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Optimal pointwise sampling for L2

approximation

Albert Cohen and Matthieu Dolbeault

May 7, 2021

Abstract

Given a function u ∈ L2 = L2(D,µ), where D ⊂ Rd and µ is a mea-
sure on D, and a linear subspace Vn ⊂ L2 of dimension n, we show that
near-best approximation of u in Vn can be computed from a near-optimal
budget of Cn pointwise evaluations of u, with C > 1 a universal constant.
The sampling points are drawn according to some random distribution, the
approximation is computed by a weighted least-squares method, and the er-
ror is assessed in expected L2 norm. This result improves on the results in
[6, 8] which require a sampling budget that is sub-optimal by a logarithmic
factor, thanks to a sparsification strategy introduced in [17, 18]. As a con-
sequence, we obtain for any compact class K ⊂ L2 that the sampling num-
ber ρrandCn (K)L2 in the randomized setting is dominated by the Kolmogorov
n-width dn(K)L2 . While our result shows the existence of a randomized
sampling with such near-optimal properties, we discuss remaining issues
concerning its generation by a computationally efficient algorithm.

MSC 2020: 41A65, 41A81, 93E24, 62E17, 94A20

1 Introduction
We study the approximation of a function u ∈ L2(D,µ), where D is a domain
in Rd and µ a measure on D, by an element ũ of Vn, a subspace of L2(D,µ) of
finite dimension n, based on pointwise data of of u. Therefore, to construct ũ, we
are allowed to evaluate u on a sample of m points X = {x1, . . . , xm} ∈ Dm. In
addition, we consider randomized sampling and reconstruction, in the sense that
X will be drawn according to a distribution σ over Dm, so the error u− ũ should
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be evaluated in some probabilistic sense. For the sake of notational simplicity,
having fixed D and µ, we write thoughout the paper

L2 := L2(D,µ) and ‖v‖ := ‖v‖L2 =

(∫
D

|v|2dµ
)1/2

, (1)

as well as
en(u) := min

v∈Vn
‖u− v‖. (2)

Our main result is the following:

Theorem 1. For some universal constants C,K > 1, and for any n-dimensional
space Vn ⊂ L2, there exists a random sampling X = {x1, . . . , xm} with m 6 Cn
and a reconstruction map R : Dm × Cm 7→ Vn, such that for any u ∈ L2,

EX
(
‖u− ũ‖2

)
6 Ken(u)

2 (3)

where ũ := R(x1, . . . , xm, u(x1), . . . , u(xm)).

The reconstruction mapR is obtained through a weighted least-squares method
introduced in [6], which has already been discussed in several papers, see [1, 5, 8,
9, 7, 15, 16]. The weights involved are given by the expression

w : x ∈ D 7→ nmin
v∈Vn

‖v‖2

|v(x)|2
=

n∑n
j=1 |Lj(x)|2

, (4)

where the last formula holds for any L2-orthonormal basis (L1, . . . , Ln) of Vn,
which, up to the factor n, is the Christoffel function associated to the space Vn and
the space L2(D,µ). The weighted least-squares solution is then simply defined as

ũ := argmin
v∈Vn

m∑
i=1

w(xi)|u(xi)− v(xi)|2. (5)

Introducing the discrete `2 norm

‖v‖2X :=
1

m

m∑
i=1

w(xi)|v(xi)|2 (6)

and its associated scalar product 〈·, ·〉X , we get a computable formula for ũ:

ũ = argmin
v∈Vn

‖u− v‖2X = PX
Vnu, (7)
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where PX
Vn

denotes the orthogonal projection on Vn with respect to 〈·, ·〉X . Note
that strictly speaking ‖ · ‖X is not a norm over L2, however the existence and
uniqueness of PX

Vn
will be ensured by the second condition in Lemma 1 below, see

Remark 2.
Therefore our main achievements lie in the particular choice of the random

sample X for ensuring the near-optimal approximation and sampling budget in
Theorem 1.

