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Simple Summary: It is well known that actin forms a cytoplasmic network of microfilaments, the
part of the cytoskeleton, in the cytoplasm of eukaryotic cells. The presence of nuclear actin was elusive
for a very long time. Now, there is a very strong evidence that actin plays many important roles in the
nucleus. Here, we discuss the recently discovered functions of the nuclear actin pool. Actin does not
have nuclear localization signal (NLS), so its import to the nucleus is facilitated by the NLS-containing
proteins. Nuclear actin plays a role in the maintenance of the nuclear structure and the nuclear
envelope breakdown. It is also involved in chromatin remodeling, and chromatin and nucleosome
movement necessary for DNA recombination, repair, and the initiation of transcription. It also binds
RNA polymerases, promoting transcription. Because of the multifaceted role of nuclear actin, the
future challenge will be to further define its functions in various cellular processes and diseases.

Abstract: Actin is one of the most abundant proteins in eukaryotic cells. There are different pools of
nuclear actin often undetectable by conventional staining and commercial antibodies used to identify
cytoplasmic actin. With the development of more sophisticated imaging and analytical techniques, it
became clear that nuclear actin plays a crucial role in shaping the chromatin, genomic, and epigenetic
landscape, transcriptional regulation, and DNA repair. This multifaceted role of nuclear actin is
not only important for the function of the individual cell but also for the establishment of cell fate,
and tissue and organ differentiation during development. Moreover, the changes in the nuclear,
chromatin, and genomic architecture are preamble to various diseases. Here, we discuss some of the
newly described functions of nuclear actin.

Keywords: nuclear actin; nuclear architecture; intranuclear rods; RhoA; F actin; G actin; chro-
matin remodeling

1. Introduction

Nuclear actin was first described in bovine thymus cells [1,2], two different slime
molds [3,4], Xenopus frog and newt Triturus oocytes [5–7], and liver cells [8]. However,
these findings met with disbelieve and criticism [9], and after decades of skepticism and
denial, finally around ten years ago, main-stream science not only accepted the existence
of nuclear actin but appreciated its importance in the regulation of structure, function,
homeostasis, and health of eukaryotic cells [10].

One of the reasons for the denial of nuclear actin existence was due to an inability
to visualize nuclear actin using conventional phalloidin or antibody staining. Actin has
three main polymerization states, monomeric (globular) G-actin, oligomeric, and polymeric
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(filamentous) F-actin. While the cytoplasmic actin is mainly monomeric or polymeric,
nuclear actin is either monomeric, dimeric, oligomeric, or may adopt some other unusual
conformations [11–14]. Nuclear actin oligomers, which cannot be stained by phalloidin, are
often recognized by specific antibodies, such as the 2G2 antibody. This antibody recognizes
the epitope composed of three nonsequential regions (aa131–139, aa155–169, and aa176–187)
located in the vicinity of the nucleotide-binding region [15]. This indicates that nuclear actin
adopts a specific conformation, absent in the cytoplasmic F-actin, which compacts these
three separate regions into a single antibody-recognizable epitope [15,16]. Recent studies
indicate that different antibodies recognize different pools of nuclear actin, with different
conformation, and different locations within the nucleus, suggesting different functions [17].
Although our knowledge about the conformations adopted by nuclear actin is still very
limited, there is a lot of information about the structural and functional roles of nuclear actin.
We describe the role of intranuclear actin network and nuclear actin rods, and the role of
nuclear actin in nuclear envelope breakdown, chromatin organization and remodeling, and
transcription. For the description of the other roles of nuclear actin, such as apoptosis [18],
viral infection [19], structure of nuclear membrane [20–23], we direct readers to the cited
above papers.

