This document specifies the Relaxed JSON (RJSON) format, which is intended as a generic data specification format. RJSON is both a super-set of the JavaScript Object Notation (JSON) [], and a subset of the "YAML Ain't Markup Language" (YAML) format [].

JSON is an established format for data exchange. It is a small, yet expressive, language which is easy to parse and generate. On the negative side, it is not well adapted for manual reading.

YAML is a super-set of JSON with the purpose of being more human-friendly. It extends JSON with comments, many different string literal forms, layout-indented sequences, and much more. However, the richness of the language entails a large language specification and requires more complex tools for parsing and generation.

RJSON strikes a balance between these two formats. It extends JSON with a restricted set of features from YAML, but keeps the format simple to define, parse and generate. RJSON only adds alternative syntactic forms from YAML, and avoids features that increase the expressive power of the format. As a consequence, RJSON is easily translatable to JSON without loss of data.

Outline

Section gives an informal overview of JSON and the RJSON extensions. The rest of the document is a formal specification of RJSON. Section contains notations used in the document. Sections -specifies the grammar of RJSON. Section specifies the translation from RJSON to JSON.

Requirement levels

This document uses the recommended keywords in RFC [] to indicate requirement levels, in short Shall (Must) an absolute requirement of the specification.

Should (Recommended) an item that may be ignored after careful consideration May (Optional) an optional item.

Definitions

The following acronyms are used in this document: The abbreviation iff is used as a short-hand for if, and only if.

Contact

If you have questions or comments concerning this document, or want to report an error or omission, you are welcome to contact our support staff at: support@prover.com For other inquiries please refer to the contact details on our Web page: https://www.prover.com/about-us/contact-us/

We welcome your comments on our products, so please don't hesitate to contact us.

RJSON Format Overview

In summary, an RJSON file contains literal values and collections. The literals are the Boolean constants, strings, numbers and a null value. There are two kinds of collections in RJSON. A list is an ordered sequence of elements. A map or dictionary is an unordered sequence of members, which are pairs of a string key and an associated value. Elements and member values may be literals or nested collections.

The rest of this section gives a quick overview of the RJSON format with examples, and also point out the differences to the JSON format.

Encoding and lexical conventions

An RJSON file shall, as the case for JSON, be encoded in UTF-8. Items in the format are separated by spaces, tabs or newlines. It may also contain line-comments starting with a hash-mark #.

This is a comment

Comments are not part of JSON but is an extension of RJSON to facilitate manual inspection.

Constants

RJSON has the same literal constants as JSON. These consists of the Boolean truth constants and the special null value true false null

The null constant is typically used as a generic place-holder for an empty or unknown value in a map.

Numbers

RJSON has the same format for number literals as JSON. These are written in decimal notation and may contain a fractional part and/or an exponential part written in scientific notation. 25 -88 256.77 -12.34 2.19e-5 250e9 Numbers have their standard mathematical meaning. However, an application reading RJSON data typically converts them to values suitable for further computerized processing, e.g. -bit floating point numbers.

Strings

Strings in JSON are enclosed in double quotes and must be written in a single line. Multi-line strings can be represented by inserting occurrences of \n, encoding a newline character. There are also such escape sequences for special characters like tabs, carriage returns, etc., and also for arbitrary Unicode characters.

A simple string

A string with newline \n, quote \ , and tab \t character A string with a Unicode \u263A (smiley) character All possible sequences of Unicode characters can be represented by JSON strings, but longer texts are awkward to read as single line strings, and the enclosing quotes clutters the format when occurring in dictionary keys. RJSON therefore adds the following forms of string literals:

. A string containing only alphanumerical characters and a restricted set of punctuation characters may be written without the enclosing quotes.

unquoted-string

. Double quoted strings are allowed to stretch multiple lines, giving a readable layout of longer texts.

A double-quoted, multi-line string. Trailing and initial spaces in continued lines are collapsed to one space. A backslash-\ escaped linebreak continues the text without separating space.

An empty line is interpreted as a newline character.

. A single quoted string is similar to a double quoted string, but without backslash escape sequences. Two single-quotes are used to insert the single-quote itself, continued and empty lines are interpreted as for double-quoted strings.

A single-quoted string with verbatim quote and backslash \.

Collections, explicit format JSON, and therefore also RJSON, includes two forms of collections:

• Ordered lists of elements, where an element can be of any type including a nested collection. Lists are enclosed in square brackets, with comma-separated elements.