Now, the proof of Theorem 1 relies on two conditions: first, the expectation
of ‖ · ‖2X has to be bounded by ‖ · ‖2 up to a constant. Second, an inverse bound
should hold almost surely, instead of just in expectation, for functions v in Vn.
More precisely, one has:

Lemma 1. Assume that m and the law σ of X = {x1, . . . , xm} are such that

E(‖v‖2X) 6 α‖v‖2, v ∈ V, (8)

and
‖v‖2 6 β‖v‖2X a.s., v ∈ Vn. (9)

Then
E(‖u− ũ‖2) 6 (1 + αβ)en(u)

2. (10)

Proof. Denote un the orthogonal projection of u on Vn with respect to theL2(D,µ)
norm. Applying Pythagoras theorem both for ‖ · ‖ and ‖ · ‖X , one obtains

E(‖u− ũ‖2) = ‖u− un‖2 + E(‖un − ũ‖2)
6 ‖u− un‖2 + βE(‖un − ũ‖2X)
= ‖u− un‖2 + βE(‖un − u‖2X − ‖u− ũ‖2X)
6 ‖u− un‖2 + βE(‖un − u‖2X)
6 (1 + αβ)‖u− un‖2,

which proves (10) since ‖u− un‖ = en(u).

In section 2, we recall how both conditions (8) and (9) can be obtained with
m quasi-linear in n, that is, of order n log n. We reduce this budget to m of order
n in section 3, by randomly subsampling the set of evaluation points, based on
results from [17, 18]. The proof of Theorem 1 follows. We compare it to the
recent results [13, 14, 19] in section 4, in particular regarding the domination of
sampling numbers by n-widths. We conclude in section 5 by a discussion on the
offline computational cost for practically generating the sample X .

3



2 Weighted least-squares
A first approach consists in drawing the xi independently according to the same
distribution ρ, that is, taking σ = ρ⊗m. The natural choice for ρ is dρ = 1

w
dµ,

which is a probability measure since∫
D

1

w
dµ =

1

n

n∑
j=1

∫
D

|Lj(x)|2dµ(x) =
1

n

n∑
j=1

‖Lj‖2 = 1. (11)

We denote by Z = {x1, . . . , xm} this first random sample and by ‖ · ‖Z the corre-
sponding discrete `2 norm. With this sampling measure,

E(‖v‖2Z) =
1

m

m∑
i=1

∫
D

w(x)|v(x)|2dρ =
∫
D

|v|2dµ = ‖v‖2, (12)

so condition (8) is ensured for X = Z with α = 1. To study the second condition,
we introduce the Hermitian positive semi-definite Gram matrix

GZ := (〈Lj, Lk〉Z)j,k=1,...,n (13)

and notice that (9) is equivalent to

|ν|2 =
∥∥∥ n∑
j=1

νjLj

∥∥∥2 6 β
∥∥∥ n∑
j=1

νjLj

∥∥∥2
Z
= βν∗GZν, ν ∈ Cn, (14)

which in turn rewrites as λmin(GZ) > β−1.
By the central limit theorem, asm tends to infinity, the scalar products 〈Lj, Lk〉Z

converge almost surely to 〈Lj, Lk〉 = δj,k, so GZ converges to the identity matrix,
and we expect that λmin(GZ) > β−1 holds for β > 1 with high probability as m
gets large. A quantitative formulation can be obtained by studying the concentra-
tion of GZ around I in the matrix spectral norm

‖M‖2 := max{|Mx| : |x| = 1}.

This is based on the matrix Chernoff bound, see [2, 22] for the original inequality
and [5], Lemma 2.1, for its application to our problem:

Lemma 2. For m > 10n ln(2n
ε
), if X ∼ ρ⊗m, then

P
(
‖GZ − I‖2 6

1

2

)
> 1− ε. (15)

In particular, P
(
λmin(GZ) > 1

2

)
> 1− ε.
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Thus assumption (9) is satisfied with β = 2, but only with probability 1 − ε.
As we would like it to hold almost surely, we condition the sampling to the event

E :=

{
‖GZ − I‖2 6

1

2

}
(16)

which defines a new sample
Y = Z|E. (17)

