
HAL Id: hal-03221149
https://hal.science/hal-03221149

Submitted on 7 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimisation contrainte d’une politique d’équilibrage de
charge

Ahmed Yassine Kamri, Pham Tran Anh Quang, Nicolas Huin, Jérémie Leguay

To cite this version:
Ahmed Yassine Kamri, Pham Tran Anh Quang, Nicolas Huin, Jérémie Leguay. Optimisation con-
trainte d’une politique d’équilibrage de charge. ALGOTEL 2021 - 23èmes Rencontres Francophones
sur les Aspects Algorithmiques des Télécommunications, Sep 2021, La Rochelle, France. �hal-03221149�

https://hal.science/hal-03221149
https://hal.archives-ouvertes.fr


Optimisation contrainte d’une politique
d’équilibrage de charge

Ahmed Yassine Kamri et Pham Tran Anh Quang et Nicolas Huin et Jérémie
Leguay
1Huawei Technologies Ltd., Paris Research Center, France

L’équilibrage de charge consiste à répartir le trafic entre une paire de nœuds sur plusieurs chemins afin d’améliorer les
performances du réseau. Idéalement, la politique d’équilibrage devrait s’adapter en fonction du trafic et anticiper son
impact sur le réseau mais l’intégration de modèles pour la Qualité de Service est un défi. Nous proposons une solution
basée sur l’apprentissage par renforcement profond, qui est capable d’apprendre la relation entre le trafic et la QoS, tout
en offrant la sécurité nécessaire pour maximiser le débit et éviter de violer les contraintes de capacité des liaisons. Elle
intègre un algorithme d’optimisation de politiques sous contraintes. Dans un scénario SD-WAN où les délais suivent le
modèle de mise en file d’attente M/M/1, nous démontrons, à l’aide d’un programme non linéaire en nombres entiers,
que notre solution peut atteindre un délai de bout en bout proche de l’optimum. Nous montrons également que notre
solution apprend automatiquement les paramètres de récompense pour répondre aux contraintes de capacité.

Mots-clefs : Equilibrage de charge, apprentissage par renforcement, SD-WAN.

1 Introduction
Tighter Quality of Service (QoS) requirements coming from 5G require network operators to move away
from best-effort management of their network and rethink their traffic engineering strategies. Popular static
load-balancing policies such as equal-cost multi-path (ECMP) [TH00] or its weighted variant [Zho+14]
cannot adapt to QoS measurements. They either waste resources or violate end-to-end performance require-
ments. Using Software Defined Network (SDN) for centralized monitoring and control, several adaptive
solutions have been developed such as Niagara [Kan+15] or IRSR [Med+16]. However, they minimize a
linear routing cost or the Maximum Link Utilization (MLU), respectively, and do not explicitly optimize
QoS metrics such as the end-to-end delay.

The integration of accurate QoS models into routing optimization algorithms can be challenging, but
model-free solutions might be a good practical solution. Proposed models are either too simple and lack
accuracy, or they become intractable [BO06]. In a previous work [HLM20], we explored decomposition
methods for integrating an M/M/1 model but in an single-path routing algorithm. Deep Reinforcement
Learning (DRL) proved, under the umbrella of experience-driven networking [Xu+18], to be quite effective
for routing problems. To evaluate the action of an agent, it requires the definition of a relevant reward
function.

The definition of the reward is one the most crucial aspect of Reinforcement Learning. Bouacida and
Shihada [BS18] tackled this issue within their LearnQueue framework where they defined a two-part re-
ward. As we will see in Section 2, their approach requires a manually tunable static parameter. We propose
to leverage Reward Constrained Policy Optimization (RCPO) [TMM18], explained in Section 3 to improve
on their approach and get rid of the manual configuration. We then compare, in Section 4, RCPO and
LearnQueue on an SD-WAN instance with an Non-Linear Program (NLP).



Ahmed Yassine Kamri et Pham Tran Anh Quang et Nicolas Huin et Jérémie Leguay

2 Problem statement
2.1 System architecture
The network is composed of a centralized network controller in charge of deciding the load balancing
policy. It periodically updates the policy to minimize the end-to-end delay of all tunnels. Each tunnel k ∈ K
comprises a set of origin-destination flows, between sk and tk, that can be split between multiple paths. The
set of paths Pk available for a tunnel is stable over time and is provided by either a local or a centralized
path computation module. The controller decides, at each time step t, the load balancing weights of each
tunnel to determine how Dk(t) the bandwidth of tunnel k is split among paths.

Links in the network have a maximum capacity ce,∀e ∈ E, where E is the set of links, and we choose to
mimic TCP’s behavior in case of congestion using a max-min fairness rate allocation [BGH92]. The rate of
each tunnel is adjusted to link capacity constraints with a water-filling algorithm. The enqueueing rate er(t)
is defined as ∑k∈K D̂k(t)/∑k∈K Dk(t), where D̂k(t) is the amount of admitted traffic for tunnel k at time t.