2. Role of Intranuclear Actin Network

The presence of intranuclear actin monomers (unpolymerized G-actin) has been con-
firmed by many studies. The monomeric G actin constantly shuttles between the nucleus
and cytoplasm. The Importin 9 protein imports G actin into the nucleus and the Exportin
6 protein mediates actin export to the cytoplasm [24,25]. These proteins function with the
participation of the small GTPase Ran [25–29]. During the nuclear import, the GTP-bound
Ran detaches cargo from the importin and returns importin to the cytoplasm. During
the nuclear export, the nuclear GTP-bound Ran aggregates with exportin and cargo. This
trimeric complex moves to the cytoplasm, where the hydrolysis of Ran GTP to Ran GDP
results in the release of the cargo [29,30]. The presence of F-actin in the nucleus is based on
indirect and direct evidence. The indirect evidence includes studies showing that Fragmin,
which restricts the polymerization of actin filaments, inhibits transcription of salamander
lampbrush chromosomes, and the antibodies against nuclear motor protein myosin-I, which
binds the barbed end of actin filaments, inhibit the transcription [16,31]. Among the direct
evidence are studies showing a transient presence of F-actin in the nuclei of fibroblasts [32],
fibrosarcoma cells [33], breast epithelial [34], and early embryonic mouse cells [35]. Studies
also show that during the exit from the mitotic division, the F-actin forms in the nuclei of the
daughter cells, where it promotes enlargement of the nucleus, chromatin decondensation,
and the formation of nuclear protrusions [32]. The polymerization of nuclear F-actin fila-
ments was also observed during cell spreading and stimulation by fibronectin via interaction
with the extracellular matrix [36]. Among the proteins which regulate actin is cofilin, which
accelerates actin filament polymerization/depolymerization dynamics [37]. Cofilin severs
actin filaments and increases the number of free ends to which actin monomers can be
added or removed [37]. Another protein is the actin-monomer-binding protein profilin,
which is necessary for the formation of actin cables [38], and fascin, which is required
for actin filament bundling [39]. During the stress, cofilin is actively imported into the
nucleus using its nuclear localization signal (NLS). Cofilin NLS is importin-α/β-dependent.
The interaction of cofilin NLS with the adapter protein importin α and nuclear transport
protein importin β transports cofilin through the nuclear pore complex (NPC) into the
nucleus. The directionality of the transport and cofilin release in the nucleus is regulated
by the GTP-binding nuclear protein Ran (Figure 1). Cofilin also plays a role in the import
of actin into the nucleus [40–42]. Actin does not have NLS in its sequence, but interest-
ingly, Wada et al. [43] identified in actin’s sequence two nuclear export signals (NES1 and
NES2) [43]. Thus, actin entry into the nucleus has to be facilitated by the proteins containing
NLS, such as cofilin [42]. The export of nuclear actin is facilitated by the Exportin 6 and the
actin-binding protein Profilin (Figure 1) [20,25,44]. Many studies have shown that, in con-
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trast to the cytoplasm, the intranuclear actin does not form long F-actin filaments but short
oligomeric filaments. This is possibly to prevent interference with the chromatin [45–47] or
prevent inhibition of transcription [48]. The field emission scanning electron microscopy
(feSEM) studies of Xenopus oocytes [47] showed that the nucleus contains a network of
short but highly branched, forked, and bundled actin filaments, which are connected to
the nuclear pore complexes at one end, and the subnuclear organelles such as Cajal bodies
and snurposomes (both involved in the assembly of ribonucleoproteins and mRNA pro-
cessing), and nucleoli, at the other end. These nuclear pore-linked filaments (PLFs) are
12–100 nm diameter and contain actin, and actin-scaffolding protein 4.1. Because a single
actin filament is 8–9 nm in diameter, the intranuclear filaments must also contain other
bounds or transiently interacting proteins of unknown identity. The probable candidates
could be the actin-interacting proteins identified in the nuclei of Drosophila and human cells,
such as the ubiquitous protein EAST, the α-actinin-like actin-binding domain-containing
protein NUANCE, and the nucleoporins [47,49,50]. Interestingly, in Xenopus oocyte nuclei,
protein 4.1 is regularly spaced on the filaments at ~120 nm intervals, and the pairs of protein
4.1-containing speckles are present at the filament forks [47,51]. Besides Xenopus, the pres-
ence of protein 4.1 on the intranuclear filaments was also observed in the nuclei of human
fibroblasts [47]. In human erythrocytes, the protein 4.1, also known as the Beatty’s Protein,
regulates the stability of the erythrocyte membrane through its interaction with the short
actin filaments and spectrin [52]. It seems that some of the functions of intranuclear actin
filaments could be the facilitation of intranuclear transport between the nuclear pores and
subnuclear organelles, and a displacement of the membrane-underlying chromatin to form
the chromatin-free spaces under the nuclear pores, which will facilitate the transport of the
molecules [47,53]. Some of the existing techniques of actin visualization in live cells involve
the tagging of actin with fluorescent proteins or the expression of GFP-actin [54]. However,
the comprehensive analysis of nuclear actin functions will require the development of novel,
super-resolution imaging techniques. Recently developed multiplexed super-resolution
volumetric imaging and expansion microscopy (ExM) enable visualization of nanoscale
details of actin filament organization [55].