In practice, Y can be obtained through a rejection method, which consists in draw-
ing successively set of points Z1, Z2, . . . according to ρ⊗m, and defining Y = Zk

for the first value k such that E holds. We then define ũ as the weighted least-
square estimator based on this conditioned sample, that is

ũ := P Y
Vnu. (18)

This approach was introduced and analyzed in [8], see in particular Theorem 3.6
therein. A simpler version of this result, sufficient for our purposes, is the follow-
ing:

Lemma 3. For m > 10n ln(4n), if Z ∼ ρ⊗m and Y = Z|E, then

‖GY − I‖2 6
1

2
, (19)

and
EY (‖u− ũ‖2) 6 5en(u)

2. (20)

Proof. The first part immediately results from the definition of Y and E, and
implies condition (9) with β = 2. Moreover, P(E) > 1

2
by Lemma 2 with ε = 1

2
,

so for any v ∈ L2(D,µ),

EY (‖v‖2Y ) = EZ(‖v‖2Z |E) =
EZ(‖v‖2ZχE)

P(E)
6

EZ(‖v‖2Z)
P(E)

6 2‖v‖2, (21)

so condition (8) holds with α = 2. The conclusion follows from Lemma 1.

Remark 1. The number of redraws k for reaching Y follows a geometric law of
expectation E(k) = P(E)−1 = (1 − ε)−1, that is E(k) 6 2 for the particular
choice of m in the above lemma. It should be well noted that u is not evaluated at
the intermediately generated samples Z1, . . . , Zk−1, which thus enter the offline
cost of the samping algorithm.
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Remark 2. The fact that the Grammian GY is non-singular implies that for any
u with given values yi at the points xi, we can uniquely define

ũ = P Y
Vnu =

n∑
j=1

ajLj, (22)

since a = (a1, . . . , an)
∗ solves the system of normal equations

GY a = b, (23)

where the right-side vector has coordinates

bj = 〈Lj, u〉Y =
1

m

m∑
i=1

w(xi)Lj(x
i)yi. (24)

If u is in L2, the yi are only defined up to a representer, however since two rep-
resenters u1 and u2 coincide µ-almost surely, we find that P Y

Vn
u is well defined

almost surely over the draw of Y .

3 Random subsampling
With Lemma 3, we already have an error bound similar to that of Theorem 1.
However, the sampling budget is larger than n by a logarithmic factor, which we
seek to remove in this section. To do so, we partition the sample Y into subsets
of size comparable to n, and randomly pick one of these subsets to define the new
sample. An appropriate choice of the partitioning is needed to circumvent the
main obstacle, namely the preservation of condition (9). It relies on the following
lemma, taken from Corollary B of [18], itself a consequence of Corollary 1.5 in
[17]. The relevance of these two results to sampling problems were exploited in
[19] and noticed in [10], respectively.

Lemma 4. Let a1, . . . , am ∈ Cn be vectors of norm |ai|2 6 δ for i = 1, . . . ,m,
and satisfying

αI 6
m∑
i=1

aia
∗
i 6 βI (25)

for some constants δ < α 6 β. Then there exists a partition of {1, . . . ,m} into
two sets S1 and S2 such that

1− 5
√
δ/α

2
αI 6

∑
i∈Sj

aia
∗
i 6

1 + 5
√
δ/α

2
βI, j = 1, 2. (26)
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In Lemma 2 of [18] this result is applied inductively in order to find a smaller
set J ⊂ {1, . . . , k} of cardinality |J | 6 cn such that

C−1I 6
m

n

∑
i∈J

aia
∗
i 6 CI, (27)

for some universal constants c, C > 1. We adapt this approach in order to obtain
a complete partition of {1, . . . ,m} by sets having such properties.