[element, 2, null, [nested element , true]]

• Maps, represented as unordered lists of members, where a member consists of a string key and an associated value of any type. Maps are enclosed in curly braces, with comma-separated members. A colon is used to separate the member key from its value.

{ key1 : 88, key2 : [true, false], nested map : {a : 3} }

An RJSON map must have unique keys, which is merely a recommendation in the JSON standard. A minor RJSON extension is that both collection types may have a trailing comma, which is convenient when generating RJSON from an application.

Collections, layout sensitive format

Manual inspection of deeply nested collections is easier if the collection items are consistently indented. Using indentation and line breaks, RJSON also allows that some separators and delimiters can be omitted.

Each element in a layout formatted list is prefixed with a hyphen. The elements are separated by line-breaks and shall be indented to the same level.

-element -2 -null --nested element -true

The members in a layout formatted map are, similar to list elements, separated by line-breaks and indented to the same level.

key1 : 88 key2 :

-true -false nested map : a : 3

An explicit collection may be nested in a layout formatted collection, but not vice versa, e.g. The next example contains exactly the same data as the previous, but is formatted using RJSON extensions. This section contains notations for data types and grammars used in the rest of the document.

Data types

Let 𝑋 be any set and 𝑛 any natural number in the definitions below. Let |𝑋 | be the size of 𝑋. Given a function 𝑓 : 𝑋 → 𝑌 and 𝑋 ⊆ 𝑋, let 𝑓 (𝑋) be the set

{ 𝑓 (𝑎) | 𝑎 ∈ 𝑋 }.

Tuples, lists and strings

For any tuple 𝑡 = (𝑡 1 , 𝑡 2 , . . . , 𝑡 𝑛), let |𝑡| = 𝑛 be the length of 𝑡, and let

𝜋 𝑖 (𝑡) = 𝑡 𝑖 denote the 𝑖th element of 𝑡 when 1 ≤ 𝑖 ≤ 𝑛. A list of 𝑋 is a function 𝑓 : 0 . . 𝑛 -1 → 𝑋 where | 𝑓 | = 𝑛 is the length of the list. A list 𝐿 can be denoted by the notation [𝑥 0 , 𝑥 1 , . . . , 𝑥 𝑛-1] where 𝐿(𝑖) = 𝑥 𝑖 , 0 ≤ 𝑖 < 𝑛.
For 𝑥 ∈ 𝑋 and lists 𝑢 and 𝑣 of 𝑋, 𝑢 ⊕ 𝑣 is their concatenation and 𝑥 ::

𝑢 is [𝑥] ⊕ 𝑢.
A character is a Unicode value, i.e. an integer in range U+0000 ..U+D7FF or U+E000..U+10FFFF. A string is a list of characters.

Records and disjoint unions

A record type is a set of pairs 𝑅 = {(𝑐 1 , 𝐴 1), (𝑐 2 , 𝐴 2), . . . , (𝑐 𝑛 , 𝐴 𝑛)} where 𝑐 1 , 𝑐 2 , . . . , 𝑐 𝑛 , are distinct fields of the type, and each 𝐴 𝑖 is any set. A record of type 𝑅 is a corresponding set of pairs 𝑟 = {(𝑐 1 , 𝑎 1), (𝑐 2 , 𝑎 2), . . . , (𝑐 𝑛 , 𝑎 𝑛)} where each 𝑎 𝑖 ∈ 𝐴 𝑖 . The notation 𝑟.𝑐 𝑖 denotes 𝑎 𝑖 and a pair in 𝑟 may also be denoted by 𝑐 𝑖 = 𝑎 𝑖 .

A tagged or disjoint union is denoted by a type definition

𝑡 = 𝐶 1 + 𝐶 2 + • • • + 𝐶 𝑚 + 𝑇 1 (𝑡 1) + 𝑇 2 (𝑡 2) + • • • + 𝑇 𝑛 (𝑡 𝑛)
where each 𝑡 𝑖 is a non-empty type, each 𝐶 𝑖 is a 0-ary constructor, and each 𝑇 𝑖 a unary constructor. The type 𝑡 is the union of all values 𝐶 𝑖 and all values 𝑛 𝑖=1 { 𝑇 𝑖 (𝑥) | 𝑥 ∈ 𝑡 𝑖 }. The parenthesis may be omitted for tagged values.

