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ABSTRACT

The adjoint method introduced by Tam and Auriault [1]

enables the proper taking into account of acoustic propa-

gation effects when jet noise is modelled from the statistics

of a turbulent flow. This technique is recast in a systematic

way valid for arbitrary propagation media, linear operators

and sound sources. An acoustic analogy based on Pierce’s

wave equation for the acoustic potential [2] is proposed

and Tam and Auriault’s mixing noise model [3] is refor-

mulated for this operator. This formulation presents three

main advantages; no instability wave can occur since the

acoustic energy conservation is enforced, then for being

self-adjoint the adjoint solution to the propagation prob-

lem may straightforwardly be computed by flow reversal,

finally Pierce’s wave equation is a simple and cheap equa-

tion that several existing solver are able to solve. Work

performed with FFT’s software Actran TM is presented

illustrating the ability of a commercial tool to solve this

equation and to compute adjoint Green’s function required

in statistical jet noise modelling.

1. INTRODUCTION

When jet noise predictions are based on an acoustic anal-

ogy, the source statistics are usually modelled from a

RANS computation [3–5]. The propagation of sound to the

observer is then achieved analytically using Green’s func-

tion and a simplified flow model. This strategy is compu-

tationally less demanding than a direct noise computation,

but often fails to correctly predict the acoustic propagation

effects in complex configurations like those encountered

for installed modern aircraft engines. With a smart use of

the reciprocity principle, Tam and Auriault [1] introduced

the adjoint method and enabled the tackling of propaga-

tion effects in complex environments, for which analytical

Green’s functions are unknown. In the aeroacoustic com-

munity adjoint Green’s functions are usually sought as a

solution to a scattering problem, and as such, are ill-posed

to properly account for the surface refraction and edge

diffraction phenomena. Yet in numerous applications, the

effects of the latter are predominant [6]. The present con-

tribution illustrates how the presence of surfaces can be

dealt with in the computation of adjoint Green’s functions

with the commercial software Actran TM. RANS based

mixing noise predictions are often conducted with Tam and

Auriault’s model [3] that is detailed in the following sec-

tion. The acoustic propagation equations considered by

these authors are derived from the linearised Euler equa-

tions, and thus describe instability waves. Consequently,

the method robustness is thereby regrettably deteriorated.

This mixing noise model is recast here for the acoustic

potential φ as computed with Pierce’s equation so as to

achieve an acoustic preserving formulation. Moreover be-

cause Actran TM solves the wave equation of Möhring’s

acoustic analogy [7], a trick to solve Pierce’s equation with

this software is proposed. Finally, based on the flow rever-

sal theorem (FRT), which proved to be equivalent to the

adjoint approach for self-adjoint operators [8], an adjoint

computation for a realistic aircraft engine is presented.

2. TAM AND AURIAULT’S MIXING NOISE

MODEL

In a celebrated contribution, Tam et al. [9] gave experi-

mental evidences for a separation in the mixing noise pro-

cess of a jet foreseen by Ribner [10]. From this theory, two

contributions arise in the noise caused by turbulent mixing;

the first one is associated with the large-scales of the tur-

bulence and second one finds its origin in the fine-scales.

The mixing noise model of concern in this note is given by

Tam and Auriault [3], and intends to model the sound ra-

diated by the turbulence fine-scales. Since Lighthill’s pio-

neer study [11], that lay out the basis for all acoustic analo-

gies that would follow, it is admitted that jet mixing noise

is driven by the unsteadiness of the Reynolds stress tensor.

When the mean flow can be assumed to be incompress-

ible this noise source term reads as ρU ⊗ U ≈ ρ0U ⊗ U ,

where ρ, U are the instantaneous density and velocity, and

where ρ0 is the flow mean density [11, eq. (7)]. A Fourier

filtering is considered by Tam and Auriault to remove the

large-scales present in this sound source, and is noted in

the following with an overbar. In their model, the noise

source is then identified with the diagonal terms of the fil-

tered Reynolds stress tensor ρ0U ⊗U . These terms ac-

count for the fluid dilatation and compression. Based on

the Boussinesq eddy viscosity model this source of sound

can be directly related to the kinetic energy of the fine-scale

turbulence per unit mass ks with, tr(ρ0U ⊗U) = 2ρ0ks.