Lemma 5. Let a1, . . . , am ∈ Cn be vectors of norm |ai|2 = n
m

for i = 1, . . . ,m,
and satisfying

1

2
I 6

m∑
i=1

aia
∗
i 6

3

2
I. (28)

Then there exists an integerL and a partition of {1, . . . ,m} into 2L sets J1, . . . , J2L
such that

c0I 6
m

n

∑
i∈Jk

aia
∗
i 6 C0I, 1 6 k 6 2L, (29)

with universal constants c0 and C0. In addition, each set Jk satisfies

|Jk| 6 C0n. (30)

Proof. The cardinality estimate (30) follows from the upper inequality in (29) by
taking the trace

nC0 = tr(C0I) >
m

n

∑
i∈Jk

tr(aia
∗
i ) =

m

n
|Jk|

n

m
= |Jk|. (31)

For the proof of (29), if n/m > 1/200, then the result holds with L = 0, J1 =
{1, . . . ,m} and c0 = C0 = 200. Now assuming δ := n/m < 1/200, define by
induction α0 =

1
2
, β0 = 3

2
, and

α`+1 := α`
1− 5

√
δ/α`

2
, β`+1 := β`

1 + 5
√
δ/α`

2
, ` > 0. (32)

As α`+1 6
α`
2

, the minimal integer L such that αL 6 100δ is well defined, and
satisfies

αL = αL−1
1− 5

√
δ/αL−1
2

> 100δ
1− 5

√
1/100

2
= 25δ. (33)
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Moreover α` > 2L−`−1αL−1 > 2L−`−1 100δ for ` = 0, . . . , L− 1, so

βL = 3αL

L−1∏
`=0

1 + 5
√
δ/α`

1 + 5
√
δ/α`

6 Cδ, (34)

with C := 300
∏

`>2
1+
√
2
−`

1−
√
2
−` .

Finally, we inductively define partitions {S`1, . . . , S`2`} for 0 6 ` 6 L: start
with S0

1 = {1, . . . ,m} and for any `, j, noticing that

α`I 6
∑
i∈S`j

aia
∗
i 6 β`I, (35)

apply Lemma 4 to split S`j into subsets S`+1
2j−1 and S`+1

2j satisfying the same prop-
erty. At the last step, we define

Jk = SLk . (36)

The framing (29) thus holds with c0 = αL/δ > 25 and C0 = βL/δ 6 11000.

Proof of Theorem 1: Define

ai =

(√
w(xi)

m
Lj(x

i)

)
j=1,...,n

(37)

the normalised random vectors corresponding to the sample Y = {x1, . . . , xm}
introduced in the previous section. As

1

2
I 6 GY =

m∑
i=1

aia
∗
i 6

3

2
I (38)

and

|ai|2 =
1

m
w(xi)

n∑
j=1

|Lj(xi)|2 =
n

m
(39)

thanks to the choice of weights (4), the assumptions of Lemma 5 are satisfied.
Applying this lemma, we obtain sets J1, . . . , J2L partitioning {1, . . . ,m}. Let κ
be a random variable taking value k ∈ {1, . . . , 2L} with probability pk = |Jk|/m,
and create a random subsampling X of Y through

X = {xi ∈ Y : i ∈ Jκ}. (40)
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Then the budget condition |X| = |Jκ| 6 C0n is satisfied according to (30). Here,
we define the discrete norm as

‖v‖2X :=
1

|X|
∑
i∈Jκ

w(xi)|v(xi)|2, (41)

and the associated Gram matrix

GX := (〈Lj, Lk〉X)j,k=1,...,n =
m

|Jκ|
∑
i∈Jκ

aia
∗
i . (42)

The weighted least-squares estimate is now defined as

ũ := argmin
v∈Vn

1

|X|
∑
i∈Jκ

w(xi)|u(xi)− v(xi)|2, (43)

and it thus depends on the random draws of both Y and κ. Condition (9) follows
from the lower inequality in (29) with β = C0

c0
since

GX >
m

|Jκ|
n

m
c0I >

c0
C0

I. (44)

Finally, we have for any v ∈ L2(D,µ)

EX(‖v‖2X) =
2L∑
k=1

pk
|Jk|

∑
i∈Jk

w(xi)|v(xi)|2 = EY (‖v‖2Y ) 6 2en(u)
2, (45)

so condition (8) holds with α = 2. Applying Lemma 1, we conclude that (10)
holds with C = C0 and K = 1 + 2C0

c0
. �

4 Comparison with related results
In order to compare Theorem 1 with several recent results [10, 12, 19, 23], we
consider its implication when the target function u belongs to a certain class of
functions K that describes some prior information on u, such as smoothness.