We choose to model the link delay using the simple M/M/1 queuing model, given by de(t) = dprop
e +

1/(ce− le(t)) where dprop
e is the propagation delay of the link and le(t) is the load of the link at time t. The

delay of a path p is given by the sum of the delay of its link (i.e., ∑e∈p de(t) ), and the delay of a tunnel dt
k

is given by the maximum delay over all its paths (i.e., maxp∈Pk ∑e∈p de(t)).

2.2 Markov decision process
We formulate our load balancing problem as a Markov decision process (MDP) defined by the tuple
(S,A,R,P,µ,γ). An observable network state st ∈ S comprises the bandwidth of each demand; the ac-
tion space A comprises the split ratio decisions; the reward function R : S×A×S→ R evaluates the delay
of the demands (we further develop the reward later); the transition matrix P gives the transition probability
between states after an action is taken; the initial state distribution is given by µ : S→ [0,1]; and the discount
factor for future rewards is given by γ ∈ [0,1).

The objective is to find an optimal policy π, i.e., a probability distribution over actions where π(a|s)
denotes the probability of taking action a at state s. The value of a policy π for a state s is given by
V π

R (s) =Eπ[∑t γtR(st ,at)|s0 = s] which can be rewritten in a recursive Bellman equation as follows V π
R (s) =

Eπ[R(s,a)+ γV π
R (s
′)|s], where s′ is the state after executing action a in state s.

The goal of our policy is to minimize the average delay of tunnels in the network; our reward function
must reflect that goal. However, an agent can exploit loopholes to maximize its reward. In our case,
since we are mimicking TCP’s congestion behavior, the agent could overload some parts of the network
to trigger congestion control and subsequently decrease the delay for some tunnels. Bouacida and Shihada
[BS18] proposed, with LearnQueue, a reward function to account for this loophole by integrating both the
delay and the traffic enqueuing rate (er) in the reward. The reward is parametrized by δ and is given by
(1− δ)×ert − δ×∑dt

k. Unfortunately, finding the right value for δ can be quite cumbersome and we
alleviate this issue by using the Reward Constrained Policy Optimization [TMM18] algorithm.

3 Reward Constrained Policy Optimization algorithm
To deal with the throttling loophole, we propose to add link capacity constraints to the model and to only
consider the average delay in the reward. Our problem now becomes a Constrained Markov Decision
Problem, which is more complicated to solve using Deep Reinforcement Learning. One solution is to use
Lagrange relaxation to move the constraints into the reward.

Lagrange relaxation requires three parts to transform a constrained MDP into an MDP: a penalty sig-
nal c(st ,at), to evaluate the violation of the constraint for a given action-state pair; a constraint C(st) =
F(c(st ,at), ...,c(sN ,aN)), to evaluate the violation of the constraints over time, and a threshold α, to indi-
cate if the constraints are hard or soft. We then try to maximize the discounted reward of policy π, i.e., Jπ

R =

Eπ
s0∼µ

[
∞

∑
t=0

γtr(st ,at)

]
, with respect to the expectation over the constraint Jπ

C ≤ α where Jπ
C = Eπ

s0∼µ[C(s)].

The objective of the unconstrained problem using Lagrange relaxation technique is min
λ≥0

max
θ

[
Jπθ

R −λ
(
Jπθ

C −α
)]

,



Optimisation contrainte d’une politique d’équilibrage de charge

where πθ is the parametrized policy with parameters θ. The penalized reward corresponding to the uncon-
strained MDP is r′(λ,st ,at) = r(st ,at)−λc(st ,at) and the value of the new discounted penalized reward is

V ′π(λ,st) =V π
R (st)−λV π

C (st), where V π
C (s) = Eπ[

∞

∑
t=0

γtc(st ,at)] is the discounted guiding-penalty.

Tessler et al. [TMM18] devised the Reward Constrained Policy Optimization (RCPO) algorithm (see
Alg. 1) to solve a constrained MDP using Lagrange relaxation. For each episode k, RCPO follows the con-
ventional procedure of Actor-Critic algorithms to update actor and critic networks based on its experience.
The expectation of the constraint is computed at the end of each episode and the Lagrange multiplier is
updated accordingly. Under mild assumptions, RCPO converges to a constraint satisfying solution.

Algorithm 1: RCPO
Input: penalty c(.), constraint C (.), threshold α, learning rates η1 (k)< η2 (k)< η3 (k)

1 Initialize actor parameters θ = θ0, critic parameters v = v0, and Lagrange multipliers λ = 0
2 for k=0,1,... do
3 Initialize state s0 ∼ µ
4 for t=0,1,...,T-1 do
5 Sample action at ∼ π, observe next state st+1, reward rt , and penalties ct

R̂t = rt −λkct + γV̂ (λ,st ;vk)

6 Critic update: vk+1← vk−η3 (k)
[

δ(R̂t−V̂ (λ,st ;vk))
2

δvk

]
7 Actor update: θk+1← Γθ

[
θk +η2 (k)∇θV̂ (λ,s)

]
8 Lagrange multiplier update: λk+1← Γλ

[
λk +η1 (k)

(
Jπθ

C −α
)]

9 return policy parameters θ

4 Results
We evaluated our algorithms on a typical SD-WAN network where three remote sites are multihomed to
headquarters (HQ) with Multi-Protocol Label Switching (MPLS) and broadband Internet connectivity. Tun-
nels exist between the remote sites and HQ in both direction. Each tunnel can route traffic on two different
paths: the MPLS path provide 6 Mb/s and the broadband Internet path provides 15 Mb/s.

