φn−1∗

1 Γ−1
n−1

(
Ĥn

)
Φn−1

1 .

Using similar arguments as the proof of the consistency of α̂n (i.e. by expanding Γ−1
n−1

(
Ĥn

)
at H to the

third order), we produce

(6.21)
1

n− 1
Φ̃n

∗

2 Γ−1
n−1

(
Ĥn

)
Φ̃n2

P−−−−→
n→∞

σ2,

(6.22)
1

n− 1
Φ̃n

∗

2 Γ−1
n−1

(
Ĥn

)
Φn−1

1
P−−−−→

n→∞
0,

and

(6.23)
1

n− 1
Φn−1∗

1 Γ−1
n−1

(
Ĥn

)
Φn−1

1
P−−−−→

n→∞

σ2

1− α2
.

Combining (6.21), (6.22) and (6.23) with the consistency of α̂n, we find that σ̂2,n−σ2 converges in probability
to 0.

Asymptotic joint distribution of the estimators. We show that the statistical error of each component
is a function of the statistical error of H modulo a remainder term which is asymptotically negligible. The
first estimator is satisfied (owing to Theorem 2 in [Hurvich et al., 1998]) as

(6.24)
√
m
(
Ĥn −H

)
L−−−−→

n→∞
N
(

0;
π2

24

)
The second estimator is shown in [Esstafa, 2019] (see Chapter 4, Lemma 4.5) as

(6.25)
1√
n

Φ̃n
∗

2 Γ−1
n−1 (H) Φn−1

1
L−−−−→

n→∞
N
(

0,
σ2

1− α2

)
.
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The combination of (6.25) and the decomposition of Φ̃m
∗

2 Γ−1
n−1

(
Ĥn

)
Φm−1

1 lead to

(6.26)
√
m (α̂n − α) =

√
m

Φ̃n
∗

2 A
(1)
n (H) Φn−1

1

Φn−1
1 Γ−1

n−1

(
Ĥn

)
Φn−1

1

(
Ĥn −H

)
+R(1)

n

where
R(1)
n

P−−−−→
n→∞

0.

To treat the third estimator, we show via a cumulant method (like in Theorem 2 of [Avram, 1988]) that

(6.27)
Φ̃n

∗

2 Γ−1
n−1 (H) Φ̃n2√

n
− σ2

√
n

L−−−−→
n→∞

N (0;Vϑ)

for Vϑ > 0, which can be expressed in integral form as in Theorem 2.3 of [Cohen et al., 2013]. It only remains
to apply (6.27) and (6.22) together with the expansion of σ̂2,n − σ2 to deduce that

(6.28)
√
m (σ̂2,n − σ2) =

√
m

Φ̃n
∗

2 A
(1)
n (H) Φ̃n2
n

(
Ĥn −H

)
+R(2)

n

where
R(2)
n

P−−−−→
n→∞

0

and
Φ̃n

∗

2 A
(1)
n (H) Φ̃n2
n

P−−−−→
n→∞

C
(1)
ϑ

for some finite constant C
(1)
ϑ > 0. Then

(6.29) Σ̃ϑ = UϑU
∗
ϑ

with

Uϑ =

 1
σ2K

(1)
H,α,σ2

1−α2

C
(1)
ϑ


and (2.11) is proved.

6.3. Proof of proposition 2.2. This result is a direct consequence of Theorem 3.4 from [Cohen et al.,
2013].

6.4. Proof of proposition 2.3. Direct computations lead to

(6.30)
√
n
(
ϑ̃(1)
n − ϑ

)
=
√
n
(
ϑ̂(1)
n − ϑ

)
+ I−1(ϑ̂n)

∇`n(ϑ̂
(1)
n )√
n

.

The mean value theorem yields

∇`n(ϑ̂(1)
n ) = ∇`n(ϑ) +

(
ϑ̂(1)
n − ϑ

)∫ 1

0

∆`n(ϑ+ v(ϑ̂(1)
n − ϑ))dv

and, substituting in (6.30), we produce

√
n
(
ϑ̃(1)
n − ϑ

)
=
√
n
(
ϑ̂(1)
n − ϑ

)
I−1(ϑ̂(1)

n )

(
I(ϑ̂(1)

n ) +

∫ 1

0
∆`n(ϑv)dv

n

)
+ I−1(ϑ̂(1)

n )
∇`n(ϑ)√

n
,

where ϑv = ϑ+ v(ϑ̂
(1)
n − ϑ) for some 0 < v < 1.

We then consider the first term, as follows.