An isotropic contribution of the modelled sound source

qs in the linearised momentum equation is then assumed,

i.e. given in three dimensions by qs = 2ρ0ks/3, and
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Lighthill’s stress tensor is finally approximated in Tam and

Auriault’s model by,

∇ · (ρ0U ⊗U) = ∇qs

Hence, the direct problem for Tam and Auriault’s mixing

noise writes,


















ρ0
D(u)

Dt
+∇p = −∇qs

D(p)

Dt
+ γp0(∇ · u) = 0

and can be recast by defining the associated linear operator

L0 into,

L0
(

u

p

)

=

(

−∇qs
0

)

where D/Dt = ∂/∂t + u0 · ∇ is the material derivative,

ρ0, u0, p0 are the mean flow fields and u, p the fluctuat-

ing ones. Note that the mean flow considered previously

is parallel and that L0 thus corresponds to the linearised

Euler equations.

2.1 Governing adjoint equations

The governing adjoint equations are given by the Lagrange

identity,

<

(

u
†

p†

)

,L0
(

u

p

)

> = < L†0
(

u
†

p†

)

,

(

u

p

)

>

Accordingly to Tam and Auriault’s model [3], the free-

space propagation problem will be considered, for which

all boundary conditions vanish for the direct problem as

well as for the adjoint problem. In particular the radiat-

ing boundary conditions associated to the previously intro-

duced direct problem and their associated anti-causal ad-

joint boundary conditions, will be discarded. Multiple in-

tegrations by parts, and taking benefit from the mean flow

parallelism, subsequent adjoint operator L†0 is obtained,



















−ρ0
D(u†)

Dt
− γp0∇p† = S

†

ρ0u
†

−D(p†)

Dt
−∇ · u† = S†

p†

where S† = (S†

ρ0u
†
1

, S†

ρ0u
†
2

, S†

ρ0u
†
3

, S†

p†)
T

is a generic writ-

ing of the adjoint source term. Because Tam and Auriault’s

model intends to compute the pressure field autocorrela-

tion Spp at a microphone position xm, a Dirac source term

δxm,tm (≡ δ(x − xm)δ(t − tm), for mute space and time

variables x and t) in the equation governing the adjoint

field associated to the pressure p† is considered. Since an

impulse response is considered, it follows that the corre-

sponding adjoint fields u
† and p† are Green’s functions.

To bear in mind the source position xm and time tm, this

information will be specified in the notations of Green’s

functions, leading thus to the adjoint problem hereafter,

L†0

(

u
†
xm,tm

p†xm,tm

)

=

(

0

δxm,tm

)

When replaced in Lagrange’s identity together with the di-

rect problem source term, the representation formula, ana-

logue to [3, eq. (21)], is readily obtained,

<

(

u
†
xm,tm

p†
xm,tm

)

,

(

−∇qs
0

)

>=<

(

0

δxm,tm

)

,

(

u

p

)

>

And finally with the property of the delta Dirac function,

p(xm, tm) = − < u
†
xm,tm ,∇qs >

Following Tam and Auriault’s steps, using integration by

parts and the governing equation for p†, previous RHS is

then reformulated as,

− < u
†
xm,tm ,∇qs > = < ∇ · u†

xm,tm , qs >

= − <
D(p†xm,tm)

Dt
, qs >

= < p†
xm,tm ,

D(qs)

Dt
>

where again, all the contour integrals have been omitted

since they vanish in free field. Note that <,> has been

used above indifferently for different size of vectors with-

out ambiguity because the canonical scalar product is con-

sidered. This procedure can be applied for any scalar prod-

uct, notice however that, as a step by step derivation would

show, the latter needs to be adapted to each new couple of

field considered.

