
HAL Id: hal-03221150
https://hal.science/hal-03221150

Submitted on 11 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

LCF 2.0
Per Larsson, Olav Bandmann

To cite this version:
Per Larsson, Olav Bandmann. LCF 2.0: Language Definition. [Technical Report] Prover Technology.
2021. �hal-03221150�

https://hal.science/hal-03221150
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

LCF 2.0
Language Definition

Per Larsson and Olav Bandmann

LCF-LDD -- Prover Technology

REVISION HISTORY

◦ Version 0.2 2016-10-05 PL
Initial version.

◦ Version 1.0 2018-03-13 PL
Major updates for types, tables and compact format. Updating LCF version to 1.1.

◦ Version 1.1 2018-10-10 PL
Added multi line strings.

◦ Version 1.2 2020-07-10 PL
Removed previous relaxed JSON syntax. Updating LCF version to 1.2.

◦ Version 1.3 2020-10-29 PL
Added section on regular expressions. Added sections for all the LMC formats.

◦ Version 1.4 2021-03-04 PL
Moved all LMC formats to separate document. Added examples for all LCF
formats. Updating LCF version to 2.0.

◦ Version 1.5 2021-05-05 PL
Various corrections and additions in response to review comments.

◦ Version 1.6 2021-05-10 PL
Added document-data required for publication and corrected miscellaneous
typos.

COPYRIGHT
Copyright© 2021 Prover Technology AB. This work is licensed under a creative commons license
CC-BY-ND 4.0. See URL:https://creativecommons.org/licenses/by-nd/4.0/ for the full license
text.

CONTENTS

PART I Syntax descriptions 1

1. Introduction 1

1.1 Outline 1
1.2 Definitions 1
1.3 Contact 1

2. Overview and basic concepts 3

2.1 Railyard graphs 3
2.2 LCF formats 3

3. JSON and RJSON 5

3.1 JSON syntax 5
3.2 RJSON extensions 6
3.3 JSON Schema 7

4. Package Data Format 9

4.1 Format 9
4.2 Description 10
4.3 Example 13

5. Project Data format 14

5.1 Format 14
5.2 Description 14
5.3 Example 17

6. Project Table Format 18

6.1 Format 18
6.2 Description 18
6.3 Example 20

7. Compact Data Format 21

7.1 Format 21
7.2 Description of top-level members 22
7.3 Description of areas 23
7.4 Description of segments 24
7.5 Example 27

PART II Formal requirements 28

8. Common Notations 28

9. Extra JSON Notations 30

9.1 Semantic restrictions 30
9.2 JSON AST 30
9.3 Path expressions 30

10. Requirements for Package Data Format 33

10.1 Auxiliary definitions 34

11. Requirements for Project Data Format 36

12. Requirements for Project Table Format 38

13. Requirements for Compact Data Format 40

13.1 Normal form 40
13.2 Types of referenced names 40
13.3 Nodes 43
13.4 Edges 44
13.5 Railyard interpretation 45
13.6 Paths 46

14. Requirement Identifiers 47

References 48

LIST OF FIGURES

1 LCF overview 3

LISTINGS

1 Package data format 9
2 Package data example 13
3 Project data format 14
4 Project data example 17
5 Project table format 18
6 Project table example 20
7 Compact data format 21
8 Compact data example 27

LCF Language Definition

PART I
Syntax descriptions

1 Introduction

This document contains the specification of the Layout Configuration Format (LCF),
version 2.0, which is intended for specification of data for railway signaling systems.
As will be explained in detail in this document, LCF consists of a set of interrelated
sub-formats targeting the following type of data.

• Generic data for a class of railyard installations, sharing the same signaling
principles and hardware equipment. For example, data concerning the types of
signals, switches, etc. which may be used in a railyard installation.

• Specification of the railyard layout for a specific installation.
• Table-like data, typically describing relations of railyard entities in an installation.

LCF was originally created for supporting formal verification of signaling systems.
However, the format may be used for a wider range of purposes, offering a consistent
and succint notation designed to be easy to read both manually and with software
applications.

1.1 Outline

The document is divided in two parts. The first part includes sections 1 – 7 and
contains grammar listings and informal descriptions of the LCF formats. An overview
of LCF is given in Section 2. LCF consists currently of four sub-formats, which are
described in Sections 3 – 7.
The second part includes sections 8 – 13 and contains formal requirements for

the different formats. This part is intended as a specification for software that shall
read LCF files. Preliminary notations for this part are in Sections 8 – 9. Sections
10 – 13, contains the requirements for each of the formats. The final Section 14 gives
symbolic names to all formal requirements.

1.2 Definitions

The following acronyms are used in this document.

AST Abstract Syntax Tree
JSON Java Script Object Notation
RJSON Relaxed JSON
LCF Layout Configuration Format
RFC Request For Comments
UTF Unicode Transformation Format

1.3 Contact

If you have questions or comments concerning this document, or want to report an
error or omission, you are welcome to contact our support staff at:

support@prover.com

For other inquiries please refer to the contact details on our Web page:

PROVER TECHNOLOGY

mailto:support@prover.com

LCF Language Definition

https://www.prover.com/about-us/contact-us/

We welcome your comments on our products, so please don’t hesitate to contact us.

PROVER TECHNOLOGY

https://www.prover.com/about-us/contact-us/

LCF Language Definition

2 Overview and basic concepts

This section briefly describes all the LCF formats. All these formats share the same
underlying lexical format, the Java Script Object Notation (JSON). JSON is further
described in Section 3.
LCF is a set of formats specifically designed to describe railyard interlocking

systems. The term package is used to mean generic data for a class of railyard
installations, sharing the same signaling principles, hardware equipment, etc. The
term project is used for data concerning a specific railyard. A project always depends
on the package it belongs to. LCF is designed to describe both generic package data
and instantiated project data. Because package data is reused for several projects
and because some uses of LCF only need a subset of the full LCF configuration, LCF
is divided into sub-formats to enable processing subsets of the data. Some of these
sub-formats are intended to be written in a single file, while others can be split into
multiple files.

2.1 Railyard graphs

A railyard graph is described by a set of nodes and edges. Railyard objects, like
signals, track circuit delimiters etc. are modeled by data objects which are placed
in the nodes of the graph. Paths in the graph can be used to model routes, overlaps
etc. Areas, i.e. sub-graphs, are used to model track circuits, level crossings, etc.
The main purpose of the LCF formats is to describe different aspects of such graphs.

2.2 LCF formats

This document specifies four LCF sub-formats, however two of these formats are
alternative notations for describing the same data. The sub-formats are shown in
Figure 1 and are listed briefly below, but will be described in detail in subsequent
sections. All files containing LCF formats are syntactically JSON files and shall use
the .json extension.

Package data format
Types.json

Project data format /
Compact data format

Railyard.json

Project table format
*.json

Package Project

Figure LCF formats overview edges represents dependencies The “Project
data format” and the “Compact data format” are alternative formats for specifying
a railyard layout

Package data format
A file containing the format is usually named Types.json. This format contains
generic types for railyard objects and tables that may be used in a specific
installation. It is further described in in Section 4. The format is conceptually
one file per package, but reusable parts can be loaded into a main package data
file using import directives. All other LCF formats depend on the types given in
the package data format.

PROVER TECHNOLOGY

LCF Language Definition

Project data format
A file containing the format is usually named Railyard.json. This format
describes a specific railyard, in the form of a railyard graph, containing instances
of the types in the package data format. The format is described in Section 5.
This format is written as one file per project.

Compact data format
A file containing the format is usually named Railyard.json, as for the previous
item. The project data format in its explicit form is primarily intended to be
interpreted by automatic methods, hence it is not suitable for human inspection.
The compact format, described in Section 7, offers an alternative syntax for
railyard graphs that is more concise and adapted for human readers.

Project table format
This format contains spreadsheet-like data conforming to the declared table
types in the package data format. The format is described in Section 6. This
format can be separated into several files for each project, typically one file per
table.

PROVER TECHNOLOGY

LCF Language Definition

3 JSON and RJSON

The JSON syntax is used for LCF, i.e. LCF uses JSON as its syntactic format, but
adds additional constraints for the data contents. See the RFC [1] for the current
version of the JSON specification. JSON is a succinct yet expressive format well
adapted for representing structured data. However, it is mainly intended to be read
using software and the format can be awkward to inspect manually when this is
required.
The Relaxed JSON format (RJSON) extends JSON with syntactic sugar to facili-

tate human inspection. Note that only alternative syntax is added, RJSON can be
translated to JSON without loss of data. The full specification for RJSON is in [2],
only a summary of the syntax for JSON and RJSON is given in the following two
subsections. In the rest of this document we will mainly use strict JSON with the
exception of examples for those LCF formats that can be relevant to review.
Quite the opposite to manual reading, reading RJSON using software is more

complex than the case with JSON. Translation from RJSON to JSON is therefore
recommended to be performed with a single dedicated program for this task. LCF
files may use RJSON extensions but applications that read LCF files can always
presuppose strict JSON input. The translator is used in a preprocessing step if
RJSON extensions was used for the original input.

3.1 JSON syntax

In summary, a JSON file contains literal values and collections. The literals are
the Boolean constants, strings, numbers and a null value. There are two kinds of
collections in RJSON:

1. A list is an ordered sequence of elements.
2. An object or dictionary is an unordered sequence of members, which are pairs of
a string key and an associated value.

Elements and member values may be literals or collections, nested to arbitrary
levels.

Constants The literal constants of JSON are the Boolean truth constants and the
special null value, which is typically used as a generic place-holder for an empty
or unknown value in an object.

true false null

Numbers Numbers are written in decimal notation and may contain a fractional
part and/or an exponential part written in scientific notation.

25 -88 256.77 -12.34 2.19e-5 250e9

Strings Strings in JSON are enclosed in double quotes and must be written in a
single line. Multi-line strings can be represented by inserting occurrences of \n,
encoding a newline character. There are also such escape sequences for special
characters like tabs, carriage returns, etc., and also for arbitrary Unicode characters.

"A string with newline \n, quote \", and tab \t character"

PROVER TECHNOLOGY

LCF Language Definition

Lists Lists are enclosed in square brackets, with comma-separated elements.

["element", 2, null, ["nested element", true]]

Objects Objects are enclosed in curly braces, with comma-separated members. A
colon is used to separate the member key from its value.

{ "key1" : 88,

"key2" : [true, false],

"nested object" : {"a" : 3} }

3.2 RJSON extensions

As previously explained, RJSON extends JSON with alternative syntactical forms
for facilitating manual reading. See [2] for the full specification of RJSON, below is
a quick summary.

Comments RJSON adds line comments starting with a hash-mark #.

This is a comment

String extensions RJSON adds extra forms of string literals. A string containing
only alphanumerical characters and a restricted set of punctuation characters may
be written without the enclosing quotes. This is mainly for use with dictionary keys.

unquoted-string

Double quoted strings are allowed to stretch multiple lines, giving a readable layout
of longer texts.

"A double-quoted, multi-line string. Trailing and initial spaces

in continued lines are collapsed to one space. A backslash-\

escaped linebreak continues the text without separating space.

An empty line is interpreted as a newline character."

Layout sensitive collections Using line-breaks and indentation it is possible to omit
some of the explicit separators used for JSON collections. This feature can increase
the readability of a JSON file with deeply nested lists and objects.
Each element in a layout formatted list is prefixed with a hyphen. The elements

are separated by line-breaks and shall be indented to the same level.

- element

- 2

- null

-

- "nested element"

- true

The members in a layout formatted object are, similar to list elements, separated by
line-breaks and indented to the same level.