Grammars

A grammar is a set of rules of the form 𝑛 ← 𝑒, where the identifier 𝑛 is a nonterminal, defined by a grammar expression 𝑒. A grammar has a dedicated start rule, and each non-terminal is defined exactly once. An input for a grammar is a list of terminal symbols. An expression can match or fail to match an input, and a grammar matches an input if it is matched by the expression in the start rule. A grammar expression is one of the following: 𝑡 A terminal, matches an an initial occurrence of 𝑡, the matched terminal is also consumed, i.e. removed from the input.

. The dot operator matches, and consumes, any terminal.

𝑛

A non-terminal, matches according to its defining expression. Let a terminal set be a grammar expressions that can be rewritten to the form

𝜖

(𝑡 1 |𝑡 2 | . . . |𝑡 𝑛)
where each 𝑡 𝑖 is a terminal. The expression matches all terminals in s 1 except those in s 2 . The operands must be terminal sets and the result may not be empty.

A parser is an implementation of a grammar, a program that recognizes valid inputs in accordance to the grammar, and also returns an AST for such input.

Text grammars

Extra notations are used for text grammars, with character terminals.

%hex

A character given by a hexadecimal number hex. 'cs'

A string of printable characters enclosed in single quotes is used for both a single character and for abbreviating the concatenation of multiple characters. c 1 -c 2 A range, a character set matching all characters from c 1 to c 2 . The operands are characters, and the range shall be non-empty. [c 1 . . . c n] An alternative notation for (c 1 |. . . |c n) where each c i must be a character set.

The following predefined rules are used for characters and character sets.

TAB <-%09 (* Horizontal Tab *) LF <-%0A (* Linefeed *) CR <-%0D (* Carriage Return *) SP <-%20 (* Space *) SQ <-%27 (* Single Quote *) digit <-0 -9 hexdig <-A -F | digit alpha <-a -z | A -Z alnum <-alpha | digit

Token grammars

A language is often parsed in two passes, an initial text parser produces a stream of tokens which is used as terminal input for a separate token parser. The type of the tokens is a disjoint union

𝑡 = 𝐶 1 + 𝐶 2 + • • • + 𝐶 𝑚 + 𝑇 1 (𝑡 1) + 𝑇 2 (𝑡 2) + • • • + 𝑇 𝑛 (𝑡 𝑛)
The following extra notations are used for terminals from such a type:

Semantic values and actions

Semantic actions are used to specify a syntax-driven translation from a successful match of the input. Actions are written enclosed in curly braces after each branch of a rule. The following example illustrates the notation:

exp <- | i=INT { i } | e 1 =exp / e 2 =exp ?{ e 2 ≠ 0 } { e 1 / e 2 }
Given a rule for a non-terminal 𝑛, the actions of the rule specifies a semantic value for a matched occurrence of 𝑛. The value is composed of already calculated values for matched non-terminals, matched terminals, and parameters (c.f. Section .).

Values of grammar items are accessed by assigning a variable to the item, 𝑣 = item.

The final value of a matched input is the calculated value of the start non-terminal.

Actions are omitted for non-terminals which are not used for the translation. They may also be omitted for rules with a single terminal or non-terminal in each branch, such rules have a default interpretation as follows:

id <-x=a 1 { x } | x=a 2 { x } | ... | x=a n { x }
As a special notation in actions, let 𝛼 denote the part of the input consumed by the branch. Hence, for a text grammar 𝛼 is a string. This section describes the lexical elements of RJSON and how to translate an RJSON input file to a list of tokens.

Encoding and character set

A JSON source file shall be encoded in UTF-8. RJSON additionally requires that the file does not begin with a BOM sequence and only contains valid UTF-8 byte sequences. This is recommended, but not mandated by JSON which leaves to the implementation how to process malformed input. In the rest of this specification it is presupposed that the input has been initially decoded to Unicode values, an implementation may use any internal representation.

The allowed characters in an RJSON file include all valid Unicode values above U+20, and additionally tab, carriage return and linefeed.

char <-TAB | LF | CR | non-c0 non-c0 <-%20-%D7FF | %E000-%10FFFF

White space

White space consists of spaces, tabs and line breaks. Line-break characters in RJSON are the linefeed and carriage return character. All line-ending combinations of the major OS systems are allowed.

white <-SP | TAB | break break <-CR LF / CR / LF

The allowed white-space is compatible with both JSON and YAML.