Recall that if V is a Banach space of functions defined on D and K ⊂ V is a
compact set, its Kolmogorov n-width is defined by

dn(K)V := inf
dimVn=n

sup
u∈K

inf
v∈Vn
‖u− v‖V , (46)
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where the first infimum is taken over all linear spaces Vn ⊂ V of dimension n.
This quantity thus describes the best approximation error that can be achieved
uniformly over the class K by an n-dimensional linear space.

On the other hand, building a best approximation of u requires in principle
full knowledge on u, and we want to consider the situation where we only have
access to a limited number of point evaluations. This leads one to consider the
sampling numbers, also called optimal recovery numbers, both in the deterministic
and randomized settings.

For deterministic samplings, we define the (linear) sampling numbers

ρdetm (K)V := inf
X,RX

max
u∈K
‖u−RX(u(x

1), . . . , u(xm))‖V , (47)

where the infimum is taken over all samples X = {x1, . . . , xm} ∈ Dm and linear
reconstruction maps RX : Cm → V . For random samplings, we may define
similar quantities by

ρrandm (K)2V := inf
X,RX

max
u∈K

E
(
‖u−RX(u(x

1), . . . , u(xm))‖2V
)
, (48)

where the infimum is taken over all random variables X = {x1, . . . , xm} ∈ Dm

and linear reconstruction maps RX : Cm → V . Note that a deterministic sample
can be viewed as a particular choice of random sample following a Dirac distribu-
tion in Dm, and therefore

ρrandm (K)V 6 ρdetm (K)V . (49)

Sampling numbers may also be defined without imposing the linearity of RX ,
leading to smaller quantities. In what follows, we shall establish upper bound on
the linear sampling numbers, which in turns are upper bounds for the nonlinear
ones. We refer to [20] for an introduction and study of sampling numbers in the
context of general linear measurements, and to [21] that focuses on point evalua-
tion, also termed as standard information.

By optimizing the choice of the space Vn used in Theorem 1, we obtain as a
consequence that, for V = L2 = L2(D,µ), the sampling numbers in the random-
ized setting are dominated by the Kolmogorov n-widths.

Corollary 1. For any compact set K ⊂ L2, one has

ρrandCn (K)L2 6 Kdn(K)L2 , (50)

where C and K are the same constants as in Theorem 1.
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Remark 3. The bound (50) cannot be attained with independent and identically
distributed sampling points x1, . . . , xm. Indeed, consider the simple example, al-
ready evoked in [22], where D = [0, 1], µ is the Lebesgue measure,

Vn =

{
n∑
i=1

aiχ[ in ,
i+1
n [, (a1, . . . , an) ∈ Cn

}
(51)

is a space of piecewise constant functions, and K = {u ∈ Vn, ‖u‖L∞ 6 1}. Then
K ⊂ Vn so dn(K)L2 = 0, and an exact reconstruction RXu = u is possible if and
only ifX contains at least one point in each interval

[
i
n
, i+1
n

[
. Thus ρdetn (K)L2 = 0,

but in the case of i.i.d measurements, m has to grow like n log n to ensure this
constraint, due to the coupon collector’s problem.

Remark 4. In [11], a result similar to Theorem 1 is obtained under the extra
assumption of a uniform bound on en(u)/e2n(u), yielding the validity of (50) as-
suming a uniform bound on dn(K)L2/d2n(K)L2 . The recovery method used in
[11] is not of least-square type, but rather an elaboration of the pseudo-spectral
approach that would simply approximate the inner products 〈u, Lj〉 =

∫
D
uLjdµ

by a quadrature, using a hierarchical approach introduced in [24].