We made the following choices for hyper-parameters and neural network architecture. For both Learn-
Queue and RCPO, we use a two-layer network 128 neurons with relu activation function for the actor and
critic networks. We trained the networks using Deep Deterministic Policy Gradient (DDPG) [Lil+16] over
one million time steps with a discount factor γ of 0.7. During training, we explore the action space using a
noise following an Ornstein-Uhlenbeck process, with a mean of zero and a standard deviation of 0.5. For
LearnQueue, we considered two extreme values of δ — 0.1 and 0.9 — to have solutions focusing on either
delay minimization or throughput maximization. Finally, for RCPO, we initialize the Lagrangian parameter
λ to 0.8 and set its learning rate to 0.01.

In Figure 1, we compare the average delay, the accepted throughput and the Maximum Link Utilization
(MLU) of our algorithms with a Non-Linear Integer program (NLP), not shown due to lack of space. The
NLP minimizes the average delay of all origin-destination flows in the network, taking into consideration
the capacity constraints and the M/M/1 queuing model for delay. It provides an optimal solution, often
missing in comparison found in the literature.

LearnQueue is clearly handicapped by the fact that δ must be defined in advance. When the focus is set
on delay minimization (δ = 0.9), LearnQueue drops traffic even though an optimal solutions without drops
exist. When the focus is set on throughput maximization (δ = 0.1), LearnQueue drops no traffic but the
resulting delay is more important than the one in solutions from RCPO. RCPO generates solutions close to
the optimal in terms of delay, without dropping any traffic.

Finally, we observe that solutions found with NLP have an MLU that is not always the lowest while
having the lowest average delays. This observation reinforces the idea that the MLU is not a good target to



Ahmed Yassine Kamri et Pham Tran Anh Quang et Nicolas Huin et Jérémie Leguay

0 20 40 60 80 100

0.5

1

1.5

Timestep

A
ve

ra
ge

de
la

y

0 20 40 60 80 100
70

80

90

100

Timestep

A
cc

ep
ta

nc
e

ra
tio

(%
)

LearnQueue(δ = 0.1) LearnQueue(δ = 0.9) RCPO NLP

0 20 40 60 80 100
60

70

80

90

Timestep

M
L

U
(%

)

Figure 1: Comparison between the LearnQueue algorithm with δ ∈ {0.1,0.9}, the RCPO algorithm and the NLP
algorithm. LearnQueue’s algorithm shows a trade-off between accepted traffic and average delay while RCPO accepts
100% of the traffic with an average delay close to optimal.

minimize and that accurate QoS models needs to be explicitly integrated into load balancing optimization.

5 Conclusion
We have presented a deep reinforcement learning solution for load balancing to optimize the end-to-end
average delay of a set of tunnels. To provide safety and avoid throughput degradation, we have enforced
capacity constraints in the policy optimization using the RCPO algorithm. We have demonstrated that a
close to optimal delay can be achieved while automatically learning reward parameters to meet capacity
constraints. This approach outperforms the LearnQueue reward, which is difficult to parametrize.

References
[BGH92] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks. Vol. 2. Prentice-

Hall International New Jersey, 1992.

[BO06] Walid Ben-Ameur and Adam Ouorou. “Mathematical models of the delay constrained routing
problem”. In: Algorithmic Operations Research 1.2 (2006).

[BS18] Nader Bouacida and Basem Shihada. “Practical and dynamic buffer sizing using LearnQueue”.
In: IEEE Transactions on Mobile Computing 18.8 (2018), pp. 1885–1897.

[HLM20] Nicolas Huin, Jeremie Leguay, and Sébastien Martin. “Génération de colonnes pour le problème
de routage à délai variable”. In: ALGOTEL. 2020.

[Kan+15] Nanxi Kang et al. “Efficient traffic splitting on commodity switches”. In: CoNEXT. 2015.

[Lil+16] Timothy P. Lillicrap et al. “Continuous control wuth deep reinforcement learning”. In: ICLR
(2016).

[Med+16] Paolo Medagliani et al. “Global optimization for hash-based splitting”. In: Proc. IEEE GLOBE-
COM. 2016.

[TH00] Dave Thaler and C Hopps. RFC 2991: Multipath issues in unicast and multicast next-hop
selection. 2000.

[TMM18] Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. “Reward Constrained Policy Optimiza-
tion”. In: CoRR abs/1805.11074 (2018). arXiv: 1805.11074. URL: http://arxiv.
org/abs/1805.11074.

[Xu+18] Zhiyuan Xu et al. “Experience-driven networking: A deep reinforcement learning based ap-
proach”. In: IEEE INFOCOM. 2018.

[Zho+14] Junlan Zhou et al. “WCMP: Weighted Cost Multipathing for Improved Fairness in Data Cen-
ters”. In: Proc. ACM EuroSys. 2014.