Comments

A comment starts with '#' and ends with a line-break (or EOF). The format for comments is shared with YAML, there are no comments in JSON. In order to be compatible with YAML the '#' must be separated from a preceding item by white space.

comment <-(^|white) # (char ~(LF|CR))* (break|$)

It is recommended not to end a comment with EOF.

Numbers

The format for numbers is shared with JSON. number <--? nat frac? exp?

{ NUM{v=𝛼} } frac <-. digit!+ exp <-(e | E) (-| +)? digit!+ nat <-0 | 1 -9 digit!*
The JSON standard allows for other encodings for a source file if used in a "closed ecosystem".

Note that the JSON standard does not distinguish integers and real numbers. Neither does it mandate a specific interpretation of numbers for computerized processing, e.g. as -bit floating point numbers. It is left to an application reading JSON data to specify such an interpretation and give further constraints regarding size and precision. This approach is shared by RJSON. Until an external specification is given, numbers represents their corresponding mathematical values. The token value in the grammar above is the verbatim literal, keeping the exact form from the input.

Constants

RJSON shares with JSON constants for Boolean values and the null value.

const <-cname !uchar { CONST{v=𝛼} } cname <-null | true | false
The semantic value of a constant is a tagged record with the literal string stored in in a field v. A constant can not be the prefix of an unquoted string, see Section . .

Strings

RJSON have three types of string literals: unquoted, single-quoted, and doublequoted strings. Let nl(𝑠) be true iff the string 𝑠 contains line break characters (LF or CR). The semantic value of an RJSON string is a tagged record with the following fields:

• The field v is the interpretation of the string. It is defined in the following subsections for each string type.

• The Boolean field q is true iff the string is quoted.

• The Boolean field m is true iff the string is a multi-line string. This is always false for unquoted strings, which may not contain line breaks.

• The integer field l is the length of the string including enclosing quotes. An implementation may interpret this as either the number of decoded Unicode characters or the byte-length of the original UTF-8 encoded input string.

Unquoted strings

An unquoted string in RJSON is a non-empty string including a limited set of printable ASCII letters:

uquoted <-!const (alpha| _) uchar!* { 𝛼 } uchar <-(alnum|upunct) upunct <-[! $ % & () * + - . / ; < = > ? @ | \ ^ _ ~]
The value of an unquoted string is the string itself. Note that a constant must be quoted if intended to be interpreted as a string. JSON has no unquoted string format. YAML has unquoted strings but allows more included characters than above.

Single-quoted strings

A single-quoted string can contain printable characters and line-breaks. Two consecutive single quotes represents the single quote itself. The value of a single-quoted string, sv(𝛼), is given by: (i) removing the enclosing quotes, (ii) reducing pairs of single quotes to one, and (iii) replacing sub-strings containing line-breaks (break) according to the next subsection.

JSON has only double-quoted strings, YAML has single quoted strings but allows more included characters than above.

Interpretation of line breaks

Included line-breaks in single-quoted strings can be used for a folded layout of long strings. The informal meaning is that trailing and initial spaces in continued lines are ignored, and that empty lines represents newlines.

Formally, let 𝑏 be a sub-string of a single-quoted string 𝑠 such that 𝑏 is a maximal match of the expression (SP* break)+ SP*. Now, let 𝑘 be the number of line-breaks (break) in 𝑏, it follows that 𝑘 ≥ 1. If 𝑘 = 1, 𝑏 is interpreted as one space (SP), otherwise as 𝑘 -1 linefeeds (LF).

Double-quoted strings

A string enclosed in double quotes, can represent any string using literal characters and escape sequences starting with '\'.

dquoted <- (unesc|esc|sbreak)* { dv(𝛼) } unesc <-non-c0 ~[\] esc <-\ (char-esc|ctrl-esc| u hexdig{4}) char-esc <-[\ /] ctrl-esc <-[b f n r t] sbreak <-\ ? break
The value of a double-quoted string, dv(𝛼), is given by removing the enclosing quotes and then replacing sub-strings containing escape sequences (esc) and line-breaks (sbreak) according to the following two subsections.