PROVER TECHNOLOGY

LCF Language Definition

key1 : 88

key2 :

- true

- false

"nested object" :

a : 3

Finally, note that RJSON style collections may be mixed with explicit JSON forms,
and a layout formatted collection can contain explicitly formatted collections (but
not vice versa).

3.3 JSON Schema

JSON is a generic format for storing data. A JSON schema or format defines a
restricted class of JSON input files. BNF-style grammars, specially adapted for JSON,
are used for describing the LCF formats, with the following notations:

json JSON literals, separators and delimiters are represented verbatim
ident Non-terminals are identifiers which must start with a letter (and may not

be a JSON literal like null)
’op’ Single quotes are used to distinguish terminals from grammar notations
e1|e2 Choice, the first alternative may start with an initial |.
e1 e2 Concatenation, see remarks below
expr* Comma-separated iteration zero or more times
expr+ Comma-separated iteration one or more times
expr? Optional item, see remarks below

A question-mark denotes in general an optional item. When used after a member
name in an object, it means that the complete member (including a preceding
comma) is optional.
Grammar rules are written on the form ident = expr. Comments in grammar

listings starts with //. Parentheses are used for grouping. The | operator has
maximal scope. Operators +, * and ? have normally minimal scope, but apply wider
to expressions enclosed by parentheses, curly braces or square brackets.
Concatenation has a different meaning for object members than in a standard

BNF grammar. The members in a JSON object, and hence also in LCF, are unordered.
The given order of object members in grammar listings in subsequent sections is
the recommended, but not required, order for printing a specified format.

3.3.1 Predefined identifiers

The following non-terminals have a predefined meaning in grammar listings.

string, real, int, bool
These are JSON strings, reals, integers, and booleans, respectively. The JSON
null value is not included in these types.

nstring
A non-empty JSON string.

chars
A sequence of characters allowed inside the double quotes in a JSON string. This
non-terminal is used when specifying JSON strings with constrained content.

PROVER TECHNOLOGY

LCF Language Definition

id, ref
Both of these are aliases for nstring, non-empty strings. Using id is a hint that
the string introduces a new name for an item. Using ref is a hint that the string
references an item named elsewhere.

3.3.2 Object descriptions

All objects in LCF may optionally be extended with a string valued member "descr".
For convenience this member is not explicit in the grammar rules. This member has
no effect on the interpretation of an configuration but may be used by an application
for presentation purposes.

PROVER TECHNOLOGY

LCF Language Definition

4 Package Data Format

The package data format specifies types of railyard objects that may occur in a
specific installation. A package shall have a single top-level package data file, it
may however be composed of multiple package data files using import directives
as explained below. All the other LCF sub-formats depends on a specified package
data file.

4.1 Format

The following grammar specifies the syntax of the package data format.

Listing Package data format

package-data =

{ "format" : "LCF-2.0-package-data",

"package" : id,

"imports"? : [nstring+],

"node-types" : [node-type*],

"object-types" : [object-type*],

"user-types" : [user-type*],

"union-types" : [union-type*],

"table-types" : [table-type*] }

node-type =

{ "id" : id,

"degree" : int,

"traversal" : [[int, int]*] }

object-type =

{ "id" : id,

"allowed-node-types" : [ref*],

"required-attrs" : [nstring*] }

user-type =

{ "id" : id, "base-type" : ref, "def" : string }

union-type =

{ "id" : id, "user-base-types" : [ref+] }

table-type =

{ "id" : id,

"primary"? : bool,

"signature" : signature,

"def" : string }

signature = [[nstring, column-type]+]

column-type =

| nullable-atomic-type

| [atomic-type]

atomic-type = ref | json-type

nullable-atomic-type =

| ref

| nullable-ref

| alt-nullable-ref

| json-type

| nullable-json-type

PROVER TECHNOLOGY

LCF Language Definition

json-type = "string" | "int" | "real" | "bool"

nullable-json-type =

| "string?" | "int?" | "real?" | "bool?"

// A type name with suffix '?', e.g. "mainsignal?"

nullable-ref = '"' chars '?' '"'

// Handling the unusual case that a type name

// ends with the '?'-character.

alt-nullable-ref = {"type" : ref, "nullable" : bool}

4.2 Description

The package data format is used to describe a class of possible railyard graphs.
A specific railyard graph fulfilling the constraints in the package data format is
described in Section 5. Below follows informal descriptions of the top level items in
the format.

4.2.1 package-data

The root element of the format contains all allowed railyard types in the package.
It contains the following members:

"format"
This is a case-insensitive string containing the name and version of the package
data format.

"package"
The name of the package. A package name will be used as a reference identifier
in all the other LCF sub-formats.

"imports"
If this member is present it shall contain references to other package data files.
The imports may not be directly or indirectly cyclic, neither is it allowed that
the type names in the imported modules collide with the names in the current
module.

"node-types"
All node types in the package, see the description of node-type below.

"object-types"
All object types in the package, see the description of object-type below.

"user-types"
All user types in the package, see the description of user-type below.

"union-types"
All union types in the package, see the description of union-type below.

"table-types"
All table types in the package, see the description of the table-type below.

4.2.2 node-type

A node in a railyard graph is specified by an identifier, a number of connectors of the
node and a traversal relation consisting of pairs of connectors. The traversal relation
specifies the allowed passages through the node. Connectors are represented by
integers. A signal, for example, could be modeled by an object which resides
in a node with two connection points (0 and 1), having the traversal relation
{ (0, 1), (1, 0) } allowing passage in both directions through the node.

PROVER TECHNOLOGY

LCF Language Definition

A node type names a class of nodes with the same number of connectors and
same traversal relation. A node type has an identifier "id" and the following extra
members:

"degree"
The number of connectors of this node type. If the degree is N the connectors
are represented by the numbers 0 . . (𝑁 − 1). The connectors are distributed
clockwise, in order, around the the node.

"traversal"
The traversal relation of this node type. This is a binary relation on the set
of connectors { 0, ..., 𝑁 − 1 } where (𝑖, 𝑗) belongs to the relation whenever the
node can be traversed from connector 𝑖 to connector 𝑗.

4.2.3 object-type

An object in a railyard graph is a data object with a set of attributes. The attributes
contain named data items. The object is typically placed in a node in the graph.
An object not placed in any node is called external, otherwise internal.
An object type names a class of objects with constraints on the node associations

and the attributes. An object type has an identifier id and the following extra
members:

"allowed-node-types"
A list of node types constraining which kind of nodes this object may be placed
in. The list has to be empty for an external object.

"required-attrs"
A list of attribute names which specifies a minimum set of attributes which must
be included for instances of this object type. An attribute for an instantiated
object is a pair consisting of a attribute name and a string value.

4.2.4 user-type

The base types of a package data format consists of:

• The predefined "Path" type, the set of all paths.
• The predefined "Area" type, the set of all areas.
• The object types.

User types further partition base types. A user type is the smallest building block for
sets of items supported by LCF. A user type has an identifier "id" and the following
extra members:

"base-type"
The name of the base type which this user type is included in. As described
above this name shall be "Path", "Area", or the identifier for a defined object
type.

"def"
This member, a text string, provides a precise description of the intended
meaning of the type. Note that the optional descr member (see Section 3.3.2)
which is available for all LCF objects shall not be used for this purpose.

4.2.5 union-type

A union type is a type consisting of the union of base types or defined user types. It
has an identifier "id" and the following extra member:

PROVER TECHNOLOGY

LCF Language Definition

"user-base-types"
A list of references to defined user types or base types.

4.2.6 table-type

A table type shall have exactly one instance in each project. One can therefore view
the table type as a declaration of a specific table. The table type specifies the name
and type of each column of the table. It has an identifier "id" and the following
extra members:

"signature"
This member specifies the column names and types for the rows in the instan-
tiated table as described above. We say that a type is nullable if it includes
the JSON null value. The type for a column value can be a predefined, pos-
sibly nullable, JSON type or a reference to a union type, a user type, or a
base type. A type reference, may also be nullable, this is represented either
by appending ’?’ to the name of a user type, or using the explicit form:
{"type":ref,"nullable":bool}. A column can also be typed to contain a list
of single values. Such lists may not however not include null.

"def"
This member, a text string, provides a precise description of the intended
meaning of the table. The description typically uses the column names from
the signature to describe the table. Note that the optional descr member (see
Section 3.3.2) which is available for all LCF objects shall not be used for this
purpose.

"primary"
If this Boolean member is present and true, or omitted, it means that projects
using this package-data specificationmust provide the actual table (see Section 6)
as input. A table type in which themember is present and false is called secondary.
Such tables are instead intended to be computed, deriving their content from
actual primary tables and railyard data in the project data file (see Section 5) or
in the compact data file (see Section 7).

PROVER TECHNOLOGY

LCF Language Definition

4.3 Example

The following listing contains fragments of data from an example package data file.
Because a package data file may be relevant to review manually, it is formatted
using RJSON extensions.

Listing Package data example

format: "LCF-2.0-package-data"

package: "Some Package"

descr: "A small example"

node-types:

- id: CrossingNode

descr: "Standard Crossing Node Type"

degree: 4

traversal: [[0, 2], [1, 3], [2, 0], [3, 1]]

- id: EndNode

descr: "Standard End Node Type"

degree: 1

traversal: []

object-types:

- id: DirectedInsideObject

descr: "Standard Signal Object Type"

allowed-node-types: [PassageNode]

required-attrs: [DirectionLeg]

- id: DirectionObject

descr: "Standard Direction Object Type"

allowed-node-types: []

required-attrs: [Positive]

user-types:

- id: NodeUserType

base-type: GenericInsideType

def: "Internal type"

- id: GSWITCH

base-type: SwitchObject

def: "3-legged switch"

union-types:

- id: BaseType

user-base-types:

- Area

- Path

- GenericOutsideType

table-types:

- id: axle_counter_section

primary: true

signature:

- [AXLE_COUNTER_SECTION, g_area_axle_counter]

- [TCI, bool]

- [HasTurnback, bool]

def: "Input table for the static attributes of

axle counter section."

PROVER TECHNOLOGY

LCF Language Definition

5 Project Data format

The project data format contains the specification of a specific railyard installation.
It describes a railyard graph with nodes, edges, node objects, paths, and areas. The
contained items must be instances of types declared in a package data file. The
data for a railyard is written to a single file per project.

5.1 Format

The following grammar specifies the project data format.

Listing Project data format

project-data =

{ "format" : "LCF-2.0-project-data",

"package" : ref,

"project" : id,

"nodes" : [node*],

"edges" : [edge*],

"objects" : [object*],

"paths" : [path*],

"areas" : [area*] }

node =

{ "id" : id,

"node-type" : ref }

edge =

{ "id" : id,

"edge" : [[ref,int], [ref,int]] }

object =

{ "id" : id,

"user-type" : ref,

"attrs" : attrs,

"node" : (ref|null) }

path =

{ "id" : id,

"user-type" : ref,

"attrs" : attrs,

"start" : ref,

"edges" : [ref+] }

area =

{ "id" : id,

"user-type" : ref,

"attrs" : attrs,

"nodes" : [ref*],

"edges" : [ref*] }

attrs = {(nstring : string)*}

5.2 Description

Below follows informal descriptions of the top level items in the format.

PROVER TECHNOLOGY

LCF Language Definition

5.2.1 project-data

The root element contains all railyard objects in the project. It contains the following
members:

"format"
This is a case-insensitive string containing the name and version of the project
data format.

"package"
This member is a reference to the package data, which the objects in the railyard
shall instantiate.