2.2 Calculation of the pressure autocorrelation

Let the pressure p time-autocorrelationRpp for a time-shift

τ at position xm be defined as,

Rpp(xm, τ) =

∫

R

dtm p(xm, tm)p(xm, tm + τ)

then Tam and Auriault’s expression for the autocorrelation

[3, eq. (24)] is retrieved:

Rpp(xm, τ) =

∫

R

dtm

〈

p†xm,tm ,
D(qs)

Dt

〉〈

p†
xm,tm+τ ,

D(qs)

Dt

〉

And the pressure time autocorrelation Rpp, simply ex-

presses without assumptions,

Rpp(xm, τ) =
∫

Ω

dx1

∫

Ω

dx2

∫

R

dt1

∫

R

dt2 p†
(x1, t1)
xm

p†
(x2, t2 − τ)
xm

RQQ(x1,x2,∆t)

where ∆t = t1 − t2 and RQQ(x1,x2,∆t) is the space-

time autocorrelation of the quantity Q ≡ D(qs)/Dt,

RQQ(x1,x2,∆t) =

∫

R

dtm
D(qs(x1, tm +∆t))

Dtm

D(qs(x2, tm))

Dtm
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2.3 Modelling of the source autocorrelation term

The modelling of RQQ cannot be further postponed, since

its expression is needed to perform analytically the time

integrations over dt1 and dt2. The Q-quantity space-time

autocorrelation model proposed by Tam and Auriault [3,

eq. (27)] is shift-invariant, i.e. by defining r = x1 − x2,

then RQQ(x1,x2,∆t) ≡ RQQ(r,∆t), and writes,

RQQ(r,∆t) =
q̂2s
c2τ2s

exp

(

−|r · u0|
u2
0τs

− ln(2)

l2s
(r − u0∆t)

2

)

with u0 = |u0|. The reader may refer to [3, §3] for the

definition of the above other variables and their origin. In

our applications the Fourier transformed pressure autocor-

relation Spp is of interest which is defined as,

Spp(xm, ω) =

∫

R

dτ Rpp(xm, τ)eiωτ

where α =
l2s

4 ln(2)u2

0

and β =
q̂2s ls

c2τ2
su0

√

π
ln(2) .

Fourier transforms are defined presently with,

F (x, ω) =

∫

R

dt f(x, t)eiωt

and,

f(x, t) =
1

2π

∫

R

dω F (x, ω)e−iωt

Several change of variables, Fourier transforms, other inte-

gral manipulations, and defining r⊥ = r− (r ·u0)u0/u
2
0,

lead to Tam and Auriault’s equation (33) [3],

Spp(xm, ω) =

∫

Ω

dx2

∫

Ω

dr β p†
(r + x2, ω)
xm

p†
(x2, ω)

xm

∗

exp

(

−|r · u0|
u2
0τs

− ln(2)|r⊥|2
l2s

− iω
r · u0

u2
0

− αω2

)

2.4 Approximated calculation of the double space

integration

The computation of the above double space integral is nu-

merically unaffordable and a simplification is required.

2.4.1 Fraunhofer approximation

Because in Tam and Auriault’s work the observer is set in

the acoustic far field, those authors proposed to model two

neighbour acoustic ray paths from the source region by a

Fraunhofer-like approximation [3, fig. 4, eq. (34)], which

expresses with vector notations as,

p†
(r + x2, ω)
xm

≈ p†
(x2, ω)

xm
exp

(

iω xm · r
a∞|xm|

)

where a∞ is the ambient speed of sound. Note that this

expression differs from the one proposed in the literature

by the phase shift sign [3]. By definingxm,⊥ = xm−(xm·
u0)u0/u

2
0, and replacing this formula in the expression of

Spp, the double integral simplifies into,

Spp(xm, ω) =

∫

Ω

dx2
2q̂2s l

3
s

c2τs

(

π

ln(2)

)3/2
∣

∣

∣
p†

(x2, ω)

xm

∣

∣

∣

2

exp

( −ω2l2s
4 ln(2)u2

0

(

1 +
u2
0|xm,⊥|2
a2∞|xm|2

))

1 + ω2τ2s

(

1− u0 · xm

a∞|xm|

)2

which is Tam and Auriault’s fine-scale mixing noise for-

mula [3, eq. (35)]. Note that above expression differs from

the original one by a factor of 2π, which is related to differ-

ent Green’s function definition, refer to [3, eq. (19)], from

which a 4π2 factor appears; then because of differences in

the Fourier transform conventions, see [3, eq. (25)], the

present relation should be divided by 2π to comply with

Tam and Auriault’s relation. Note furthermore that the here

presented expression is slightly enhanced compared to the

original one, since it can tackle three dimensional propa-

gation problems.