Figure 1. Nuclear actin shuttling and actin rode formation. Actin monomers in the cytoplasm form
a complex with cofilin and importin 9. The complex is imported into the nucleus, where actin is
released, and the importin is cycled back to the cytoplasm. The monomeric nuclear actin can form
oligomers, polymers, or actin rods. The export of the actin from the nucleus is facilitated by the
profilin and exportin 6. While in the cytoplasm, exportin is recycled back into the nucleus. This
process depends on the balance between nuclear and cytoplasmic Ran GTP/GDP. Ran GTP promotes
nuclear export and Ran GDP promotes nuclear import.
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3. Enigmatic Role of Intranuclear Actin Rods

Actin rods are several µm-long aggregates of actin filaments and actin-interacting
proteins [56,57]. Because they form in the nucleus and/or cytoplasm in response to
mechanical or chemical/environmental stress (heat shock, hypoxia, pathogens, toxin,
drugs), the actin rods are the marker of the so-called Actin Stress Response (ASR) that
correlates with many human diseases. The intranuclear rods were first discovered around
1980 in the dimethyl sulfoxide (DMSO)-stressed Dictyostelium amoeba, human HeLa, and
fetal lung WI-38 cells, and rat kangaroo kidney epithelial PtK2 cells [58,59]. Although the
function of the intranuclear rods is not clear, it seems that they may act as a protective
mechanism by eliminating actin-treadmilling and, thus, frees up ATP that can be utilized
for the immediate needs of stressed cells [56,60,61]. Several actin-interacting proteins have
been identified in the intranuclear rods [56]. One of these proteins is Cofilin, which in the
nuclear rods of some, but not all cells, binds the whole length of actin filaments, which
makes the rods undetectable by a routine actin staining by phalloidin [62]. Studies on
Drosophila heat shock model showed that the formation of intranuclear actin rods requires
an increase in the nuclear pool of free actin and a heat-induced increase in the activity
of cofilin [63,64]. Studies on the nuclear rod formation in Drosophila ovaries showed that
cofilin is regulated by nuclear actin-bundling protein fascin [65].

Another protein present in the actin rods is the Actin-interacting protein 1 (Aip1), a
WD repeat-containing protein that facilitates the disassembly of actin filaments [66]. Other
proteins are the actin-binding protein Coronin (CorA), which also belongs to the WD-
repeat family of proteins and is involved in actin cytoskeleton organization [67], and the
calcium-regulated Actin-bundling protein B (AbpB) [56]. The nuclear rods of Dictyostelium
contain the actin variant Filactin (Fia) [56]. Ishikawa-Ankerhold, et al. [56] described
the spatiotemporal sequence of the formation of intranuclear rods and recruitment of its
components in DMSO-stressed Dictyostelium. The formation of the rod starts 5 min after
stressor application and lasts 30–60 min. During the first 5–10 min, the actin aggregates
with the cofilin into short spikes in the vicinity of the nuclear envelope. Between 15 and
20 min, the spikes recruit Fia and Aip1 and aggregate into bundles, and between 30 and
60 min, the bundles associate with AbpB and CorA, and aggregate into mature, thick
rods. The knockout studies showed that while the Aip1 is necessary, the Fia and CorA
are not essential for the formation of the rods. After removal of the stressor, the rods were
disassembled within 30 min. The disassembly was delayed in the absence of CorA or Fia,
and faster in the absence of Aip1, which was expected because the Aip1-deficient cells did
not form fully developed rods [56].