"project"
This member gives the name of this railyard specification.

"nodes"
The list of nodes in the railyard, see description of node.

"edges"
The list of edges in the railyard, see description of edge.

"objects"
The list of railyard objects, see description of object.

"paths"
The list of railyard paths, see description of path.

"areas"
The list of railyard areas, see description of area.

5.2.2 node

A railyard node has an identifier "id". The member "node-type" is a reference to
a node type defined in the package data format to which this project belongs.

5.2.3 edge

A railyard edge has an identifier "id". The "edge" member contains a pair
[[𝑛1, 𝑖1], [𝑛2, 𝑖2]] where each element identifies a node and a connector on the
node. The edge is directed from the first node 𝑛1 at connector 𝑖1, to the second
node 𝑛2 at connector 𝑖2.

5.2.4 object

A railyard object has an identifier "id" and a list of attributes "attrs". The member
"user-type" is a reference to a user-type defined in the package data format to
which this project belongs. The member "node" is a reference to the node in the
railyard where the object is placed. If the value is null, the object is external, i.e.
does not have a specific location in the railyard. The object must be in agreement
with its object type, which means it must possess the required attributes and only
be placed in a node having an allowed node type.

5.2.5 path

A railyard path has an identifier "id" and a list of attributes "attrs". The member
"user-type" is a reference to a user-type defined in the package data format to
which this project belongs. The members "start" and "edges" specifies the path
by containing references to the start node and a list of references for the edges
contained in the path.

PROVER TECHNOLOGY

LCF Language Definition

5.2.6 area

A railyard area has an identifier "id" and a list of attributes "attrs". The member
"user-type" is a reference to a user-type defined in the package data format to
which this project belongs. A railyard area specifies a sub-graph in a railyard graph.
The member "nodes" contains all nodes in the area. The member "edges" specifies
a set of edges included in the area. The two endpoint nodes of an edge in the area
must be in the "nodes" member.

PROVER TECHNOLOGY

LCF Language Definition

5.3 Example

The following listing contains fragments of data from an example project data file.
Because the project data format is intended as a serialization format to be read by
applications only, it is formatted using strict JSON syntax.

Listing Project data example

{ "format": "LCF-2.0-project-data",

"package": "Some Package",

"project": "Some Project",

"descr": "A small example",

"nodes": [

{ "id" : "node10",

"node-type" : "PassageNode" },

{ "id" : "node10-12*14-16",

"node-type" : "CrossingNode" },

{ "id" : "node97",

"node-type" : "PassageNode" }

],

"edges": [

{ "id" : "node10-12*14-16:1-node370:1",

"edge" : [["node10-12*14-16", 1], ["node370", 1]] },

{ "id" : "node10-12*14-16:2-node372:2",

"edge" : [["node10-12*14-16", 2], ["node372", 2]] },

{ "id" : "node97:1-node201:0",

"edge" : [["node97", 1], ["node201", 0]] }

],

"objects": [

{ "id" : "1",

"user-type" : "g_switch",

"node" : "node257",

"attrs" : { "BentLeg" : "2" } },

{ "id" : "__d__:node81",

"user-type" : "g_track_circuit_delimiter",

"node" : "node81",

"attrs" : {} }

],

"paths": [

{ "id" : "D1-D17:D",

"user-type" : "g_shunting_route",

"attrs" : {},

"start" : "node267",

"edges" : ["node267:1-node260:2", "node260:0-node259:2"] }

],

"areas": [

{ "id" : "1-7DG",

"user-type" : "g_track_circuit",

"attrs" : {},

"nodes" : ["node256", "node257"],

"edges" : ["node256:0-node279:0", "node257:0-node256:1"] }

]

}

PROVER TECHNOLOGY

LCF Language Definition

6 Project Table Format

Table instances for a project are written in a separate JSON format (see Section 5).
Typically, there will be a separate LCF file for each table, but it is allowed to have
multiple tables for a project in the same LCF file.

6.1 Format

The following grammar specifies the project table format.

Listing Project table format

project-table =

{ "format" : "LCF-2.0-project-table",

"package" : ref,

"project" : ref,

"tables" : [table*] }

table = { "type" : ref, "header"? : [nstring+], "rows" : [[cell+]*] ←↪

}

cell =

| json-literal

| null

| [json-literal*]

json-literal = string | int | real | bool

6.2 Description

Below follows descriptions of the items in the format.

6.2.1 project-table

The root element contains all tables in the project.
It contains the following members:

"format"
This is a case-insensitive string containing the name and version of the project
table format.

"package"
This member is used to reference the package data types which the tables in
the format shall instantiate.

"project"
This member is used to reference the project data (or compact data, see Section 7)
to which the tables are associated. The referenced data and the tables must
share the same "package" reference.

"tables"
A list of tables, see description of table.

6.2.2 table

A table is a list of rows conforming to a referenced table type. For each table type
in the package data file there shall be exactly one corresponding table in the set of
project table files for a project. The table contains the following members:

PROVER TECHNOLOGY

LCF Language Definition

"type"
This member shall reference a table type in the corresponding package data file.

"header"
The order of the columns in the table shall by default be as in the signature
for the table given by the table type. Another order may be chosen by listing
the columns in the optional header row. If present, the header must be a
permutation of the column names in the signature.

"rows"
This member includes the actual contents of the table. The rows of the table
must be of correct length and type according to the signature for the table as
given by the table type.

PROVER TECHNOLOGY

LCF Language Definition

6.3 Example

The following listing contains fragments of data from an example table data file.
Because a table data file may be relevant to review manually, it is formatted using
RJSON extensions.

Listing Project table example

format: "LCF-2.0-project-table"

package: "Some Package"

project: "Some Project"

descr: "A small example"

tables:

- type: g_associated_direction

rows:

- ["1" , Up]

- ["85" , Down]

- ["87" , Down]

- ["89" , Down]

- ["9" , Down]

- ["D1" , Down]

- ["D1-D17:D" , Up]

- ["D1-D19:D" , Up]

- ["D1-D21:D" , Up]

- ["D1-D23:D" , Down]

- ["D1-D35:C" , Down]

- ["D1-D37:C" , Down]

- ["D1-D39:C" , Up]

- ["D1-D41:C" , Down]

- ["D1-D43:C" , Down]

- type: g_inhibited_by_lodk

rows:

- ["6005(BM)" , "5210"]

- ["6007(BM)" , "5210"]

- ["6021(AM)" , "5209"]

- ["6035(AM)" , "5217"]

- ["6038(BM)" , "5209"]

- ["6040(BM)" , "5209"]

- ["6041(AM)" , "5209"]

- ["6041(AM)" , "5217"]

- ["6041(BM)" , "5218"]

- ["6042(AS(NP))" , "5210"]

- ["6046(AM)" , "5210"]

- ["6086(AM)" , "5222"]

- ["6086(BM)" , "5217"]

- ["6086(BM)" , "5221"]

- ["6088(AM)" , "5222"]

- ["6088(BM)" , "5217"]

- ["6088(BM)" , "5221"]

PROVER TECHNOLOGY

LCF Language Definition

7 Compact Data Format

LCF is designed to represent a wide range of possible railyard layouts. Reconsider the
project data format as described in Section 5. The basic idea in this representation
is to describe a railyard graph in the form of nodes and edges. On top of this graph
various railyard objects like signals, switches, etc. are placed on the nodes of the
graph. Paths in the graph are represented as a start node and a list of edges. Areas
in the graph are represented as a set of nodes and edges. The project data format is
also called explicit since it does not contain implied data, everything is explicitly
given. This makes the explicit format easy to read and manipulate using software
tools, but since it contains a lot of redundant data it is not well suited for manual
review.
The current section introduces an alternative to the explicit format using a new

representation of the railyard graph, objects, paths and areas. This new compact
representation dispenses with the explicit graph nodes and edges and instead
describes the graph directly in terms of the railyard objects. Areas and paths in
the compact representation are also made more concise by only including the
minimal data for uniquely identifying the intended part of the graph. As can be seen
below the same data can be written in several ways in the compact representation,
enabling the choice of a more readable alternative for a specific application.
Some explicit configurations can not be entirely represented using the compact

format, but every consistent, compact configuration can be replaced with an explicit
configuration.
The term entity is used to refer to railyard objects like signals and switches but

also for paths and areas in the railyard graph.

7.1 Format

Below the extended project data format is listed, with the new members for compact
representation. Please compare this grammar with the grammar in Section 5.

Listing Compact data format

xproject-data =

{ "format" : "LCF-2.0-xproject-data",

"package" : ref,

"project" : id,

"entities" : [entities*],

"attributes" : [attributes*],

"segments" : [segment*],

"paths" : [paths*],

"areas" : [areas*] }

entities =

{ "user-type" : ref, "entities" : [entity*] }

entity = id | {"id" : id}

attributes =

{ "user-type" : ref, "attrs" : [entity-attrs]* }

entity-attrs =

{ "entity" : ref, "attrs" : attrs }

attrs = {(nstring : string)*}

segment = [segment-item, segment-item+]

PROVER TECHNOLOGY

LCF Language Definition

segment-item =

| generic-item

| [object-item+]

| single-item

generic-item =

| {"in"? : int, "objects" : [object+], "out"? : int}

| index-decorated-string

// A JSON string with prefix N^ or suffix ^N or both, where N

// is a natural number, e.g. "1^OBJECT^2".

index-decorated-string = '"' (int '^')? chars (int '^)? '"'

object-item = object | directed-item

object = ref | {"object" : ref}

single-item =

| object

| directed-item

| switch-item

directed-item =

| {"dir" : dir, "object" : ref}

| direction-decorated-string

dir = "<" | ">"

// A JSON string with <dir> as prefix, e.g. ">SIGNAL".

direction-decorated-string = '"' ('<'|'>') chars '"'

switch-item =

| {"in"? : leg, "object" : ref, "out"? : leg}

| switch-decorated-string

leg = "~" | "-" | "/" | "\\"

// A JSON string with <leg> as prefix, suffix or both,

// e.g. "~SWITCH/".

switch-decorated-string = '"' lchar? chars lchar? '"'

lchar = '~' | '-' | '/' | '\\'

paths = {"user-type" : ref, "paths" : [path*]}

path = {"id" :id, "path" : [ref, ref+]}

areas = {"user-type" : ref, "areas" : [area*]}

area =

| {"id" : id, "delimiters" : [ref*], "objects" : [ref*]}

| {"id" : id, "include" : [ref*], "exclude"? : [ref*]}

| {"id" : id, "paths" : [[ref+]*]}

| {"id" : id, "union" : [ref*]}

7.2 Description of top-level members

The top-level members for the compact data format are:

"format"
This is a case-insensitive string containing the name and version of the compact
data format.

PROVER TECHNOLOGY

LCF Language Definition

"package"
This member is used to reference the package data types specification which
the objects in the format should instantiate.

"project"
This member gives the name of this railyard specification.

"entities"
This member contains declarations of all entities, i.e. objects, paths and areas
in the compact format. The entities are grouped per user-type. Most objects
occurring in this section will also appear in some segment, see below. An object
which is not part of any such segment is an external object which is not located
in the railyard but used to model abstract objects which affect the railyard
model but has no physical correspondence. An entity is declared using a single
identifier, or with the notation {"id": id}. The latter form is useful if one
also want to add a description of the entity using the descr tag.

"attributes"
Attributes are defined on entities. For improved readability, the attributes are
grouped per entity user-type. An attribute specification refers to a declared
entity together with its attributes.