2.4.2 Taylor expansion

As suggested by Lielens [12], if adjoint Green’s function

p†
xm

is computed numerically for a near-field propagation

problem, the knowledge of its spatial evolution can be cap-

italised and the Fraunhofer approximation can be replaced

by a Taylor expansion; this paragraph presents the corre-

sponding formula. If r = x1 − x2 is small p†
(r + x2, ω)
xm

can be approximated by the first order Taylor expansion,

p†
(r + x2, ω)
xm

≈ p†
(x2, ω)

xm
+ r · ∂p

†(x2, ω)
xm

∂x2

Replacing this expression in the formula for Spp leads to

following expression for the pressure autocorrelation,

Spp(xm, ω) =

∫

Ω

dx2
2q̂2s l

3
s

c2τs

(

π

ln(2)

)3/2

p†
(x2, ω)

xm

∗

exp

(

− ω2l2s
4 ln(2)u2

0

)

1 + ω2τ2s

(

p†
(x2, ω)
xm

− 2iωτ2s
1 + ω2τ2s

(

u0 ·
∂p†

(x2, ω)
xm

∂x2

))

3. TAM AND AURIAULT’S FORMULA APPLIED

TO PIERCE’S WAVE EQUATION

Tam and Auriault’s formula [3, eq. (35)] relies on the prior

computation of adjoint Green’s function p†xm
recalled by

the above set of equations. This presents two limitations

for the practical use of this theory; firstly efficient solvers

that can twofold compute these equations and handle com-

plex geometries are scarce, and secondly as for the direct

problem, these equations do also present physical unsta-

ble modes. A reformulation of Tam and Auriault’s for-

mula with a propagation operator based on Pierce’s equa-

tion [2, eq. (27)] is a way of overcoming these difficulties.

The formulation proposed by Pierce based on the acous-

tic potential φ is indeed energy preserving and solvers, e.g.
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Actran TM from FFT can be configured to solve this wave

equation.

The acoustic analogy based on Pierce’s wave equation

writes,

D2(φ)

Dt2
−∇ · (a20∇φ) =

D(Sm)

Dt
− Sp

and,

∆Sm = ∇ · (ρ0Su)

where (Su,Sp) is the general writing of a source term for

the linearised momentum and energy equations. Because

Pierce’s wave equation describes solely the propagation

of potential acoustic fluctuations φ, the source term for

this equation needs to be potential as well. This is the

meaning of the introduction of the linearised momentum

source potential Sm. From the source model for mix-

ing noise of Tam and Auriault’s, it comes directly that

Sm = −qs and Sp = 0. The pressure field p is then re-

built subsequently from the acoustic potential φ consider-

ing p = −D(φ)/Dt while the fluctuating velocity field is

computed with ρ0u = ∇φ.

3.1 Pressure autocorrelation with an acoustic

potential description

Pierce’s wave equation is self-adjoint for the canonical

scalar product, and its adjoint Green’s function is defined

by,

D2(φ†
xm,tm)

Dt2
−∇ · (a20∇φ†

xm,tm) = δxm,tm

The application of Lagrange’s identity then gives,

φ(xm, tm) = < φ†
xm,tm ,−D(qs)

Dt
>

The pressure time autocorrelation is hence defined by,

Rpp(xm, τ) =

∫

R

dtm p(xm, tm)p(xm, tm + τ)

=

∫

R

dtm
D(φ)

Dtm,xm

D(φ)

Dtm+τ,xm

where D/Dti,xj
= ∂/∂ti + u0 · ∂/∂xj is the material

derivative with respect to xj and the reference time ti.