There are indications that the intranuclear rod formation during the stress is induced
by the proteolytic fragments of small GTPase RhoA [68]. RhoA is a major regulator of
actin polymerization and, thus, actin-related cell functions [69]. Under stress conditions,
depending on the type of stressor, RhoA can be either activated or downregulated by
the proteolytic cleavage by calpain, caspases, and serine proteases. The amino-terminal
cleavage fragment (RhoA-NTF) or carboxy-terminal fragment (RhoA-CTF), which form
after the exposure of fibroblasts to H2O2, induce the actin stress fibers in the cytoplasm,
while RhoA-CTF also induces the cytoplasmic actin rods in the vicinity of the nuclear
membrane [68,70]. This suggests that RhoA-CTF may also translocate to the nucleus and
promote intranuclear rod formation [68].

It should be noted that the inability of the cell to disassemble actin rods can be highly
toxic and correlates with many human diseases [71,72]. Although it is often unknown if
the nuclear/cytoplasmic actin rods are the causative agent or the byproduct of the disease,
there are a hallmark of Alzheimer’s, various neurodegenerative diseases, Huntington’s
disease and nemaline myopathy [62,73–76]. The pathology of Alzheimer’s brains shows
extracellular plaques of β-amyloid (Aβ) peptides. The soluble form of Aβ causes activation
of cofilin, which promotes the formation of actin rods. Rods accumulate in neurites and
cause synaptic dysfunction [62]. Similarly, in Huntington’s disease, the inability to clear the
nuclear rods from the nerve cells may lead to disease development and progression [74,75].
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The intranuclear actin rods are also present in many forms of congenital myopathy, which
are caused by the mutation in the α skeletal actin (ACTA1) gene. The mutated ACTA1
induces intranuclear actin rods, which are aggregated through the interaction with α

actinin. The accumulation of intranuclear rods in the muscle cells causes their dysfunction
and muscle weakness [77]. Because of these findings, actin rods are a potential novel
therapeutic target in many human diseases.

4. Actin Role in Nuclear Membrane Rupture

In the majority of dividing cells, the nuclear envelope breaks before the division,
allowing the attachment of the chromosomes to the division spindle [78]. The nuclear
envelope consists of the outer and inner membrane, nuclear pore complexes, and nuclear
lamina, which underlines the inner membrane and is composed of a variety of the type
V intermediate filament proteins, called nuclear lamins [79]. In humans, the mutations in
nuclear lamins cause many hereditary diseases, including muscular dystrophy, peripheral
neuropathy, and progeria [80]. The first step in the nuclear envelope breakdown (NEBD) is
the disassembly of the nuclear pore complexes. This is followed by the depolymerization of
the nuclear lamina, and, thus, the weakening of the nuclear envelope [81,82]. Common belief
has been that the mechanical force needed for the final breakage of the nuclear envelope
comes from the microtubules, which after attaching, through the motor protein dynein, to
the weakened nuclear envelope, pull and break the membrane [83,84]. Although this is
certainly true for small-size somatic cell nuclei, recent studies showed that in the large-size
oocyte nuclei, instead of the microtubules, actin is very much involved in the breakage
of the nuclear envelope [85]. Studies on starfish oocytes showed that, before the NEBD,
an Arp2/3 complex-dependent polymerization of actin leads to the formation of a shell
consisting of densely packed branched actin within the nuclear lamina (Figure 2) [86,87].
Subsequently, the actin spikes, protruding from the actin shell, pierce and fragment the
nuclear membrane while leaving the nuclear lamina intact (Figure 2) [87,88]. Because the
actin shell is also present in the nuclei of oocytes and dividing embryos in other echinoderm
species, it seems that the actin-aided rupture of the nuclear envelope is, if not universal,
much more common than previously thought [85].