Interpretation of escape sequences

The interpretation of escape sequences is given by the following table:

\b ↦ → U+08 \t ↦ → U+09 \n ↦ → U+0A \f ↦ → U+0C \r ↦ → U+0D \ ↦ → U+22 \/ ↦ → U+2F \\ ↦ → U+5C \uN ↦ → U+N
In the normal case, the escape \uN may only refer to a valid Unicode character in range U+0000..U+D7FF or U+E000..U+FFFF. An exception is constituted by two consecutive escapes \uM and \uN when 𝑀 is a UTF16 lead surrogate in the interval U+D800..U+DBFF and 𝑁 is a UTF16 trail surrogate in the interval U+DC00..U+DFFF. Such a pair shall be interpreted as a single Unicode value in accordance with the UTF16 standard, see e.g. []. This is the only valid use of surrogate values, lead or trail surrogates can not be included as hexadecimal escapes unless part of a valid pair.

Interpretation of line breaks

Included line-breaks in double-quoted strings can be used for a folded layout of long strings. Multi-line strings are only a convenience and can be rewritten without line-breaks. The informal meaning is is that trailing and initial spaces in continued lines are ignored, unescaped line-breaks are replaced by a single space, and empty lines represents newlines. Escaped line-breaks are removed but spaces preceding them are kept. Let, in the example below, ␣ represent a space and ↓ a line-break, the multi-line string

␣A␣␣ ↓ ␣␣ ↓ ␣␣B␣␣\ ↓ ␣␣C␣␣ ↓ ␣␣D
has the same interpretation as the single-line string ␣A\nB␣␣C␣D .

The following two cases formally specify how sub-strings containing line-breaks shall be interpreted in a multi-line string 𝑠.

Unescaped line break.

Let 𝑏 be sub-string of 𝑠 such that:

• for some 𝑛 ≥ 0, 𝑏 is matched by SP* break (SP* break){n} SP*,

• 𝑏 is not preceded by a \ in 𝑠, and • 𝑏 is not a sub-string of another such match.

Then if 𝑛 = 0, 𝑏 is interpreted as one space (SP), otherwise as 𝑛 linefeeds (LF).

Escaped line break.

Let 𝑏 be sub-string of 𝑠 such that:

• for some 𝑛 ≥ 0, 𝑏 is matched by '\' break (SP* break){n} SP*, and

• 𝑏 is not a sub-string of another such match.

Then 𝑏 is interpreted as 𝑛 linefeeds (LF).

JSON and YAML compatibility

A double-quoted, single-line string is a JSON string. A double-quoted, multi-line string is a YAML string, but YAML allows also other control characters to be included. YAML also adds several modifiers for the interpretation of double-quoted strings, which are not allowed in RJSON.

Symbols

The following characters are the symbols of RJSON.

symbol <- | [{ LBRACK{} } |] { RBRACK{} } | { { LBRACE{} } | } { RBRACE{} } | , { COMMA{} } | -&white { HYPHEN{} } | : &white { COLON{sep=1} } | : !white { COLON{sep=0} }
In order to be compatible with YAML '-' must be followed by white space. In some contexts it is also required that ':' is followed by white space. This information is therefore saved in a Boolean record field sep.

Tokens

Let the tokens of RJSON include constants, numbers, strings, and symbols, as described in the previous sections. The tokenizer skips white space and comments and transforms a valid RJSON file into a list of tokens, where each token is a tagged record. In order to handle layout-sensitive syntax, the record value 𝑟 for each token 𝑇 is extended with fields for position and indentation level:

𝑟.𝑖 where 𝑟.𝑖 is the line-indent of T, defined as the number of initial spaces in the line where 𝑇 occurs. Note that only spaces are counted, tab characters can not be used for indentation.

𝑟.𝑐

where 𝑟.𝑐 is the column number of T, counting from zero. The token occurs immediately after the indentation in a line iff 𝑟.𝑖 = 𝑟.𝑐. Note that this is not the same as being the first token in a line, in view of possible initial tab characters.

Because tab characters are not part of the indentation and can confuse the reading of an RJSON file, a parser is recommended to emit a warning if these are used in the initial white space prefix of a line.

In the grammar listings in this section it is presupposed the input has been tokenized as described in Section . .

RJSON AST

The subsequent grammar listings for RJSON will also contain semantic actions showing how to translate RJSON to an AST, which compactly represents the contents of an RJSON file. The AST has the following nodes Const(𝑐) 𝑐 is null, true, or false, Str(𝑠) 𝑠 is a string, Num(𝑛) 𝑛 is a decimal, real number, List(𝑒)

𝑒 is a list of AST nodes, Map(𝑚) 𝑚 is a set of pairs, each containing a string and an AST node.