3.2 Far-field prediction formula with wind

After some algebra very similar to those performed by Tam

and Auriault [3], and with the same source model, the pre-

diction formula expresses in the far-field, i.e. owning on a

Fraunhofer approximation, as,

Spp(xm, ω) =

∫

Ω

dx2
2q̂2s l

3
s

c2τs

(

π

ln(2)

)3/2

∣

∣

∣
D−u0,xm

(

φ†(x2, ω)
xm

)∣

∣

∣

2
exp

( −ω2l2s
4 ln(2)u2

0

(

1 +
u2
0|xm,⊥|2
a2∞|xm|2

))

1 + ω2τ2s

(

1− u0 · xm

a∞|xm|

)2

where D−u0,xm
= −iω − u0 · ∂/∂xm is the material

derivative at the observer location written in the frequency

domain with reversed flow. For a far-field observer xm

and with a constant free-stream wind as depicted in figure

1, the expression of this material derivative can be com-

puted analytically. Recall that the adjoint field φ†
xm

is

u0

uext

θm

Figure 1. When the microphone is in the acoustic far field,

the polar angle θm is enough to characterise the adjoint

function of a round jet.

anti-causal and travels outward of the domain. Neglect-

ing the azimuthal dependence, the mixing noise prediction

formula in presence of wind writes,

Spp(θm, ω) =

∫

Ω

dx2
2ω2q̂2s l

3
s

c2τs

(

π

ln(2)

)3/2
∣

∣

∣
φ†(x2, ω)

θm

∣

∣

∣

2

(

1 +
Mext cos θm

1 +Mext cos θm

)2 exp

( −ω2l2s
4 ln(2)u2

0

(

1 +M2
∞ sin2 θm

)

)

1 + ω2τ2s (1−M∞ cos θm)
2

where M∞ = |u0|/a∞ and Mext = |uext|/a∞ and with

the adjoint source, i.e. the microphone, set in the far-field,

that is φ†(x2, ω)
xm

→ φ†(x2, ω)
θm , where θm is the jet polar

angle as defined in figure 1.

4. COMPUTING ADJOINT GREEN’S FUNCTION

φ†
XM

WITH ACTRAN TM

A recent investigation by the authors has shown that ad-

joint solutions to propagation problems could be computed

equivalently for self-adjoint operators with the so called

flow reversal theorem (FRT) [8]. The FRT states that the

reciprocal acoustic solution over a moving flow can be ob-

tained by simply reversing the direction of the flow. A pro-

cedure for this applied for Pierce’s equation is presented

here with FFT’s commercial software, Actran TM.

4.1 Equation solved in Actran TM

Actran TM is a finite element code written in the frequency

domain capable of handling complex geometries. This
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software solves Möhring’s equation written for the nor-

malised fluctuating stagnation enthalpy b,

∂

∂t

[

ρ0
ρ2T,0a

2
0

Db

Dt

]

+∇ ·
[

ρ0u0

ρ2T,0a
2
0

Db

Dt
− ρ0

ρ2T,0

∇b
]

= S

Actran TM solves in the frequency domain, some generic

monopole Sm and dipole Sd source definition [13],

S =
∂Sm

∂t
+∇ · Sd

By introducing the Mach number M0 = u0/a0, the mean

total density ρT,0 is given by,

ρT,0 = ρ0

(

1 +
γ − 1

2
M

2
0

)1/(γ−1)

The pressure is built then subsequently with,

ρT,0

ρ0

∂p

∂t
=

Db

Dt

Note that this equation is linear while the equation given

by Möhring [7] for the stagnation enthalpy B is not. The

latter is rescaled accordingly with,

δb = ρT,0 δB

4.2 Solving Pierce’s equation with Actran TM

In FFT’s software, it is not possible however to force the

equality ρT,0 = ρ0, so as to solve Pierce’s equation. This

is because the expression of the mean stagnation density

ρT,0 is directly computed from the mean density ρ0 and

the mean Mach numberM0. This hardship is overcome by

preprocessing the mean flow fields ρ0, p0 and u0 given in

input, so to compensate in the solved equation the presence

of the total mean density ρT,0. The source amplitude needs

to be corrected along with this transformation.