"segments"
This member is used for specifying the graph in terms of the railyard objects.
Every segment is a list representing a path in the graph. The given segments
shall describe the complete graph. Nodes can be repeated, but not edges. The
case where multiple objects are positioned at the same implicit graph node in a
segment is simply handled in the notation by enumerating them inside a JSON
array. See Section 7.4 for further information of the components in a segment.

"paths"
This member contains the definitions of the paths in the compact format. A
path is represented by a list of objects of minimal length two, where the first
element is the start object and the last element is the end object. The object list
must uniquely describe a path in the graph.

"areas"
This member contains the definitions of the areas in the compact format, as
given in Section 7.3 below.

7.3 Description of areas

There are four different ways to specify a compact area:

Delimited areas
An item {"id":id, "delimiters":[ref*], "objects":[ref*]} is used for
specifying an area using delimiters. The member "delimiters" is a list of
user types. An object having any of these user types is called a delimiter. The
member "objects" is a list of non-external objects.
The specified area consists of the sub-graph containing all objects reachable

from the given objects without strictly passing a delimiter, i.e. without going
beyond the delimiter. Thus, delimiter objects can also be reachable, provided
that no (other) delimiter objects are passed earlier on the way.
Note that reachable here shall be interpreted without regards to the direction

of the edges in the original graph, and without regard to the traversal relation.
Hull areas
An item {"id":id, "include":[ref*], "exclude"?:[ref*]} denotes the union

PROVER TECHNOLOGY

LCF Language Definition

of all possible paths that start and end in objects listed in the include member
but do not pass any object listed in the exclude member.

Path sets
An item {"id":id, "paths":[[ref+]*]} denotes the union of a set of explicitly
given paths and singleton nodes. A path is represented as a list of objects in the
same way as in the top member "paths" (implying a list-length of at least two).
The singleton nodes are represented by lists of length one.

Unions
Finally, an item {"id":id, "union":[ref*]} is used for specifying an area as
the union of already given areas.

7.4 Description of segments

A segment describes a path in the railyard graph. This means that it has to respect
the traversal relation. Two consecutive entities in a segment represents an edge in
the graph, with the same direction as in the segment, read from left to right. The
complete set of segments describes the entire graph. A single segment is a list of
segment items, corresponding to nodes in the explicit format. The compact format
allows several alternatives for writing a segment item with the intention to optimize
the readability for a specific project.
Names referencing objects in a segment item may in some places contain

decorations. These are extra prefixes or suffixes for giving concise information for
signals and switches. For example "~SWITCH17/" can be used to denote a segment
item consisting of a switch which is entered from the common leg (the ~ prefix) and
exited along the leg bent to the left (the / suffix). Decorations are further described
in Section 7.4.4 and Section 7.4.5.

7.4.1 Generic segment item

In most cases a segment item is a single reference to a declared railyard object. The
generic format for a segment item is however:

{"in"?:int, "objects":[object+], "out"?:int}

The items are references to declared objects. When there are more than one item,
it means that the referred objects are placed together in the underlying node in
the graph. If the node type of an object is known or can be inferred one may
add indexes for the node’s connector points. A start segment item can only have
an out index and an end segment item can only have an in index. The object
names in a generic segment item may not contain any decorations. When there
is a single object in the object list a generic item may instead be written on the
shorter form: "IN^NAME^OUT", which is equivalent to the explicit form {"in":IN,
"objects":[NAME], "out":OUT}.

7.4.2 Co-located segment item

The second form for segment items is written

[object-item+]

which allows for one, or possibly more co-located railyard objects. Compared to
the generic notation, this form does not allow explicit node indices. The implicit

PROVER TECHNOLOGY

LCF Language Definition

node of the objects shall have at most two connectors, which excludes switches or
other sorts of crossings. As can be seen from the format, an object-item is either
simply a name of an object or a decorated name typically referring to signals, see
Section 7.4.4 below.

7.4.3 Single segment item

The third and last form for segment items can only be used when there is a single
object occupying the implicit node. In this case the object can be of any type and
all decorations are allowed. See subsequent subsections.

7.4.4 Signal decorations

A reference to a signal in a segment item may be prefixed by decorations < or >. The
type of such a prefixed object shall be DirectedInsideObject, and its associated
node type shall be PassageNode. Both these types must be defined in the package
data file with the following definitions:

directed-inside-object =

{ "id" : "DirectedInsideObject",

"allowed-node-types" : ["PassageNode"],

"required-attrs" : ["DirectionLeg"]}

passage-node =

{ "id" : "PassageNode",

"degree" : 2,

"traversal" : [[0,1],[1,0]]}

The prefixes "<" and ">" are used with the following informal meaning for segment
elements:

">" means that the directed object is directed forward (from left to right)
"<" means that the directed object is directed backward (from right to left)

The specification can also be written as a JSON object with the prefix separated
from the name, e.g. {"dir":">", "object":"SIG"}.
The required attribute DirectionLeg for a DirectedInsideObject shall be a

value in {0, 1}. It specifies the direction of the object, by assigning the value of the
node index that gives the direction. The value for DirectionLeg is inferred from
the decorations.

7.4.5 Switch decorations

A reference to a switch in a segment item may be prefixed and/or suffixed by strings
-, ~, / or \. The type of such a decorated object shall be SwitchObject and its
associated node type shall be SwitchNode. Both these types must be defined in the
package data file with the following definitions:

switch-object =

{ "id" : "SwitchObject",

"allowed-node-types" : ["SwitchNode"],

"required-attrs" : ["BentLeg"] }

switch-node =

{ "id" : "SwitchNode",

"degree" : 3,

PROVER TECHNOLOGY

LCF Language Definition

"traversal" : [[0,1],[1,0],[0,2],[2,0]] }

The extra symbols have the following informal meaning:

• A hyphen - refers to the straight leg in the switch.
• A tilde ~ refers to the common leg in the switch.
• A slash / refers to the bent leg in a left-handed switch.
• A backslash \ refers to the bent leg in a right-handed switch.

For example, given a switch reference VX the segment

["A", "~VX/", "B"]

means that we start from object A, entering the common leg of the left-handed
switch VX and leave the switch via it’s bent leg to reach object B.
A switch specification can also be written as a JSON object with codes separated

from the name, e.g. {"in":"~", "object":"VX", "out":"/"}.
The required attribute BentLeg for a SwitchObject shall be a value in {”1”, ”2”}.

When interpreting a switch specification, a left handed switch gets attribute value
"1" and a right handed switch get value "2".

PROVER TECHNOLOGY

LCF Language Definition

7.5 Example

The following listing contains fragments of data from an example compact data file.
Because a compact data file may be relevant to review manually, it is formatted
using RJSON extensions.

Listing Compact data example

format: "LCF-2.0-xproject-data"

package: "Some Package"

project: "Some Project"

descr: "A small example"

entities:

- user-type:"GSWITCH"

entities:

- "2403bV"

- "2405aV"

- "GSWITCH-19"

- user-type: "g_direction"

entities:

- "negdir"

- "posdir"

attributes:

- user-type: "g_direction"

attrs:

- entity: "negdir"

attrs: {Positive: "False"}

segments:

- ["N_1", ">2403", "<2559", "N_3"]

- ["N_9", "<2406", "N_10"]

- ['-SWP_STK_22~', "N_234", "g_delim_track_circuit-2"]

paths:

- user-type: "g_fl_path_si"

paths:

- id: "2403bV.$g_end_safe-7-0"

path: ["br_2403bV__0-1", "N_15"]

areas:

- user-type: "g_area_track_circuit"

areas:

- id: "CDV_2401"

paths: [["2403", "2559"]]

PROVER TECHNOLOGY

LCF Language Definition

PART II
Formal requirements

8 Common Notations

We use standard concepts from predicate logic and naïve set theory for defining
common data structures and operators.

Functions For sets 𝐴 and 𝐵, let 𝑓 : 𝐴→ 𝐵 denote a function 𝑓 with domain 𝐴 and
co-domain 𝐵. For such an 𝑓 and 𝐶 ⊆ 𝐴, let

• dom(𝑓) = 𝐴 be the domain of 𝑓
• 𝑓 [𝐶] = { 𝑓 (𝑥) | 𝑥 ∈ 𝐶 }, the image of 𝐶 under 𝑓

• 𝑓 |𝐶 = { (𝑥, 𝑓 (𝑥)) | 𝑥 ∈ 𝐶}, the restriction of 𝑓 to 𝐶

• ran(𝑓) = 𝑓 [𝐴], the range of 𝑓 .

Given functions 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 the composition 𝑔 ◦ 𝑓 : 𝐴 → 𝐶 is
defined by (𝑔 ◦ 𝑓) (𝑥) = 𝑔(𝑓 (𝑥)) .
Given any term 𝑡, the notation 𝑡〈𝑥0, 𝑥1, . . . , 𝑥𝑛〉 asserts that the set of free

variables in 𝑡 is a subset of {𝑥0, 𝑥1, . . . , 𝑥𝑛}. For terms 𝑡 and 𝑣 and variable 𝑥 the
notation 𝑡〈𝑣/𝑥〉 denotes the result of substituting all free occurrences of 𝑥 in 𝑡 by 𝑣.1
For a term 𝑡〈𝑥〉 and a set 𝐴, the term _ (𝑥 : 𝐴) 𝑡 denotes a function 𝑓 with

domain 𝐴 defined as 𝑓 (𝑥) = 𝑡. The shorter notation _𝑥 𝑡 is used when the intended
domain is obvious from the context.

Choice operator For a predicate 𝑝〈𝑥〉, Y𝑥 𝑝 denotes a value 𝑣 such that 𝑝〈𝑣/𝑥〉, if
such a 𝑣 exists, otherwise any value. Formally, for all 𝑝, ∃𝑥𝑝→ 𝑝(Y𝑥𝑝). The value
Y𝑥 𝑝 is uniquely defined if ∃!𝑥𝑝. The chosen value is the same for extensional equal
predicates, i.e. for all predicates 𝑝 and 𝑞, ∀𝑥 (𝑝(𝑥) ↔ 𝑞(𝑥)) → Y𝑥𝑝 = Y𝑥𝑞. Let ⊥
denote the chosen value for an empty predicate, i.e. ⊥ = Y𝑥 false.

Quotient sets Let 𝑋 be any set and let 𝑅 be an equivalence relation on 𝑋 . For an
element 𝑒 ∈ 𝑋 , the notation [𝑒]𝑅 = { 𝑥 ∈ 𝑋 | 𝑥 𝑅 𝑒 } denotes the equivalence class of
𝑒 under 𝑅. The set of all such classes, 𝑋/𝑅 = { [𝑒]𝑅 | 𝑒 ∈ 𝑋 }, is the quotient set of 𝑋
induced by 𝑅.

List operations For 𝑖, 𝑗 ∈ ℕ, let 𝑖 . . 𝑗 = { 𝑛 | 𝑖 ≤ 𝑛 ≤ 𝑗 } and let 𝑛 = 0 . . 𝑛 − 1. For any
set 𝑋 a function 𝑙 : 𝑛→ 𝑋 , is called a list of X, where |𝑙 | = 𝑛 is its length. Let 𝑋∗ be
the set of all lists of 𝑋 . The range of a list is also called its elements. Elements in a
list 𝑙 are by convention denoted by indexing, 𝑙𝑖, instead of 𝑙(𝑖). For nested lists, 𝑙𝑖, 𝑗
abbreviates 𝑙(𝑖) (𝑗). A list 𝑙 may also be denoted by the notation

[𝑙0, 𝑙1, . . . , 𝑙 |𝑙 |−1]

enumerating its elements in order. For a list 𝑙 let

• uniq(𝑙) be true iff 𝑙 is injective
• set(𝑙) be a synonym for ran(𝑙)
• 𝑥 in 𝑙 mean 𝑥 ∈ ran(𝑙).
1It may be necessary to first rename bound variables in 𝑡 to avoid unintended captures of free

variables in a substitution 𝑡 〈𝑣/𝑥 〉.