Figure 2. Actin’s role in the nuclear envelope breakdown. The nuclear envelope is composed
of a double nuclear membrane and an underlying nuclear lamina. Prior to the nuclear envelope
breakdown (NEBD), the actin shell polymerizes within the nuclear lamina. This is followed by the
formation of the actin spikes, which displace the nuclear pore complexes (NPCs), and penetrate and
fragment the nuclear membrane.
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5. Actin Role in Chromatin Organization and Remodeling

A single human cell contains around 2m of DNA that is packed into a ~10 µm nucleus.
To achieve this, the DNA is wounded around histones and compacted into the heterochro-
matin [89]. Because such condensed DNA is unavailable to the transcription factors, it
has to undergo remodeling into the more open, transcription factors-accessible euchro-
matin [90]. The nucleus contains chromatin and the interchromatin compartments [91,92].
In the interphase nucleus, the individual chromosomes occupy their designated place—a
chromosome territory [93]. Thus, chromatin is not randomly distributed within the chro-
matin compartment but is sub-compartmentalized into defined and functionally different
domains, whose chromatin is anchored to the nuclear lamina, nucleoli, or other subnuclear
bodies. One of the functions of chromatin/chromosome compartmentalization is the inclu-
sion or exclusion of the specific factors involved in the regulation of gene splicing, silencing,
transcription, and replication [94]. Chromatin compartmentalization is accompanied by the
compartmentalization of nuclear actin [91]. In the interphase nucleus, chromatin displays
constant movements and reordering, which allow for repositioning of the loci and the
placement of the transcriptionally active genes in a common nuclear space, where they
can be co-transcribed [93]. Time-lapse observations of the fluorescently tagged loci or
chromatin territories showed that in mammalian cells, the chromatin is more mobile in the
early G1 phase than in the S or G2 phase of the cell cycle. These studies showed that in
early G1 the chromatin territories move between 0.47 and 4.44 µm, and only 0.25–2.11 µm
in the later stages [95,96]. There are two major mechanisms of chromatin mobility, one is
the Brownian’s motions, and another is an active, actin-dependent, and ATP-dependent
movement, which allows reordering chromatin compaction to access genetic loci for tran-
scription or repair. Actin functions in this process as a subunit of the chromatin-modifying
(remodeling) complexes (Figure 3) [16,97].

Figure 3. Actin’s role in chromatin remodeling and transcription. Nuclear G-actin, as a part of a
chromatin remodeling complex, participates in remodeling a condensed transcriptionally inactive
heterochromatin into the RNA polymerase accessible decondensed euchromatin. Monomeric or
oligomeric actin forms a complex with RNAPII promoting the enrichment of RNPII at the promoter
and the transcription of mRNA. In contrast, nuclear actin rods, which are formed during the stress,
inhibit the actin-dependent activity of RNAPII.