Ideally, one would like a “worst case” or “uniform” version of Theorem 1, in
the form

ρdetCn(K)L2 6 Kdn(K)L2 , (52)

but it is easily seen that such an estimate cannot be expected for general compacts
sets of L2, due to the fact that pointwise evaluations are not continuous in L2

norm.
It is however possible to recover such uniform estimates by mitigating the

non-achievable estimate (52) in various ways. One first approach, developed in
[14, 23], gives an inequality similar to (52), with dn(K)L2 replaced by dn(K)L∞ .
It is based on the following lemma, see Theorem 2.1 in [23], which we recall for
comparison with our Lemma 1:

Lemma 6. Assume that µ is a finite measure of mass µ(D) = M < ∞, that the
constant functions belong to Vn, and that there exists a sample X = {x1, . . . , xm}
and weights wi such that the discrete norm

‖v‖2X =
1

|X|

m∑
i=1

wi|v(xi)|2 (53)

11



satisfies a framing

β−1‖v‖2 6 ‖v‖2X 6 α‖v‖2, v ∈ Vn. (54)

Then
‖u− PX

Vnu‖ 6
√
M
(
1 +

√
αβ
)
en(u)L∞ , (55)

where en(u)L∞ = minv∈Vn ‖u− v‖L∞ .

Proof. For any v ∈ L2, we have ‖v‖2 6M‖v‖2L∞ , and as 1 ∈ Vn,

‖v‖2X 6 ‖1‖2X‖v‖2L∞ 6 α‖1‖2‖v‖2L∞ = αM‖v‖2L∞ . (56)

Hence

‖u− PX
Vnu‖ 6 ‖u− v‖+ ‖v − P

X
Vnu‖

6 ‖u− v‖+
√
β‖v − PX

Vnu‖X
6 ‖u− v‖+

√
β‖v − u‖X

6 (
√
M +

√
αβM)‖u− v‖L∞ ,

and we conclude by optimizing over v ∈ Vn.

Here, in contrast to the derivation of (10) in Lemma 1, one only uses the
framing property (54), and does not need the condition E(‖v‖2X) 6 α‖v‖2. For
this reason, one may achieve the above objective with a simpler sparsification
approach proposed in [4] and adapted in [14], which performs a greedy selection
of the points xi within the sample Y , together with the definition of weights wi
associated with these points. If the initial sample Y satisfies

1

2
I 6 GY 6

3

2
I, (57)

then, for any c > 1 the selection algorithm produces a sample X of at most cn

points such that (54) holds with α = 3
2

(
1 + 1√

c

)2
and β−1 = 1

2

(
1− 1√

c

)2
.

Optimizing the choice of Vn (but imposing that constant functions are con-
tained in this space), this leads to the following comparison result between deter-
ministic optimal recovery numbers in L2 and n-widths in L∞: for any compact
set K ∈ C(D), one has

ρdetcn (K)L2 6 C
√
Mdn−1(K)L∞ , (58)
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where C depends on c > 1. For c = 2, one can take C = 11. We refer to [14, 23]
where this type of result is established.

Another approach consists in making pointwise evaluations continuous by re-
striction to the case whereK = BH is the unit ball of a reproducing kernel Hilbert
space H ⊂ L2, and assuming that the sequence (dn(BH)L2)n>1 is `2-summable.
The following result from [19], also based on the sparsification techniques from
[17], improves on a bound found in [12]

ρdetCn(BH)
2 6 K

log n

n

∑
k>n

dk(BH)
2
L2 , (59)

In [13], a similar inequality is established for more general compact classes K of
L2 such that point evaluation is well defined on functions ofK, however now with
`p sums with p < 2 replacing `2 sums.

In the above inequality, the logarithmic factor appears as a residual of the
result obtained before sparsification, contrarily to the bounds (50) and (58), which
do not explicitely depend on the size of the initial sample Y . This results in a gap
of a factor log n between (59) and known lower bounds for ρdetCn(BH)

2, see [19].

5 Computational aspects
The various results (50), (58), (59) ensure the existence of good sampling and
reconstructions algorithms in various settings. We end by a discussion on the
computational cost of these strategies.