PROVER TECHNOLOGY

LCF Language Definition

For a finite set 𝑋 , let list(𝑋) be Y𝑙 (ran(𝑙) = 𝑋 ∧ |𝑙 | = |𝑋 |).
A list 𝑙 reorder a list 𝑚 iff there is a bijection 𝜎 : dom(𝑙) → dom(𝑙) such that

𝑚 = 𝑙 ◦ 𝜎. For any function 𝑓 with a finite domain 𝐷 ⊆ ℕ we define squash(𝑓) as
the list 𝑓 ◦ 𝜎 where 𝜎 is the unique order preserving map from |𝐷| to 𝐷. Given a list
𝑙 and 𝐽 ⊆ dom(𝑙), let sub(𝑙, 𝐽) be the list squash(𝑙 |𝐽). The relation 𝑙 v 𝑚 of lists is
true iff there exists an 𝐽 such that 𝑙 = sub(𝑚, 𝐽).
For a list 𝑙 = [𝑥0, 𝑥1, . . . , 𝑥𝑛] of 𝑋 , a function 𝑓 : 𝑌 × 𝑋 → 𝑌 , and 𝑒 ∈ 𝑌 ,

fold(𝑓 , 𝑒, 𝑙) is a value in 𝑌 defined as

𝑓 (. . . 𝑓 (𝑓 (𝑒, 𝑥0), 𝑥1), . . .), 𝑥𝑛)

Given lists 𝑙 and 𝑚 their concatenation 𝑙 + 𝑚 is the list

𝑙 ∪ {(𝑖 + |𝑙 |, 𝑚𝑖) | 𝑖 ∈ dom(𝑚)}.

Let 𝑥 :: 𝑙 = [𝑥] + 𝑙 and for a list 𝑙 of lists, let conc(𝑙) = fold(+, [], 𝑙).
Let 𝑙 be a list of 𝑋 and 𝑝 : 𝑋 → bool, then filter(𝑝, 𝑙) is the list sub(𝑙, { 𝑖 ∈

dom(𝑙) | 𝑝(𝑙𝑖) }). For a list 𝑙, term 𝑓 〈𝑥〉, and predicate 𝑝〈𝑥〉, the notation

[𝑓 | 𝑥 in 𝑙 if 𝑝] = (_𝑥 𝑓) ◦ (filter(_𝑥 𝑝, 𝑙))

is a list comprehension where the if-clause is optional with if true as default.

Strings and dictionaries A character is a Unicode value, an integer in range U+0000
.. U+D7FF or U+E000 .. U+10FFFF. Characters are generally denoted by their
Unicode value, but printable ASCII-letters may be written enclosed in single quotes.
A string is a list of characters. A string of printable ASCII-letters can be written

as a word enclosed in double quotes or simply as an unquoted word when this is
transparent.
Given a set 𝑆 of strings and any set 𝑋 , a function 𝑑 : 𝑆→ 𝑋 is called a dictionary

of X. Let 𝑋𝐷 denote the set of all dictionaries of 𝑋 .

PROVER TECHNOLOGY

LCF Language Definition

9 Extra JSON Notations

The JSON syntax is used for LCF. See the RFC [1] for the current version of the
JSON specification. This section contains notations for specifying and accessing
JSON input.

9.1 Semantic restrictions

An LCF parser shall adhere to the syntax for JSON as described in the JSON standard
[1]. In addition, the parser shall have a stricter interpretation of semantics than the
standard in the following cases.

Encodings The JSON standard recommends that source files are encoded in UTF-8,
which is mandatory for LCF sources. The standard leaves it to the implementation
how to handle encoding errors, however an LCF parser shall reject any malformed
encoding. Note also that LCF sources shall not start with a Byte Order Mark (BOM).

Object members The JSON standard recommends, but do not enforce, that the
members in a JSON object are interpreted as unordered and that the member
names in an object are unique. An LCF parser shall always disregard the order of
the members when interpreting the contents of the file and also report duplicated
member names in an object as an error.

Numbers The JSON standard does not distinguish integers and real numbers. An
LCF parser shall however interpret a JSON number with a fractional part or exponent
as a real number and otherwise as an integer. Neither does the JSON standard
mandate a specific interpretation of real numbers for computerized processing, e.g.
as 64-bit floating point numbers. It is left to an application reading JSON data
to specify such an interpretation and give further constraints regarding size and
precision. This approach is shared by LCF, delegating to readers of LCF to specify
the final interpretation.

9.2 JSON AST

Let int, real, bool and string be the sets of integers, real numbers, Boolean constants
and strings, respectively. A valid JSON input, fulfilling the restrictions in Section 9.1,
has an obvious translation to an instance of the type json, defined inductively as

json = int ∪ real ∪ string ∪ bool ∪ {null} ∪ json∗ ∪ json𝐷

Let a JSON file mean both the actual file, its contents, and its interpretation as a
json value. We rely on context for distinguishing these different meanings.
The equivalence relation 𝑢 ≡𝑢 𝑣 is true for json values 𝑢 and 𝑣 iff they are equal

disregarding the ordering of contained lists in 𝑢 and 𝑣, formally

𝑢 ≡𝑢 𝑣⇔ 𝑢 = 𝑣 ∨
(𝑢 ∈ json∗ ∧ 𝑣 ∈ json∗ ∧ |𝑢| = |𝑣| ∧ ∃𝑧 (𝑧 reorder 𝑣 ∧ ∀𝑖 : dom(𝑢) (𝑧𝑖 ≡𝑢 𝑢𝑖)) ∨
(𝑢 ∈ json𝐷 ∧ 𝑣 ∈ json𝐷 ∧ dom(𝑢) = dom(𝑣) ∧ ∀𝑥 : dom(𝑢) (𝑢(𝑥) ≡𝑢 𝑣(𝑥)))

9.3 Path expressions

A (JSON) path expression has the form 𝑣𝑞1𝑞2 . . . 𝑞𝑛 where 𝑣 ∈ json and each 𝑞𝑖 is a
qualifier with the following informal meaning:

[∗] Selects all elements in a dictionary or list. The alternative form .∗ is also
allowed.

PROVER TECHNOLOGY

LCF Language Definition

[𝑖] Selects the element with index 𝑖 in a list. A negativ index selects an element
from the end of a list.

[𝑖: 𝑗] Selects elements from 𝑙𝑖 to 𝑙 𝑗−1 in a list 𝑙. The second index may be omitted,
in which case all remaining elements from 𝑙𝑖 in 𝑙 are selected.

[?(𝑐)] Selects all values satisfying a condition 𝑐. The symbol @ is used in the
condition for referencing the currently evaluated value.

.key Selects the specifiedmember value in a dictionary. Member keys in qualifiers
may be unquoted if not containing white space.

..key Recursively searches for the specified key and selects all member values
with this key.

𝑝, 𝑞 Selects the union of p and q, this may also be written as [𝑝′, 𝑞′] where 𝑝′

and 𝑞′ are the results of removing square brackets in 𝑝 and 𝑞.

Some preliminary definitions are needed to give a formal meaning for path expres-
sions. The function jran returns all elements in a list or dictionary

jran(𝑣) =

𝑣 if 𝑣 ∈ json∗

list(ran(𝑣)) if 𝑣 ∈ json𝐷

[] otherwise

The function jsub returns the list of all json values contained in a json value and is
inductively defined by

jsub(𝑣) = [𝑣] + conc(jsub ◦ (jran(𝑣)))

Let 𝑖, 𝑗 ∈ ℕ below. For a 𝐿 ∈ json∗ and a qualifier 𝑞, the function 𝜑(𝐿, 𝑞) returns a
new json list:

𝜑(𝐿, [∗]) = conc(jran ◦ 𝐿)
𝜑(𝐿, [𝑖]) = [𝑙𝑖 | 𝑙 in 𝐿 if 𝑙 ∈ json∗ ∧ 𝑖 ∈ dom(𝑙)]
𝜑(𝐿, [−𝑖]) = [𝑙 |𝑙 |−𝑖 | 𝑙 in 𝐿 if 𝑙 ∈ json∗ ∧ |𝑙 | − 𝑖 ∈ dom(𝑙)]
𝜑(𝐿, [𝑖: 𝑗]) = conc([sub(𝑙, 𝑖 . . 𝑗−1 ∩ dom(𝑙)) | 𝑙 in 𝐿 if 𝑙 ∈ json∗])
𝜑(𝐿, [𝑖:]) = conc([sub(𝑙, 𝑖 . . |𝑙 |−1) | 𝑙 in 𝐿 if 𝑙 ∈ json∗])
𝜑(𝐿, [?(𝑐)]) = [𝑣 | 𝑣 in conc(jran ◦ 𝐿) if 𝑐〈𝑣/@〉]
𝜑(𝐿, .key) = [𝑑(key) | 𝑑 in 𝐿 if 𝑑 ∈ json𝐷 ∧ key ∈ dom(𝑑)]
𝜑(𝐿, ..key) = [𝑑(key) | 𝑑 in jsub(𝐿) if 𝑑 ∈ json𝐷 ∧ key ∈ dom(𝑑)]
𝜑(𝐿, (𝑝, 𝑞)) = 𝜑(𝐿, 𝑝) + 𝜑(𝐿, 𝑞)

Finally, the formal meaning of a path expression is given as

eval(𝑣𝑞1𝑞2 . . . 𝑞𝑛) = fold(𝜑, [𝑣], [𝑞1, 𝑞2, . . . , 𝑞𝑛])

The condition 𝑐〈@〉 in a qualifier [?(𝑐)] (or [𝑐]) is not formalized in this
presentation, it shall be a Boolean term containing standard or defined operators.
Note that in the rest of the document, the eval function is implicit, when using

path expressions we always mean the evaluated result.
Path expressions are typically used in the context of a schema. The symbol $

is used in path expressions for denoting an arbitrary root instance of the schema
under consideration.

PROVER TECHNOLOGY

LCF Language Definition

Given the definition of eval, a path expression always denotes a list 𝑙 of json
values. An empty result indicates a non-matching expression. When the result is
guaranteed to be a singleton, the operator

𝑙′ = Y𝑥 (|𝑙 | = 1 ∧ 𝑙0 = 𝑥)

is used to denote the single element.

PROVER TECHNOLOGY

LCF Language Definition

10 Requirements for Package Data Format

Let a package data file denote a file satisfying the grammar in Section 4.1. This
section contains additional semantic requirements for a package data file $. In
later sections, when referring to a construction defined in another LCF file 𝐹, the
construction is indexed with 𝐹.
The following are definitions for sets of built-in type identifiers of LCF.

JsonTypes = {"string", "int", "real", "bool"}
JsonNullTypes = {"string?", "int?", "real?", "bool?"}
GeoTypes = {"Path", "Area"}
BuiltinTypes = JsonTypes ∪ JsonNullTypes ∪ GeoTypes

The following are definitions for sets of type identifiers contained in $.