Among many actin-containing chromatin remodeling complexes in yeast, inverte-
brate, and vertebrate cells, the most studied are BAF, INO80, NuA4/TIP60, SWR1, and
Mi-2 [16,98,99]. BAF, the ATP-dependent Brahma-related gene (Brg)/Brahma-associated
factor, also called the SWItch/Sucrose Non-Fermentable (SWI/SNF) is critical for lineage
specification in the early mouse embryo and neuronal development in humans [98,100].
Mutations of the BAF subunits are linked to autism, schizophrenia, and many neurodevel-
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opmental disorders [100]. INO80 complex contains the Ino80 ATPase that is a member of
the SNF2 family of ATPases [101]. It is possible that in ATP-dependent chromatin remodel-
ing complexes such as INO80, ATP binding to actin results in the conformational change of
the whole complex allowing it to remodel. These complexes, using the energy produced by
ATP hydrolysis, also participate in the movement of nucleosomes and the chromatin [102].
These complexes use the ATP-derived energy to displace or exchange, package, and posi-
tion the histones/or histone variants within the nucleosomes [16,103–108]. On the other
hand, the monomeric actin found in the INO80 complex regulates its ability to bind and
mobilize nucleosomes and repair DNA damage. It has been suggested that the actin-Arps
that modulates INO80 is also present in other remodeling complexes serving as a platform
to contact the nucleosomal DNA [16]. Additionally, the analysis of the crystal structure
of the Arp8 module of the Saccharomyces cerevisiae INO80, showed that during chromatin
remodeling, the actin-Arps complex facilitates recognition of the extranucleosomal 40-bp
linker DNA [109,110]. Two different functions of actin in the chromatin remodeling com-
plexes have been proposed. Either the complex is attached to the actin filament and moves
along the filament propelled by the filament polymerization-depolymerization, or the
monomeric actin directly interacts with the chromatin, or other unconventional forms of
actin oligomers, performing some (currently unknown) functions in the chromatin remodel-
ing complexes [16]. Another chromatin-modifying complex is the histone acetyltransferase
complex NuA4/TIP60, which is involved in chromatin-binding, histone modifications,
transcription, DNA damage response, control of the cell cycle, nonhomologous end joying,
and homologous recombination [16,111–113]. Recent studies showed that the SWR1 remod-
eling complex deposits Htz1 histone into the chromatin and prevents genome instability,
which is often associated with tumorigenesis [114,115]. The incorporation of Htz1 histone
into the chromatin may stabilize damaged replication forks (by preventing fork regression),
or if the replication fork had collapsed, the Htz, incorporated at the sites of replication dam-
age, prevents DNA double-strand breaks [115]. The Mi-2/NuRD (Nucleosome Remodeling
Deacetylase) complex has ATP-dependent chromatin remodeling activity and also histone
deacetylase activity [99]. Studies on Drosophila showed that the chromatin containing DNA
with the double-strand breaks relocates to the nuclear periphery for repair. The relocation
of this damaged DNA occurs through a myosin-dependent sliding on the actin filaments,
which polymerase in response to the DNA damage [110,116]. Recent studies using Xenopus
cell-free extracts, human bone osteosarcoma epithelial cells U2OS, and mouse-tail fibroblast
cell lines showed that nuclear actin together with Arp2/3 and WASP are recruited into
the chromatin undergoing the homology-directed repair (HDR) [117]. These studies also
showed that actin repositions DNA containing the double-strand brakes (DSBs) under-
going HDR, into the specific chromatin repair domains and that the inhibition of actin
nucleation decreases HDR efficiency [117]. Another study on Xenopus cell-free extracts and
human somatic cells showed that DNA replication (both initiation and elongation) depends
on nuclear shuttling dynamics of actin and formin [22,118]. Live and supper-resolution
imaging studies of human lung fibroblast cell line IMR90 showed that during replication
stress (induced by DNA polymerase inhibitor aphidicolin or the ribonucleotide reductase
inhibitor hydroxyurea), the replication foci are translocated along actin filaments to the
nuclear periphery where they undergo repair [119].

6. Actin Role in Transcription

Besides being a component of chromatin remodeling complexes, nuclear actin reg-
ulates various transcription factors and associates with all RNA polymerases [120,121],
i.e., RNA polymerase I that transcribes rRNA, RNA polymerase II that transcribes mRNA,
miRNA, snRNA, and snoRNA, and RNA polymerase III that transcribes tRNA and 5S
rRNA [26,120–122]. The interaction of actin with these three RNA polymerases is mediated
by the RNA-binding proteins, Rbp6 and Rbp8 [121]. Both G-actin and actin oligomers
are known to associate with RNA polymerases [122,123]. The in vivo and in vitro stud-
ies of the Pol I-, Pol II-, and Pol III-dependent transcription [121] showed that actin is
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recruited into the gene promoters, where it recruits polymerases, becomes a part of the
polymerase preinitiation complexes (Figure 3), and together with the nuclear myosin-1 is
involved in transcript elongation [99]. Recent studies using RNA-seq and super-resolution
imaging [120] showed that the serum stimulation and interferon-γ treatment induce the
assembly of nuclear actin filaments, which in turn, enhance the clustering of polymerase
II (Pol II) and promote transcription of serum- and interferon-γ-inducible genes in the
CRISPR-edited osteosarcoma U2OS cell line [120]. However, it is still unknown how
nuclear actin assembles the clusters of Pol II on the specific genes [120].