For the weighted least-squares methods corresponding to samples Z and Y ,
the most expensive step consists in assembling the matrix GZ as a sum of m ma-
trices of size n, so the algorithmic complexity is of orderO(mn2) = O(n3 log n).
Besides, to obtain GY , this step may need to be repeated a few times, as explained
in Remark 1, but this only affects the offline complexity by a small random factor.

Note that we assumed that an orthogonal basis (L1, . . . , Ln) of Vn is explicitly
known, which might not be the case for irregular domains D. However, under
reasonable assumptions on D or Vn, one can compute an approximately orthog-
onal basis (L̃1, . . . , L̃n), either by performing a first discretization of D with a
large number of points, or by using a hierarchical method on a sequence of nested
spaces V1 ⊂ · · · ⊂ Vn, see [1, 3, 5, 8, 15, 16]. These additional steps have com-
plexities O(Knn

2) and O(n4) respectively, where Kn is the maximal value of the
inverse Christoffel function

∑n
j=1 |Lj|2 which might grow more than linearly with
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n for certain choices of spaces Vn. Results similar to Lemma 3 have been obtained
in the above references, with (Lj)j=1,...,n replaced by (L̃j)j=1,...,n.

One could stop at this point and compute the approximation ũ = P Y
Vn
u, which

satisfies error bounds both in expectation when comparing to en(u), see Lemma
3, or uniformly when comparing to en(u)L∞ , see Theorem 1 (iii) in [6]. Once the
measurements of u are performed, the computation of ũ requires to solve a n× n
linear system as in Remark 2, so the online stage takes a time O(τn log n + n3),
where τ is the cost of each measurement of u.

However, in applications where the evaluation cost τ becomes very high (for
example when each evaluation x 7→ u(x) requires solving a PDE by some numer-
ical code, or running a physical experiment), further reduction of the size of the
sample may prove interesting, and justifies the interest for sparsification methods.
The greedy selection method from [4], which is used in [23] and leads to (58),
has a complexity in O(mn3) = O(n4 log n), but it can only be applied to the
worst-case setting, with the uniform error bound en(u)L∞ .

On the other hand, the iterative splitting method that we have used in this
paper following the ideas from [17, 19] is not easily implemented, and one ob-
vious method consists in testing all partitions of {1, . . . ,m} into sets S1 and S2

when applying Lemma 4. Note that this lemma is in practice used L times, with
L = O(log log n) since 2L = O(m

n
) = O(log n). The algorithm consisting in

subdividing the sample L times, each time checking that the Gram matrices cor-
responding to S1 and S2 are well conditioned, and keeping one such subset at ran-
dom, thus has an exponential complexity O(2mn3) = O(ncn). Having a different
strategy that would produce the random sample in polynomial time is currently an
open problem to us.

We summarise these computational observations in the following table, which
illustrates the conflicts between reducing the sampling budget, ensuring optimal
approximation results, and maintaining a reasonable cost for sample generation.

sampling
complexity

sample
cardinality m

offline
complexity

E(‖u− ũ‖2)
6 Cen(u)

2

‖u− ũ‖2
6 Cen(u)

2
L∞

conditionned
ρ⊗m |E 10n log(4n) O(n3 log n) 3 3

+ deterministic
sparsification [4] (1 + ε)n O(n4 log n) 7 3

+ random
sparsification [17] Cn O(ncn)→ O(nr) ? 3 3
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As a final remark, let us to emphasize that although the results presented in our
paper are mainly theorical and not practically satisfactory, due both to the compu-
tational complexity of the sparsification, and to the high values of the numerical
constants C and K in Theorem 1, they provide some intuitive justification to the
boosted least-squares methods presented in [8], which consist in removing points
from the initial sample as long as the corresponding Gram matrix GX remains
well conditioned. For instance, Lemma 4 allows to keep splitting the sample even
after L steps, if one still has a framing 1

2
I 6 GX 6 3

2
I and a sufficiently large

ration |X|
n

. Nevertheless, it would be of much interest to find a randomized version
of [4] giving a bound of the form (50), since this would give algorithmic tractabil-
ity, smaller values for C and K, and the possibility to balance these constants in
Theorem 1.
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