NodeTypes = set($.node-types..id)
ObjectTypes = set($.object-types..id)
UserTypes = set($.user-types..id)
UnionTypes = set($.union-types..id)
TableTypes = set($.table-types..id)
CoreTypes = set($..id)
BaseTypes = GeoTypes ∪ ObjectTypes
UserBaseTypes = BaseTypes ∪ UserTypes
EntityTypes = BaseTypes ∪ UserTypes ∪ UnionTypes
ListColumnTypes = EntityTypes ∪ JsonTypes
ColumnTypes = ListColumnTypes ∪ { 𝑠 + "?" | 𝑠 ∈ ListColumnTypes }

requirement 1 (Type identifiers)
Let 𝐿 = $..id, the list of identifiers in $, it is required that:
1. The list 𝐿 is unique.
2. No identifier is the name of a built-in type, i.e. set(𝐿) ∩ BuiltinTypes = ∅.
3. No identifier ends with ’?’, i.e. ∀𝑠 in 𝐿 (𝑠 |𝑠 |−1 ≠ ’?’).

requirement 2 (Traversal relation)
For each 𝑥 in $.node-types[*], let 𝑇 = 𝑥.traversal′, it is required that:
1. Indices in 𝑇 respects the degree of 𝑥, i.e. ∀𝑖 in T[*][*] (0 ≤ 𝑖 < 𝑥.degree′).
2. 𝑇 is irreflexive, i.e. ∀𝑒 in 𝑇 (𝑒0 ≠ 𝑒1).
3. 𝑇 is symmetric, i.e. ∀𝑒 in 𝑇 ([𝑒1, 𝑒0] in 𝑇).

requirement 3 (Column names)
For each 𝑥 in $.table-types[*].signature, the list 𝑥 [∗] [0] of column names is unique.

Let a valid file identifier be a string that uniquely references an existing file. For a
valid file identifier 𝑝, let F (𝑝) be the file referenced by 𝑝. A package data file 𝑢 is
reachable from a package data file 𝑣 iff there is an 𝑠 in v.imports[*] such that either
𝑢 = F (𝑠) or 𝑢 is reachable from F (𝑠). Note that imports are optional, if not used
the following requirements for imports are vacuously satisfied.

PROVER TECHNOLOGY

LCF Language Definition

requirement 4 (Import paths)
An application of LCF making use of import directives must specify the notion
of a valid file identifier and the function F from such identifiers to files on the
implemented platform.

requirement 5 (Import validity)
Each 𝑝 in $.imports[*] shall be a valid file identifier and F (𝑝) shall be a package
data file satisfying all requirements in this section.

The import graph may not contain cycles, but note that the same file may be
reachable in more than one way from $.

requirement 6 (Imports non-cyclic)
The file $ may not be reachable from itself.

requirement 7 (Import collisions)
Let 𝑇 be a package data file reachable from $, then the type identifiers in the files
must be disjoint, formally
CoreTypes$ ∩ CoreTypes𝑇 = ∅

Let Q be the set consisting of $ and all package data files reachable from $.

requirement 8 (Referenced types)
The references to types in $ shall belong to the following categories of names.
1. set($.object-types..allowed-node-types[*]) ⊆ ⋃

𝑡∈Q NodeTypes𝑡
2. set($.user-types..base-type) ⊆ ⋃

𝑡∈Q BaseTypes𝑡
3. set($.union-types..user-base-types[*]) ⊆ ⋃

𝑡∈Q UserBaseTypes𝑡
4. set($.table-types..signature[*][1][0]) ⊆ ⋃

𝑡∈Q ListColumnTypes𝑡
5. set($.table-types..signature..type) ⊆ ⋃

𝑡∈Q ColumnTypes𝑡
6. set($.table-types..signature[@(1) ∈ string][1]) ⊆ ⋃

𝑡∈Q ColumnTypes𝑡

Note that Q = {$} for an application of LCF that disallows imports.

10.1 Auxiliary definitions

All the following LCF formats described in this document are dependent on a
dedicated package data file, describing the types for used entities. This section
contains extra definitions needed for the formal requirements of subsequent formats.
First are definitions for sets of type identifiers contained in $ or in any of its imported
files.

AllNodeTypes =
⋃

𝑡∈Q NodeTypes𝑡
AllObjectTypes =

⋃
𝑡∈Q ObjectTypes𝑡

AllUserTypes =
⋃

𝑡∈Q UserTypes𝑡
AllTableTypes =

⋃
𝑡∈Q TableTypes𝑡

AllCoreTypes =
⋃

𝑡∈Q CoreTypes𝑡
AllBaseTypes =

⋃
𝑡∈Q BaseTypes𝑡

AllUnionTypes =
⋃

𝑡∈Q UnionTypes𝑡
AllEntityTypes =

⋃
𝑡∈Q EntityTypes𝑡

PROVER TECHNOLOGY

LCF Language Definition

Given a type identifier 𝑠 in AllCoreTypes the requirements in the previous sections
guarantees that there is a unique associated json object in $ or in an imported
package data file. Let id(𝑠) denote this object, formally

id(𝑠) = Y𝑥 (∃𝑡 : Q (𝑥 in jsub(𝑡) ∧ 𝑥.id = [𝑠]))

Given a name 𝑠 in AllEntityTypes, tc(𝑠) is the set of user types included in 𝑠:

tc(𝑠) =

⋃

𝑡∈Q set(𝑡.user-types[@(base-type) = 𝑠].id) 𝑠 ∈ AllBaseTypes⋃ { tc(𝑗) | 𝑗 in id(𝑠).user-base-types[∗] } 𝑠 ∈ AllUnionTypes
{ 𝑠 } 𝑠 ∈ AllUserTypes

PROVER TECHNOLOGY

LCF Language Definition

11 Requirements for Project Data Format

Let a project data file denote a file satisfying the grammar in Section 5.1. This
section contains additional semantic requirements for a project data file $. The
requirements are dependent on a package data file, providing the types for the
entities in $.

requirement 9 (Package data)
There must exist a package data file for $, that is a valid package data file 𝑇 such
that T.package = $.package.

In subsequent requirements let 𝑇 be the package data file for $. The definitions in
Section 10.1, applied to 𝑇 , are used in the requirements below.
The following are definitions for sets of identifiers in $.

Nodes = set($.nodes..id)
Edges = set($.edges..id)
Objects = set($.objects..id)
Paths = set($.paths..id)
Areas = set($.areas..id)
Ident = set($..id)
Entities = Objects ∪ Paths ∪ Areas

requirement 10 (Item identifiers)
The list of identifiers is unique, i.e. uniq($..id).

requirement 11 (Referenced names)
The references to items and types in $ shall satisfy the following restrictions:
1. set($.nodes..node-type) ⊆ AllNodeTypes𝑇
2. set($.objects..user-type) ⊆ AllUserTypes𝑇
3. set($.objects[@(node) ≠ null].node) ⊆ Nodes
4. set($.edges..edge[*][0]) ⊆ Nodes
5. set($.paths..user-type) ⊆ AllUserTypes𝑇
6. set($.paths..start) ⊆ Nodes
7. set($.paths..edges[*]) ⊆ Edges
8. set($.areas..user-type) ⊆ AllUserTypes𝑇
9. set($.areas..nodes[*]) ⊆ Nodes
10. set($.areas..edges[*]) ⊆ Edges

For an identifier 𝑠 in $, let pid(𝑠) be the associated json object in $, formally

pid(𝑠 : Ident) = Y𝑥 (𝑥 in jsub($) ∧ 𝑥.id = [𝑠])

which is uniquely defined in view of previous requirements.
The following functions are used to retrieve type information for named nodes

and entities in $.

nt(𝑠 :Nodes) = id𝑇 (pid(𝑠).node-type′)
ut(𝑠 : Entities) = id𝑇 (pid(𝑠).user-type′)
bt(𝑠 : Entities) = id𝑇 (ut(𝑠).base-type′)

PROVER TECHNOLOGY

LCF Language Definition

requirement 12 (Entity base types)
Entities shall have the expected base types.
1. { bt(𝑠).id′ | 𝑠 ∈ Objects } ⊆ AllObjectTypes𝑇
2. ∀𝑠 : Paths (bt(𝑠).id′ = "Path")
3. ∀𝑠 :Areas (bt(𝑠).id′ = "Area")

Let 𝐸 = $.edges[*].edge in the following two requirements.

requirement 13 (Edge consistency)
1. Edge indices must be valid w.r.t. the node type,
∀𝑛 in 𝐸[∗] [∗] (0 ≤ 𝑛1 < nt(𝑛0).degree′)

2. Edges are unique and irreflexive,
uniq(𝐸) ∧ ∀𝑒 in 𝐸 (𝑒0,0 ≠ 𝑒1,0)

3. A node index can not be attached to multiple edges,
∀𝑑, 𝑒 in 𝐸 (𝑑 ≠ 𝑒⇒ set(𝑑) ∩ set(𝑒) = ∅)

4. There may not be multiple edges between nodes,
∀𝑑, 𝑒 in 𝐸 (𝑑 ≠ 𝑒⇒ set(𝑑 [∗] [0]) ≠ set(𝑒[∗] [0]))

Let 𝑝 be a list of edges, then 𝑝 is an edge path, epath(𝑝), iff
1. each edge in 𝑝 is in the symmetric closure of 𝐸
∀𝑑 in 𝑝 (∃𝑒 in 𝐸 (𝑑 ≡𝑢 𝑒))

2. consecutive edges in 𝑝 are connected and respects the traversal relation
∀𝑖, 𝑗 : dom(𝑝) (𝑗 = 𝑖 + 1⇒ 𝑝𝑖,1,0 = 𝑝 𝑗,0,0 ∧ [𝑝𝑖,1,1, 𝑝 𝑗,0,1] in nt(𝑝𝑖,1,0).traversal′)

3. 𝑝 has no cycles
∀𝑖, 𝑗 : dom(𝑝) (𝑗 > 𝑖⇒ 𝑝𝑖,0,0 ∉ set(𝑝 𝑗 [∗] [0]))

requirement 14 (Path consistency)
Each path in $ shall be a valid path, disregarding the order of each edge pair:
∀𝑝 in $.paths[*] (∃𝑞 (|𝑝| = |𝑞| ∧ epath(𝑞) ∧ (𝑝.start′ = 𝑞0,0,0 ∧
∀𝑖 ∈ dom(𝑞) (set(𝑞𝑖) = set((pid(𝑝.edges[𝑖] ′)).edge′)))))

requirement 15 (Object consistency)
The node of an internal object must be an allowed node type for the object, and the
object must have the the required attributes mandated by its type. This is expressed
formally below.