An =
√
n
(
ϑ̂(1)
n − ϑ

)
I(ϑ̂(1)

n )−1

(
I(ϑ̂(1)

n ) +
1√
n

∫ 1

0

∆`n(ϑv)√
n

dv

)
=
√
nδ
(
ϑ̂(1)
n − ϑ

)
I(ϑ̂(1)

n )−1
√
n1−δ

(
I(ϑ̂(1)

n ) +
1√
n

∫ 1

0

∆`n(ϑv)√
n

dv

)
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Then,

I(ϑ̂n)(1) +
1√
n

∫ 1

0

∆`n(ϑv)√
n

dv =
(
I(ϑ̂(1)

n )− I(ϑ)
)

+

(
I(ϑ) +

∆`n(ϑ)

n

)
+

1√
n

∫ 1

0

(
∆`n(ϑv)√

n
− ∆`n(ϑ)√

n

)
dv

The first subterm needs more regularity than the usual uniform continuity of the Sweeting conditions [Sweet-
ing, 1980]. As in [Kutoyants and Motrunich, 2016], we impose that the Fisher information matrix is locally
Lipschitz, as shown in Lemma 5.6. Consequently,∥∥∥I(ϑ̂(1)

n )− I(ϑ)
∥∥∥ ≤ K ∥∥∥ϑ̂(1)

n − ϑ
∥∥∥

and this subterm is OP

(
n−

δ
2

)
.

Lemma 5.7 indicates that the renormalized second term,

√
n

(
I(ϑ) +

∆`n(ϑ)

n

)
,

is OP(1), or that the second term is OP

(
n−

1
2

)
.

Lemma 5.8 produces
1√
n

∫ 1

0

(
∆`n(ϑv)√

n
− ∆`n(ϑ)√

n

)
dv = OP

(
nκ−

δ
2

)
for any κ > 0. Then, combining with the previous result,

An = n
1
2−

δ
2

(
OP

(
n−

δ
2

)
+OP

(
n−

1
2

)
+OP

(
nκ−

δ
2

))
.

As
√
n
nδ
−→ 0, we get that An → 0 in probability.

The second term is

Bn = I(ϑ̂(1)
n )−1∇`n(ϑ)√

n

= I(ϑ)−1∇`n(ϑ)√
n

+
(
I(ϑ̂(1)

n )−1 − I(ϑ)−1
) ∇`n(ϑ)√

n
.

We show that the second subterm tends to 0 in probability as In(·) is supposed to be non-degenerate and
uniformly continuous. The central limit theorem for the first subterm gives the result.
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process. Annales de l’I.H.P. section B, 33(4):407–436.

[Kamatani and Masayuki, 2015] Kamatani, K. A. and Masayuki, Y. (2015). Hybrid multi-step estimators for stochastic differ-
ential equations based on sampled data. Statistical Inference for Stochastic Processes, 18:177–204.

[Kutoyants and Motrunich, 2016] Kutoyants, Y. A. and Motrunich, A. (2016). On multi-step mle-process for markov sequences.
Metrika, 79:705–724.

[Le Cam, 1956] Le Cam, L. (1956). On the asymptotic theory of estimation and testing hypothesis. Proceedings of the 3rd

Berkeley Symposium, 1:355–368.
[Lieberman et al., 2012] Lieberman, O., Rosemarin, R., and Rousseau, J. (2012). Asymptotic theory for maximum likelihood

estimation of the memory parameter in stationary gaussian processes. Econometric Theory, 28(2):457–470.

[Robinson, 1995a] Robinson, P. (1995a). Gaussian semiparametric estimation of long range dependence. The Annals of Statis-
tics, 23(5):1630–1661.

[Robinson, 1995b] Robinson, P. (1995b). Log-periodogram regression of time series with long-range dependence. The Annals of

Statistics, 23(3):1048–1072.
[Shimotsu and Phillips, 2005] Shimotsu, K. and Phillips, P. C. B. (2005). Exact local whittle estimation of fractional integration.

The Annals of Statistics, 33(4):1890–1933.

[Soltane, 2018] Soltane, M. (2018). Asymptotic efficiency in autoregressive processes driven by stationary gaussian noise. In
Revision.

[Stout, 1974] Stout, W. F. (1974). Almost sure convergence, volume 24 of Probability and Mathematical Statistics. Academic
Press, New-York-London.

[Sweeting, 1980] Sweeting, T. (1980). Uniform asymptotic normality of the maximum likelihood estimator. The Annals of

Statistics, 8(6):1375–1381.
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