Actin also directly interacts with the heterogeneous nuclear ribonucleoprotein U
(hnRNP U), which contains the actin-binding site in its C-terminus and is a component
of pre-mRNA particles [99]. Studies of the conditional knockout of the Hnrnpu gene
in the mouse heart showed that the hnRNP U is required for mRNA splicing and heart
development [124]. Studies of the transcription process in the dipteran Chironomus showed
that actin binds directly to the hnRNP, HRP65-2 that facilitates the recruitment of H3-
specific acetyltransferase p2D10 [99,121,122,125]. After transcription, actin, incorporated
into the hnRNPs, moves with the newly synthesized transcript to the polyribosomes [110].

Because the changes in the chromatin and genome architecture are also known at-
tributes of the embryonic and post-embryonic cellular differentiation and correlate with
many different diseases, one of the fascinating roles of nuclear actin is its involvement in
the establishment of cell fate, differentiation programs during neurogenesis, myogenesis,
organs’ development, and development of various diseases [110,124].

7. Nuclear Actin in Macrophages and Other Immune Cells

The multifunctionality of nuclear actin suggests that nuclear actin has to be also
important for the differentiation and functions of immune cells. For over a decade, our
laboratory has studied the structure and functions of macrophages in the rejection of trans-
planted organs. Our studies in rodent transplantation models showed that the integrity of
macrophage actin cytoskeleton is indispensable for the macrophage-dependent long-term
phase of graft rejection [126–128]. These findings also prompted our interest in the role
of nuclear actin in the macrophages and the immune cells, in general. In the following
paragraph, we describe what is currently known about nuclear actin in macrophages and
other immune cells.

During the activation of the immune response, the monocytes circulating in the blood
are recruited by the inflammatory signals to the site of inflammation or infection, where
they differentiate into the macrophages. In the in vitro experiments, the blood-derived
monocytes or bone marrow-derived cells can be forced to differentiate into macrophages,
and/or polarized into different macrophage subtypes by the addition of various cytokines
and factors, such as, mentioning a few, interferon-gamma, interleukins, the bacterial cell wall
component lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) [126–128].
Interestingly, the LPS has been shown to reorganize actin cytoskeleton in many different
cell types, including macrophages [129]. Studies of human blood-derived monocytes and
promyelocytic leukemia cells (HL-60) showed that during the PMA-induced differentiation
of these cells into the macrophages, there is a massive influx, dependent on the p38 mitogen-
activated kinase, of actin into the cell nucleus. Nuclear actin content increased 12–32-fold
during 24–72 h of PMA treatment, and the recruited nuclear actin was incorporated into Pol-
II complexes [130,131]. The ChiP-on-chip experiments identified the actin-bound promoters
of the genes related to the chromatin remodeling, transcription, RNA splicing, apoptosis,
and immune response, and the knockout experiments showed that actin binding to the
promoters modulated the expression of these genes [130]. Studies on the migration of
keratinocytes showed that nuclear actin regulates transcription of genes related to the focal
adhesions and cell migration and that the knockout of the importin 9, which lowered nuclear
actin level, increased keratinocyte migration [132]. These studies are also relevant to the
macrophages and other immune cells, which have to actively migrate to the target tissues
and organs.
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Studies of the nuclear signaling events during CD4+ T cell activation showed that the
T cell antigen receptor (TCR) signaling, which drives T cell differentiation and proliferation,
induces the formation of the nuclear actin network. Nuclear actin regulates the expression
of IL-2, IL-6, IL-9, IL-10, IL-21, IFN-γ, and TNF-α, thus, the immune functions of the T
cells [133]. Additionally, the actin-dependent recruitment of RNAPII at promoter sites
regulates the transcription of genes involved in T cell differentiation [134].

All these studies indicate that the drugs modulating the nuclear/cytoplasmic actin
dynamics in the immune cells could be potentially used as an anti-inflammatory and/or
anti-cancer therapies [126,127,135].

Taking into consideration the multifaceted role of nuclear actin and a dynamic ex-
change between the nuclear and cytoplasmic actin pool, the future challenge will be to
further define the functions of nuclear actin in various cellular processes and different cell
types and organisms.
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