For each object 𝑜 in $.objects[*], let
𝑛 = 𝑜.node′

𝑜𝑡 = bt(𝑜.id′)
𝑎 = 𝑜𝑡.allowed-node-types′

𝑜𝑡 is guaranteed to be an object type in 𝑇 by previous requirements. The following
shall apply:
1. if 𝑛 ≠ null then nt(𝑛).𝑖𝑑 ′ in 𝑎

2. if 𝑛 = null then a = []
3. set(𝑜𝑡.required-attributes′) ⊆ dom(𝑜.attrs′)

PROVER TECHNOLOGY

LCF Language Definition

12 Requirements for Project Table Format

Let a table file be a file satisfying the project table format. This section contains
additional semantic requirements for a table file $.
The project table format is dependent on both a package data file and a project

data file. The latter file might be in the compact version of the project data format
which is described in Section 7.

requirement 16 (Package and project data.)
There must exist package and project data for $. That is, a valid package data file
𝑇 and a file 𝑃 that is either a valid project data file or a valid compact data file
satisfying:
$.package = T.package
P.package = T.package
$.project = P.project

In subsequent requirements let 𝑇 be the package data file for $, and let 𝑃 be the
(compact) project data file for $.

requirement 17 (Referenced table type)
The table identifier for a table must be in 𝑇 , formally
set($.tables..type) ⊆ AllTableTypes𝑇

Let the predicate altnull be true for a json term of the form alt-nullable-ref in
the grammar in Section 4.1. The types of table cells are checked using the relation
𝐶(𝑡, 𝑢) where 𝑡 is the expected type of the cell value 𝑢, it is inductively defined by:

𝐶(𝑡 : json, 𝑢 : json) ⇔
𝑡 = "int" ∧ 𝑢 ∈ int ∨
𝑡 = "real" ∧ 𝑢 ∈ real ∨
𝑡 = "bool" ∧ 𝑢 ∈ bool ∨
𝑡 = "string" ∧ 𝑢 ∈ string ∨
∃𝑝 (𝑡 = 𝑝 + "?" ∧ (𝑢 = null ∨ 𝐶(𝑝, 𝑢))) ∨
𝑡 ∈ json∗ ∧ 𝑢 ∈ 𝑗𝑠𝑜𝑛∗ ∧ ∀𝑖 : dom(𝑢) (𝐶(𝑡0, 𝑢𝑖)) ∨
𝑡 ∈ AllEntityTypes𝑇 ∧ 𝑢 ∈ Entities𝑃 ∧ ut𝑃 (𝑢) ∈ tc𝑇 (𝑡) ∨
altnull(𝑡) ∧ (𝑢 = null ∧ 𝑡.nullable′ = true ∨ 𝐶(𝑡.type′, 𝑢))

requirement 18 (Table header)
If present, the header member of a table must be a reordering of the column
names in the signature of the table. Formally, for each 𝑡 in $.tables[*] such that
header ∈ dom(𝑡), let first 𝑎 = id𝑇 (𝑡.type′).signature[∗] [0] and 𝑏 = 𝑡.header[*]. It
is now required that there is a permutation 𝜎 of dom(𝑏) such that 𝑎 = 𝑏 ◦ 𝜎.

For a table with a header we let 𝜎 be the permutation guaranteed by the previous
requirement. If no header was given for the table, 𝜎 is the identity function. We
can now state the main requirement for this section:

requirement 19 (Types of table cells)
Each row in a table must respect the signature of the table, formally

PROVER TECHNOLOGY

LCF Language Definition

∀𝑡 in $.tables[∗] (
let 𝑟 = 𝑡.rows′ in
let 𝑠 = id𝑇 (𝑡.type′).signature[∗] [1] in
∀𝑖 : dom(𝑟) (|𝑠| = |𝑟𝑖 | ∧ ∀ 𝑗 : dom(𝑟𝑖) (𝐶(𝑠 𝑗, 𝑟𝑖,𝜎(𝑗)))))

PROVER TECHNOLOGY

LCF Language Definition

13 Requirements for Compact Data Format

This section contains additional semantic requirements that a compact data file $
shall satisfy. The requirements are dependent on a package data file, providing the
types for the entities in $.

requirement 20 (Package data)
There must exist a package data file for $, that is a valid package data file 𝑇 such
that T.package = $.package.

In subsequent requirements let 𝑇 be the package data file for $. The definitions in
Section 10.1, applied to 𝑇 , are used in the requirements below.2
In order to reduce the many forms of segment items we presuppose that $ has

been rewritten to normal form as described in the following sub-section.

13.1 Normal form

The many alternative forms in the compact format enables a concise representation
of a railyard, but complicates reasoning of the format. The normal form of the
compact format consists of the following restrictions regarding segment items w.r.t.
the grammar listing in Section 7.1.

segment-item =

| generic-item

| switch-item

| co-located-item

generic-item = { "in"? : int, "objects" : [ref+], "out"? : int }

switch-item = { "in"? : leg, "object" : ref, "out"? : leg }

co-located-item = [(object | directed-item)+]

object = {"object" : ref}

directed-item = { "dir": dir, "object": ref }

entity = {"id" : id}

The original full format can be rewritten to the reduced normal form, with preserved
meaning, using the following steps

1. The string encoded variants for entity, object, generic-item, directed-item
and switch-item in the full format are represented with their object form given
by the grammar above.

2. Each single-item 𝑥 of type object or directed-item in the full format is
instead represented as a singleton list [x] in the normal form.

13.2 Types of referenced names

requirement 21 (Mandatory types)
The package data file 𝑇 shall contain the object and node types:
• SwitchObject
• SwitchNode

2Note that some names for concepts defined in this section are overloaded w.r.t. definitions in
Section 11 for the project data format.

PROVER TECHNOLOGY

LCF Language Definition

• DirectedInsideObject
• PassageNode

as defined in Sections 7.4.4 and 7.4.5.

All items used in the compact format are listed in the entity section.

Entities = set($.entities..id)

requirement 22 (Entity declarations)
1. Entity identifiers shall be unique.
uniq($.entities..id)

2. Entities shall be grouped using unique user types.
uniq($.entities..user-type)

3. Referenced entity user types shall be in the type file.
set($.entities..user-type) ⊆ AllUserTypes𝑇

Given an entity name 𝑠, the following two functions returns the identifiers for the
user type and base type of 𝑠, respectively.

ut(𝑠 : Entities) = Y𝑥 (∃𝑦 in $.entities[@(user-type) = 𝑥] (𝑠 in 𝑦..id))
bt(𝑠 : Entities) = id𝑇 (ut(𝑠)).base-type′

which are both uniquely defined in view of the previous requirement.
Next the entity declarations are partitioned according to their base types.

Paths = { 𝑠 ∈ Entities | bt(𝑠) = "Path" }
Areas = { 𝑠 ∈ Entities | bt(𝑠) = "Area" }
Objects = { 𝑠 ∈ Entities | bt(𝑠) ∈ AllObjectTypes𝑇 }

For a name 𝑠 of an object, the following function returns its type.

ot(𝑠 :Objects) = id𝑇 (bt(𝑠))

Objects are further partitioned as exterior and interior. Where the former may not
occur in a railyard node.

XObjects = { 𝑠 ∈ Objects | ot(𝑠).allowed-node-types′ = [] }
IObjects = Objects \ XObjects

Using these definitions, the next following requirements state further restrictions
for referenced names in $.

requirement 23 (Referenced names in paths)
1. Path identifiers shall be unique,
uniq($.paths..id).

2. Identifiers for path user-types shall be unique,
uniq($.paths..user-type).

3. Path user-types shall be consistent,
∀𝑥 in $.paths′ (∀𝑦 in 𝑥..id (𝑦 ∈ Paths ∧ ut(𝑦) = 𝑥.user-type′))

PROVER TECHNOLOGY

LCF Language Definition

4. Path elements shall be interior objects,
set($.paths..path[*]) ⊆ IObjects

requirement 24 (Referenced names in areas)
1. Area identifiers shall be unique,
uniq($.areas..id)

2. Identifiers for area user-types shall be unique,
uniq($.areas..user-type)

3. Area user-types shall be consistent,
∀𝑥 in $.areas′ (∀𝑦 in 𝑥...id (𝑦 ∈ Areas ∧ ut(𝑦) = 𝑥.user-type′))

4. Area delimiters are declared user-types
set($.areas..delimiters[*]) ⊆ AllUserTypes𝑇

5. Objects in a delimited area are interior objects,
set($.areas..objects[*]) ⊆ IObjects

6. Objects included in a hull area are interior objects,
set($.areas..include[*]) ⊆ IObjects

7. Objects excluded in a hull area are interior objects,
set($.areas..exclude[*]) ⊆ IObjects

8. Objects in a path-set area are interior objects,
set($.areas..paths[*][*]) ⊆ IObjects

9. Identifiers in a union area type are areas,
set($.areas..union[*]) ⊆ Areas

10. Identifiers in a union area type are previously declared areas,
let 𝑡 = $.𝑎𝑟𝑒𝑎𝑠[∗].𝑎𝑟𝑒𝑎𝑠[∗] in
∀𝑖 ∈ dom(𝑡) ("union" ∈ dom(𝑡𝑖) ⇒ set(𝑡𝑖.union[*]) ⊆ set(𝑡[0..𝑖].id))

requirement 25 (Referenced names in segments)
1. The objects in generic segment items are unique,
∀𝑥 in $.segments..objects(uniq(𝑥))

2. The objects in segments are exactly the interior objects,
set($.segments..object) ∪ set($.segments..objects[*]) = IObjects

requirement 26 (Referenced names in attributes)
1. User-types in attribute section are unique,
uniq($.attributes[*].user-type)

2. User-types in attribute section are declared,
set($.attributes[*].user-type) ⊆ AllUserTypes𝑇

3. Entity identifiers in attribute section are unique,
uniq($.attributes[*].attrs[*].entity)

4. Entity user-types in the attribute section are consistent with their declared type,
∀𝑥 in $.attributes[∗] (∀𝑦 in 𝑥.𝑎𝑡𝑡𝑟𝑠[∗].entity (𝑦 ∈ Entities∧ 𝑥.user-type′ = ut(𝑦)))

PROVER TECHNOLOGY

LCF Language Definition

13.3 Nodes

The segments and segment items of $ are the following lists, respectively.

Sg = $.segments[*]
Si = $.segments[*][*]

Next, predicates for classifying the segment items are defined.

switch(𝑣 : json) = 𝑣 ∈ json𝐷 ∧ "object" ∈ dom(𝑣)
generic(𝑣 : json) = 𝑣 ∈ json𝐷 ∧ "objects" ∈ dom(𝑣)
colocated(𝑣 : json) = 𝑣 ∈ json∗

Given the description of the normal form of the compact format, these predicates
are exhaustive and mutually exclusive w.r.t. to the members of Si. We need also
predicates for the items occurring in co-located segment items:

directed(𝑣 : json) = 𝑣 ∈ json𝐷 ∧ dom(𝑣) = {"dir", "object"}
object(𝑣 : json) = 𝑣 ∈ json𝐷 ∧ dom(𝑣) = {"object"}

And also predicates for segment items occurring at the ends of a segment:

first(𝑠 in Si) = ∃𝑥 in Sg (𝑥0 = 𝑠)
last(𝑠 in Si) = ∃𝑥 ∈ Sg (𝑥 |𝑥 |−1 = 𝑠)
end(𝑠 in Si) = first(𝑠) ∨ last(𝑠)

Now, for a segment item 𝑣, 𝜔(𝑣) returns all objects contained in 𝑣.