4.2.1 Preprocessing of the mean flow given in input

A similar manipulation was performed by Legendre [13]

to rebuild Möhring’s equation with Actran TM without the

ρT,0 normalisation. Some customised mean flow fields are

defined here in order for Actran TM to solve Pierce’s equa-

tion for the physically relevant mean flow fields ρ0, p0 and

u0. Let these customised variables be renamed by adding

a C in subscript. An inspection of Actran TM’s equation

and Pierce’s one indicates that subsequent transformations

need to be achieved,

u0,C ← u0 a0,C ← a0
ρ0,C
ρ2T,0

← 1

ρ0

where this time,

ρT,0 = ρ0,C

(

1 +
γ − 1

2

ρ0,C
γp0,C

u
2
0,C

)1/(γ − 1)

It comes out, that the mean velocities u0 and a0 are not

affected by these transformations. Therefore, because the

mean density ρ0 is modified, the mean pressure p0 needs

to be corrected in order for a0 =
√

γp0/ρ0 to remain un-

changed. Finally, to solve Pierce’s equation with Actran

TM, the adjustment that should be applied to the mean flow

field to obtain the suitable corrected input fields ρ0,C and

p0,C reads,

p0,C
p0

=
ρ0,C
ρ0

=

[

1 +
γ − 1

2

u
2
0

a20

]−2/(γ − 1)

4.2.2 Correction of the source amplitude

In Actran TM, there are three kinds of source amplitude

definitions, sources referred to as ’P’ type, ’Q’ type or

’V’ type (cf. keyword ’AMPLITUDE TYPE’). The type

’P’ amplitude is default and is related to the pressure field,

while the ’Q’ type amplitude is related to the mass flow rate

and the ’V’ type source is related to the volume source.In

the present study, a source amplitude of type ’P’ is consid-

ered. When the above preprocessing step is conducted to

turn Actran TM into a Pierce’s equation solver, the acoustic

potential φ solution of Pierce’s normalised equation, given

for δxs
a pointwise source in xs by,

1

a20

(

D2φ

Dt2
−∇ · (a20∇φ)

)

= A δxs

is related to the computed stagnation enthalpy b by,

φ∗ =
−iωA

4

(

1 +
γ − 1

2
M

2
0,S

)−1/(γ − 1)
b

where φ∗ is the complex conjugate of φ, A the complex

source amplitude defined in the software, ω the investi-

gated acoustic pulsation and M0,S the Mach number at the

source position. This amplitude correction depends only

on a0 and M0 and is therefore insensitive to the ρ0,T cor-

rection procedure.

4.3 Validation of Actran TM’s hijacking

The proposed reconstruction procedure of Pierce’s equa-

tion with Actran TM is validated for a uniform mean flow.

For the bidimensionnal problem of a monopole set in an

uniform mean flow the solution is known analytically. Fig-

ure 2 presents φ for a pointwise source set at the origin,

where ω = 20π rad.s−1, M0 = 0.756, p0 = 103330Pa,

T0 = 300K and a0 =
√
γRT0. An almost perfect match

presented in figure 3 is obtained for this simple flow model.

4.4 Illustrative computation for a realistic engine

Having recourse to a commercial software like Actran TM

for the computation of adjoint solutions is attractive be-

cause such a tool is versatile and robust. Capabilities of

Actran TM to compute adjoint solutions for jet noise rele-

vant configurations is illustrated here. Actran TM enables

amongst others the reading of RANS computations, the

generation and the handling of unstructured meshes, the

interpolation of the flow on the acoustic grid, the computa-

tion and the post-processing of the results. For the purpose

10.48465/fa.2020.0416 1329 e-Forum Acusticum, December 7-11, 2020



Figure 2. Acoustic potential field φ for the considered uni-

form mean flow.

Figure 3. Extracts along x1 = 0 and x2 = 0 of the acous-

tic potential field φ computed with Actran TM and the

analytical solution .

of illustrating the methodology execution, the EXEJET

dual-stream engine with chevrons is considered here [14].