Flow values

The flow values and collection forms are similar to the JSON subset of RJSON, using explicit syntax for the separators, and enclosing delimiters of lists and maps. However, because these values may be used at an increased indentation level, there are layout restrictions, which are specified using parameterized grammar rules and semantic predicates. Semantic actions are used to specify the translation to an AST from a successful parse.

Listing  Flow values flow-val(n) <- | x=literal(n) { x } | xs=flow-list(n) { List(xs) } | xs=flow-map(n) { Map(xs) } flow-list(n) <- | lbrack(n) rbrack(n) { [] } | lbrack(n) xs=flow-elems(n) comma(n)? rbrack(n) { xs } flow-elems(n) <- | x=flow-val(n) { [x] } | x=flow-val(n) comma(n) xs=flow-elems(n) { x :: xs } flow-map(n) <- | lbrace(n) rbrace(n) { } | lbrace(n) xs=flow-members(n) comma(n)? rbrace(n) { xs } flow-members(n) <- | x=flow-mem(n) { {x} } | x=flow-mem(n) comma(n) xs=flow-members(n) ?{ 𝜋 1 (x) ∉ 𝜋 1 (xs) } { {x} ∪ xs } flow-mem(n) <-s=STR c=COLON x=flow-val(n) ?{ c.i ≥ n & s.i ≥ n & not s.m & (s.q or c.sep) } { (s.v, x) } lbrack(n) <-t=LBRACK ?{ t.i ≥ n } rbrack(n) <-t=RBRACK ?{ t.i ≥ n } lbrace(n) <-t=LBRACE ?{ t.i ≥ n } rbrace(n) <-t=RBRACE ?{ t.i ≥ n } comma(n) <-t=COMMA ?{ t.i ≥ n } literal(n) <- | t=CONST ?{ t.i ≥ n } { Const(t.v) } | t=NUM ?{ t.i ≥ n } { Num(t.v) } | t=STR ?{ t.i ≥ n } { Str(t.v) }
In order to be compatible with YAML it is required that if a member key is unquoted, there must be white space between ':' and the member value. Multi-line strings can not be used as member keys. It is also required that all keys in a flow map are unique, a requirement that is shared by YAML, but is only a recommendation in JSON. Note that flow lists and maps may contain a trailing comma, which is not allowed in JSON.

Block values

Block collections use indentation to indicate the start and end, and uses line breaks to separate contained items. A nested block collection must be further indented than its parent.

Listing  Block values block-val(n) <- | x=flow-val(n) { x } | xs=block-list(n) { List(xs) } | xs=block-map(n) { Map(xs) } block-list(n) <- hyphen(m) ?{ m > n } x=block-val(m) xs=block-elems(m) { x :: xs } block-elems(n) <- | hyphen(n) x=block-val(n) xs=block-elems(n) { x :: xs } | 𝜖 { [] } block-map(n) <- x=block-mem(m) ?{ m > n } xs=block-members(m) ?{ 𝜋 1 (x) ∉ 𝜋 1 (xs) } { {x} ∪ xs } block-members(n) <- | x=block-mem(n) xs=block-members(n) ?{ 𝜋 1 (x) ∉ 𝜋 1 (xs) } { {x} ∪ xs } | 𝜖 { } block-mem(n) <-s=STR c=COLON x=block-val(n) ?{ c.i ≥ n & s.i = n & s.c = n & not s.m & s.l ≤ 1024 & (s.q or c.sep) } { (s, x) } hyphen(n) <-t=HYPHEN ?{ t.i = n & t.c = n }
As the case for flow maps, it is required that member keys are unique in a map, each key is in a single line, and that the ':' and the member value are separated if the key is unquoted. The extra condition on the length of a block member key is compatible with YAML.

YAML requires a block key to contain ≤ 1024 characters. We allow a stricter condition when the implementation interprets the length of a string as its encoded byte-length, c.f. Section . .

RJSON file

The RJSON format can now be defined as follows:

Listing  RJSON file rjson <-x=block-val(-1) $ { x }
That is, the content of a file in RJSON format is a single block value. The parameter value -1 is chosen to allow any initial indentation level. It is recommended that RJSON files have the extension .rjson.

Input order of maps

The semantic value of a map is a set of pairs in the grammar above, and we have previously stressed that the order of map members is semantically insignificant. However, if the RJSON file shall be translated to canonic JSON as described in Section . , an implementation must also save the input order of the pairs.