𝜔(𝑣) =

set(𝑣.objects[*]) if generic(𝑣)
set(𝑣.object) if switch(𝑣)
set(𝑣[∗].object) if colocated(𝑣)

Two segment items with the same contained objects represents the same node. For
𝑥, 𝑦 in Si, let 𝑥 ' 𝑦 iff 𝜔(𝑥) = 𝜔(𝑦). The nodes in $ can then be represented by the
quotient set

Nodes = set(Si)/'

requirement 27 (Node consistency)

1. An object can be contained in at most one node,
∀𝑥, 𝑦 in Si (𝜔(𝑥) ∩ 𝜔(𝑦) ≠ ∅ ⇒ 𝑥 ' 𝑦)

2. A segment contains no repeated node,
∀𝑠 in Sg (∀𝑖, 𝑗 ∈ dom(𝑠) (𝑠𝑖 ' 𝑠 𝑗 ⇒ 𝑖 = 𝑗))

3. The keys of segment items are dependent of their position in a segment. Given
a segment 𝑠 with a switch or generic member 𝑠𝑖, the following shall apply:
"out" ∈ dom(𝑠𝑖) ∧ "in" ∉ dom(𝑠𝑖) if 𝑖 = 0
"out" ∉ dom(𝑠𝑖) ∧ "in" ∈ dom(𝑠𝑖) if 𝑖 = |𝑠| − 1
"out" ∈ dom(𝑠𝑖) ∧ "in" ∈ dom(𝑠𝑖) otherwise

4. Nodes have the same normal form,
∀𝑥, 𝑦 in Si (𝑥 ' 𝑦 ⇒ (generic(𝑥) ∧ generic(𝑦)) ∨
(switch(𝑥) ∧ switch(𝑦)) ∨ (colocated(𝑥) ∧ colocated(𝑦)))

PROVER TECHNOLOGY

LCF Language Definition

requirement 28 (Object type constraints)

1. A switch object may only be located in a generic node or switch node,
∀𝑠 in Si ∀𝑥 ∈ 𝜔(𝑠) (bt(𝑥) = "SwitchObject"⇒ generic(𝑠) ∨ switch(𝑠))

2. A directed object may only be located in a generic node or inside a co-located
node,
∀𝑠 in Si ∀𝑥 ∈ 𝜔(𝑠) (
bt(𝑥) = "DirectedObject"⇒ generic(𝑠) ∨
(colocated(𝑠) ∧ ∃𝑦(𝑦 in 𝑠 ∧ directed(𝑦) ∧ 𝑦.object′ = 𝑥)))

requirement 29 (Switch decorators)
A switch node has two or three occurrences in segments. This means that there
will be three decorators for the node.
It is required that the decorators are "-", "~" and one of "/" or "\". If an

occurrence of a switch node uses two decorators, one of them must be "~". In the
formal requirement below, given a switch segment item 𝑥, let swd(𝑥) = x.in + x.out,
be the list of its decorators.

∀𝑥 in Si (switch(𝑥) ⇒
let 𝑡 = [𝑠 | 𝑠 in Si if 𝑠 ' 𝑥] in
let 𝑟 = conc(swd ◦ 𝑡) in
(set(𝑟) = { "~", "-", "/"} ∨ set(𝑟) = { "~", "-", "\"}) ∧
∀𝑦 in 𝑡 (| swd(𝑦) | > 1⇒ "~" in swd(𝑦)))

requirement 30 (Signal decorators)
A directed object occurs once or twice among the segment items. In the latter case
the two occurences will be included in an segment item located either at the start
or end of a segment.
It is required that they have the same decorator value iff one of the items is at

the start of a segment and the other is at the end.

∀𝑠, 𝑡 in Si ∀𝑦 in 𝑠 ∀𝑧 in 𝑡 (
colocated(𝑠) ∧ directed(𝑦) ∧
colocated(𝑡) ∧ directed(𝑧) ∧
𝑠 ≠ 𝑡 ∧ 𝑦.object′ = 𝑧.object′⇒
(first(𝑠) ∧ last(𝑡) ∨ first(𝑡) ∧ last(𝑠) ⇔ 𝑦.dir′ = 𝑧.dir′))

13.4 Edges

We first collect all consecutive pairs of segment items in $,

SiPairs = { [𝑥𝑖, 𝑥𝑖+1] | 𝑥 in Sg ∧ 𝑖 ∈ 0 . . (|𝑥 | − 2) }

For 𝑠 ∈ SiPairs, let 𝛽(𝑠) = [[𝑠0]', [𝑠1]'], be the corresponding node pair. The edges
of $ are all such pairs, i.e.

Edges = { 𝛽(𝑠) | 𝑠 ∈ SiPairs }

requirement 31 (Edge consistency)
Edges are not repeated in segments, disregarding also the order of the edge.
Formally, for 𝑠 ∈ SiPairs let 𝑓 (𝑠) = set(𝛽(𝑠)), then it is required that 𝑓 is injective.

PROVER TECHNOLOGY

LCF Language Definition

13.5 Railyard interpretation

Given the requirements in previous sections, we can define the function 𝜓(𝑣), that
returns the node containing an interior object 𝑣.

𝜓(𝑣 : IObjects) = { 𝑥 in Si | 𝑣 ∈ 𝜔(𝑥) }

Let a node map for $ be a 2-tuple (a, b) where a :Nodes → AllNodeTypes𝑇 and
b : Edges → int2. Let b0 (𝑒) = 𝑎 and b1 (𝑒) = 𝑏 when b(𝑒) = (𝑎, 𝑏). A node map is
admissible iff the following conditions are satisfied.

1. The type of a node is compatible with its contained objects:
∀𝑥 : IObjects (a(𝜓(𝑥)) in ot(𝑥).allowed-node-types′)

2. The interpretation of a switch node, shall be the mandatory type SwitchNode
(c.f. Requirement 20):
∀𝑥 in Si (switch(𝑥) ⇒ a([𝑥]') = "SwitchNode")

3. The interpretation of a co-located node that contains a directed node, shall be
the mandatory type PassageNode (c.f. Requirement 20):
∀𝑥 in Si (colocated(𝑥) ∧ ∃𝑦 in 𝑥 (directed(𝑦)) ⇒ a([𝑥]') = "PassageNode")

4. Node indices are compatible with their associated node type:
∀𝑒 : Edges ∀𝑖 : { 0, 1 } (0 ≤ b𝑖 (𝑒) < id𝑇 (a(𝑒𝑖)).degree′)

5. Node indices can not be attached to multiple edges:
∀𝑑, 𝑒 : Edges (𝑑 ≠ 𝑒⇒
{ [𝑑0, b0 (𝑑)], [𝑑1, b1 (𝑑)]} ∩ {[𝑒0, b0 (𝑒)], [𝑒1, b1 (𝑒)] } = ∅)

6. Node indices respects the traversal relation for consecutive edges in segments:
∀𝑠 in 𝑆𝑔 ∀𝑖 ∈ 0..|𝑠| − 3 (
let 𝑑 = 𝛽([𝑠𝑖, 𝑠𝑖+1]) and 𝑒 = 𝛽([𝑠𝑖+1, 𝑠𝑖+2]) in
[b1 (𝑑), b0 (𝑒)] in id𝑇 (a(𝑒0)).traversal′)

7. Node indices respects explicit indices in generic items:
∀𝑠 : SiPairs (
let 𝑎 = b0 (𝛽(𝑠)) and 𝑏 = b1 (𝛽(𝑠)) in
(generic(𝑠0) ∧ out ∈ dom(𝑠0) ⇒ 𝑠0.out′ = 𝑎) ∧
(generic(𝑠1) ∧ in ∈ dom(𝑠1) ⇒ 𝑠1.in′ = 𝑏))

8. Node indices respects the intended meaning of switch decorators. Let 𝑓 be the
function { ("~", 0), (”/”, 1), (”\”, 2)} in
∀𝑠 : SiPairs (
let 𝑎 = b0 (𝛽(𝑠)) and 𝑏 = b1 (𝛽(𝑠)) in
(switch(𝑠0) ∧ out ∈ dom(𝑠0) ∧ 𝑠0.out′ ∈ dom(𝑓) ⇒ 𝑓 (𝑠0.out′) = 𝑎) ∧
(switch(𝑠1) ∧ in ∈ dom(𝑠1) ∧ 𝑠1.in′ ∈ dom(𝑓) ⇒ 𝑓 (𝑠1.in′) = 𝑏))

9. All indices for a node shall be connected to an edge,
∀𝑠 in Si (
let 𝑡 = [𝑠]' and 𝑎 = { 𝑥 | 𝑥 ∈ 𝑡 ∧ end(𝑥) } and 𝑏 = 𝑡 \ 𝑎 in
2 ∗ |𝑏| + |𝑎| = id𝑇 (a(𝑡)).degree′)

requirement 32 (Node map)
There must exist an admissible node map for $, and an application making use of
the compact format must specify such a map for the interpretation of $. Note that

PROVER TECHNOLOGY

LCF Language Definition

this specification may also state preconditions for $ in order to ensure that the map
is admissible. The full set of requirements for $ is therefore all requirements in this
section and all extra requirements stated in the specification of the node map.

The remaining definitions and requirements are dependent on a given admissible
node map (a, b).

13.6 Paths

A list 𝑝 of nodes is a node path iff

• 𝑝 is unique,
• |𝑝| ≥ 2,
• consecutive pairs of nodes in 𝑝 are in the symmetric closure of the edges, and
• the passage of nodes in 𝑝 respects the traversal relation.

The last two conditions can be expressed formally by:

∀𝑖 : 1 . . (|𝑝| − 2) ∃𝑑, 𝑒 : Edges ∃ 𝑗, 𝑘 ∈ {0, 1} (
[𝑝𝑖−1, 𝑝𝑖] = [𝑑1− 𝑗, 𝑑 𝑗] ∧ [𝑝𝑖, 𝑝𝑖+1] = [𝑒𝑘, 𝑒1−𝑘] ∧
[b 𝑗 (𝑑), b𝑘 (𝑒)] in id𝑇 (a(𝑝𝑖)).traversal′)

Let the predicate npath(𝑝) be true iff 𝑝 is a node path. Note that it follows that any
segment in $.segments[*] corresponds to a node path from the restrictions of the
node map. A list 𝑝 of interior objects denotes a unique path in $ iff the following
condition is satisfied:

∃!𝑞 (npath(𝑞) ∧ 𝑞0 = 𝜓(𝑝0) ∧ 𝑞 |𝑞 |−1 = 𝜓(𝑝 |𝑝 |−1) ∧ (𝜓 ◦ 𝑝) v 𝑞)

requirement 33 (Path consistency)

1. Each list in $.paths..path shall denote a unique path.
2. Each non-singleton list in $.areas..paths[*] shall denote a unique path.

PROVER TECHNOLOGY

LCF Language Definition

14 Requirement Identifiers

The tables below provides stable identifiers to all the requirements in this document.
The requirement numbers may be reordered in new versions of this document
in case new requirements are added or existing requirements are removed. The
identifiers will however be kept for the same requirement. Hence, all references to
the requirements in this document shall use the identifiers only.

Table Requirement identifiers

Nr Id Nr Id Nr Id Nr Id

 types- project- table- compact-
 types- project- table- compact-
 types- project- table- compact-
 types- project- table- compact-
 types- project- compact-
 types- project- compact-
 types- project- compact-
 types- compact-

 compact-
 compact-
 compact-
 compact-
 compact-
 compact-

PROVER TECHNOLOGY

REFERENCES

[1] “The JavaScript Object Notation (JSON) Data Interchange Format,” ISSN:
2070-1721, Dec. 2017.

[2] P. Larsson, “RJSON Format, Language Definition Document ,” Prover Tech-
nology, RJSON-LDD version 1.1, May 2021.

	I Syntax descriptions
	Introduction
	Outline
	Definitions
	Contact

	Overview and basic concepts
	Railyard graphs
	LCF formats

	JSON and RJSON
	JSON syntax
	RJSON extensions
	JSON Schema

	Package Data Format
	Format
	Description
	Example

	Project Data format
	Format
	Description
	Example

	Project Table Format
	Format
	Description
	Example

	Compact Data Format
	Format
	Description of top-level members
	Description of areas
	Description of segments
	Example

	II Formal requirements
	Common Notations
	Extra JSON Notations
	Semantic restrictions
	JSON AST
	Path expressions

	Requirements for Package Data Format
	Auxiliary definitions

	Requirements for Project Data Format
	Requirements for Project Table Format
	Requirements for Compact Data Format
	Normal form
	Types of referenced names
	Nodes
	Edges
	Railyard interpretation
	Paths

	Requirement Identifiers
	References