The dealt configuration presents realistic features of an air-

craft engine. The primary jet exiting the core is heated

with respect to the secondary flow originating from the fan

with a temperature ratio Tc/Tf ≈ 2.6. The local jet Mach

numbers for both flow are respectively Mf = 0.84 and

Mc = 0.67. Some in-flight effects are moreover accounted

for with an external flow of Mext = 0.27. The geometry

presents 9 inner chevrons and 18 outer chevrons, so that

the flow simulation could benefit from angular periodicity

simplifications, and hence only an angular sector of 20o

of the flow was modelled with RANS. In order to rebuilt

the complete engine, an intermediate grid of 40o angle is

first created. The Boxpro toolbox of ActranVI enables to

duplicate the 20o geometry and to generate an unstruc-

tured mesh such as presented in figure 4 (use interior

shrinkwrap for multi-bloc geometries). An unstruc-

tured acoustic mesh of 3.9 million three-dimensional lin-

ear elements (800 000 nodes) is generated for a cylindrical

domain presenting a diameter of 3 engine diameters and a

length of 10 diameters. The mean flows are imported from

a RANS computation and interpolated over the acoustic

mesh as presented in figure 5. This figure also depicts the

reversed mean flow required for the execution of the flow

reversal theorem. This enables the computation of the ad-

joint solution to Pierce’s equation.

Figure 4. Detail of the structured and multi-bloc CFD

mesh spanning on 20o used for the RANS computation

(top) and detail of the unstructured acoustic mesh com-

puted with planar symmetry used to rebuilt the full 360o

flow field thanks to the geometry periodicity (bottom).

Figure 5. Mean speed of sound a0 from 331m.s−1

to 570m.s−1 (top) and mean axial velocity u0,1 from

−377m.s−1 to 3.37m.s−1 (bottom) interpolated on the

generated acoustic mesh.

Figure 6 presents the acoustic potential computed over the

reversed mean flow for a compact source oscillating at a

Strouhal number of Stf = 2.0. Where Stf = 1
Mf

Df

λ is

based on the fan flow exit diameter Df . This corresponds

to a mixed Strouhal number [14] of Stmix = 1.3. Compu-

tations performed for adjoint sources set in the near-field,

and for a source exterior to the computation domain. The

acoustic field computed thereby, is sought adjoint Green’s

function φ†. For this configuration 85 GB of RAM and

about 45min per frequency were required with a sequential

use of the MUMPS solver. Reminding from Lagrange’s

identity that the adjoint field φ† is relevant where the phys-

ical sound source are located, commentaries on the adjoint
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fields must focus on the jet sheared flow region. It is seen in

figure 6 that the adjoint solution presents some sharp vari-

ations in phase in these regions. This may translate into

constructive and destructive interferences in the radiated

field. It is expected that reliable computations of adjoint

Green’s solutions notably improve the taking into account

of acoustic propagation effects. In future work, attention

will be paid in a step by step validation of the complete

jet mixing noise prediction methodology. In particular, it

appears instructive to compare the original Tam and Auri-

ault mixing noise model [3] using parallel flow analytical

adjoint Green’s functions [15] to the more general alterna-

tive proposed in the present work. Whenever installation

effects are present, it is expected that the proposed formu-

lation offers a significant amelioration in the acoustic pre-

dictions.

Figure 6. Adjoint Green’s function φ† of Pierce’s equation

computed with the flow reversal theorem for Stf = 2.0.

The near-field solutions to the reciprocal propagation prob-

lem exhibits a complex behaviour in the jet flow region

(top). The computations for a source exterior to the com-

putation domain at a distance of 10Df from the engine is

presented (bottom).

5. CONCLUSION

In this contribution the mixing noise model of Tam and

Auriault [3] is recalled and recast for Pierce’s wave equa-

tion which is twofold stable and self-adjoint. Because this

potential acoustic wave equation is self-adjoint, its adjoint

solution can be computed with the flow reversal theorem

(FRT). A procedure to transform the equation solved by

Actran TM into Pierce’s equation is used and validated for

an uniform mean flow. Eventually the illustrative compu-

tation of adjoint solutions for a aircraft engine with flight

effects is presented. A realistic turbofan engine geometry

with chevrons is considered as a proof of concept and dif-

ferent adjoint fields are computed in near and far field to

a reasonable computational cost (St = 2, 45 min per fre-

quency, 85 GB of RAM). The source does not need to be

meshed and can be set exterior to the computational do-

main in Actran TM. These results are all the more encour-

aging, as no special effort was made to minimise the com-

putational costs (mesh optimisation, use of parallel solver).

A significant asset of the formulation, as presented here,

is its ability to account for the presence of surfaces in the

acoustic propagation problem. Future work will have to fo-

cus on implementing the entire prediction chain, from the

calculation of the RANS solution to the noise spectrum,

and to validate each step.
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