Translation of RJSON to JSON

RJSON is designed to be a human friendly interface format for JSON. This section describes a correct translation from RJSON to JSON.

Rendering JSON

The AST for RJSON is also a suitable model for JSON. Because the grammar specifications for RJSON in Section specifies the translation to the AST, it only remains to render the AST as JSON output. A rendering function 𝛿 shall satisfy the following requirements:

𝛿 Const(𝑐)

The value 𝑐 itself.

𝛿 Num(𝑛)

A JSON formatted number literal 𝑚, with mathematical value equal to the value of 𝑛. Literals 𝑚 and 𝑛 may be different, but 𝑚 may only have an exponent or fraction if, and only if, this is also the case for 𝑛.

𝛿 Str(𝑠)

A JSON-style string, i.e. an RJSON double-quoted and single-line string, with interpretation 𝑠.

𝛿 List(𝑒) Let 𝑒 be the result of mapping each element 𝑣 in 𝑒 to 𝛿 𝑣. The final result shall be the comma-separated items in 𝑒 with preserved order and enclosed by brackets.

𝛿 Map(𝑚)

Let 𝑚 be the result of mapping each member (𝑘, 𝑣) in 𝑚 to 𝛿 Str(𝑘) : 𝛿 𝑣. The final result shall be the comma-separated items in 𝑚 in any order and enclosed by braces.

Allowed white space characters in JSON are TAB, SP, CR and LF. The rendering function may add any amount of such white space between literals and symbols, even none. The renderer may choose to use escape sequences in strings, e.g. with the purpose of outputting ASCII-text only. Note that comments are not part of JSON, and trailing commas are not allowed in JSON lists and maps. The result shall be encoded in UTF-8, and a file containing the translation is recommended to have the .json extension.

Canonical rendering of JSON

This section specifies a canonical representation of the JSON AST. This can be of importance for safety critical uses of RJSON when two separate JSON outputs shall be compared for equality.

𝛿 Const(𝑐)

The value 𝑐 itself.

𝛿 Num(𝑛)

The verbatim number literal 𝑛.

𝛿 Str(𝑠) A JSON-style string, i.e. an RJSON double-quoted and single-line string, with interpretation 𝑠. The following escape sequences, but no else, shall be used for the string representation:

. Character escapes are used for the following characters: U+09 ↦ → \t, U+0A ↦ → \n, U+0D ↦ → \r, U+22 ↦ → \ , and U+5C ↦ → \\.

. Any character in the range U+00..U+19, not included in the previous item, shall be represented with a hexadecimal escape sequence (\uHHHH).

. For compatibility with JSON practices when used for XML and HTML fragments, a sub-string </ shall be represented as <\/.

𝛿 List(𝑒) Let 𝑒 be the result of mapping each element 𝑣 in 𝑒 to 𝛿 𝑣. The final result shall be the comma-separated items in 𝑒 , with preserved order, enclosed by brackets. Each comma shall be followed by a line break (LF).

𝛿 Map(𝑚)

Let 𝑚 be the result of mapping each member (𝑘, 𝑣) in 𝑚 to 𝛿 Str(𝑘) : 𝛿 𝑣, without separating spaces. The final result shall be the comma-separated items in 𝑚 enclosed by braces, with preserved order of the original map members (c.f. Section .). Each comma shall be followed by a line break (LF).

If the result is written to a file it shall be encoded in UTF-8 and the file shall end with a single line break (LF). Note that besides the final line break and the line breaks after commas in lists and maps, no other white space shall be added. The resulting file shall have the .json extension.

This document is a specification of the RJSON format and its interpretation. The idea of using layout-annotated tokens is inspired by []. The approach in the specification may also be used for a parser implementation. That is, a tokenizer that records layout data as token attributes and a token parser with the current indentation level as a parameter, which is checked against the token attributes. Following the specification in this direct manner is not required, but has the advantage of facilitating a review of correctness.

 STR{v=x, q=0, m=0, l=|𝛼|} } | x=squoted { STR{v=x, q=1, m=nl(𝛼), l=|𝛼|} } | x=dquoted { STR{v=x, q=1, m=nl(𝛼), l=|𝛼|} }

 squoted <-SQ schar* SQ { sv(𝛼) } schar <-non-c0 ~SQ | SQ SQ | break

 token <-const | number | string | symbol

 tokenizer <-xs=tokens (white|comment)* $ { xs } tokens <-(white|comment)* x=token xs=tokens { x::xs } | 𝜖 { [] }

 With Learning JavaScript Design Patterns, you ll ←↪ learn how to write beautiful, structured, and maintainable JavaScript ←↪ by applying classical and modern design patterns to the language. If ←↪ you want to keep your code efficient, more manageable, and up-to-date ←↪ with the latest best practices, this book is for you. , website : http://www.addyosmani.com/resources/ ←↪ essentialjsdesignpatterns/book/ }]

	title : Learning JavaScript Design Patterns ,
	subtitle : A JavaScript and jQuery Developer s Guide ,
	author : Addy Osmani ,
	published : 2012-07-01T00:00:00.000Z ,
	publisher : O Reilly Media ,
	pages : 254,
	description :
	key1 : 88
	key2 : [true, false]
	nested map : {a : 3}
	RJSON file
	An RJSON file consists of a single value, typically a toplevel list or map. The
	following example file is a small part of a book catalogue. It is formatted using
	JSON only and illustrates some of its shortcomings for manual reading.
	Listing  JSON example the ←↪ symbol indicates the continuation of a single line
	[
	{
	isbn : 9781593275846 ,
	title : Eloquent JavaScript, Second Edition ,
	subtitle : A Modern Introduction to Programming ,
	author : Marijn Haverbeke ,
	published : 2014-12-14T00:00:00.000Z ,
	publisher : No Starch Press ,
	pages : 472,
	description : JavaScript lies at the heart of almost every ←↪
	modern web application, from social apps to the newest browser-based ←↪
	games. Though simple for beginners to pick up and play with, JavaScript ←↪
	is a flexible, complex language that you can use to build full-scale ←↪
	applications. ,
	website : http://eloquentjavascript.net/
	},
	{
	isbn : 9781449331818 ,

 Null operator, matches any input. ^Begin of input, matches only at the beginning of the original input. Greedy iteration, matches all subsequent occurrences of e. Equivalent to a non-terminal 𝑥 defined as 𝑥 ← 𝑒𝑥/𝜖. e 1 e 2 Concatenation, matches if first e 1 matches and then e 2 matches the remaining input.

	?{c} e 1 |e 2 e* &e e+ e? e!+ $ e{n} e 1 /e !e s 1 ~s2	Semantic predicate, matches if the Boolean term c is true. Unordered choice, matches if any of e 1 or e 2 does. Iteration, matches any number of occurrences of e. Equivalent to a non-terminal 𝑥 defined as 𝑥 ← 𝑒𝑥 | 𝜖. Negative lookahead, matches if e fails. Positive lookhead, defined as !!e. Iteration at least one time, defined as e+ = e e*. Iteration at most one time, defined as e? = e | 𝜖. Greedy iteration at least one time, defined as e!+ = e e!*. End of input, defined as $ = !., matches only the empty input. Iteration 𝑛 times, a shortcut for 𝑛 concatenated occurrences of 𝑒.

2

Ordered choice, matches if any of e 1 or e 2 does, but e 2 may only be tried if e 1 fails. e!*

 𝐶 𝑖Matches a single terminal, a constant of 𝑡. 𝑇 𝑖 (𝑐) Matches a single terminal, a tagged value in 𝑡 where 𝑐 ∈ 𝑡 𝑖 . 𝑇 𝑖 Matches any value 𝑇 𝑖 (𝑥), 𝑥 ∈ 𝑡 𝑖 . 𝑣 = 𝑇 𝑖 Matches any value 𝑇 𝑖 (𝑥), 𝑥 ∈ 𝑡 𝑖 , and also assigns a variable 𝑣 to the value 𝑥 of the matched terminal. RJSON imports syntax from YAML which depend on the current indentation level. An extension of grammar rules is used in order to conveniently express layout dependent syntax. A parametric rule has the form 𝑝(𝑥 1 , 𝑥 2 , . . . , 𝑥 𝑛) ← 𝑒, 𝑛 ≥ 1, where any of 𝑥 𝑖 may occur in 𝑒. A parameter is normally annotated with a type of the form 𝑥 𝑖 : 𝑡 in the definition, but the annotation can be omitted if the type can be inferred from its use. Parameters may occur in semantic actions, see next section, and in semantic predicates. A parametric rule is a schema for a set of non-parametric rules.

	3.5 Parametric grammars