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Many statistical applications set the question of data quality aside. However, data quality is a fundamental concern inherent to external data collection. In this work, we study how to integrate the information of data quality on explanatory variables in linear regressions, where data quality relates to the confidence we can have in the covariate values. In this view, we suggest a latent variable model that drives the generation of the covariates. We then introduce a new algorithm that takes into account individualized quality indexes. Our technique provides unbiased estimators of the regression coefficients and allows to make adapted predictions using the individualized quality indexes. Illustrations are given using simulations and toy examples.

Introduction

The reliability of information gathered from external sources may vary from one person to another. Indeed, complex processes often aggregate data sets of heterogeneous quality. More generally, modelling should depend on the observation's quality. Then, "how can an individualized quality index be used for prediction?" is a natural question in such a context.

Because the topic of data quality has myriads of applications, the literature is teeming and the consensus is the need of a multiple dimensions analysis for data quality evaluation [START_REF] Todoran | Toward the quality evaluation of complex information systems[END_REF] [START_REF] Todoran | Toward the quality evaluation of complex information systems[END_REF]). These dimensions are generally considered hierarchical, as in the paper by Wang and al., 1995 [23]. The first step in quality's definition is the integrity of the data, which is essential for prediction. The present paper assumes the integrity of data set is valid. Straightforwardly, the integrity is satisfied if all the observations are plausible (Ramakrishnan and Gehrke 2003 [15]). Moreover, the scope of quality dimension depends on the use of the data. In the framework of linear regression, four dimensions are usually considered as crucial (Rogova 2010 [START_REF] Galina | Information quality in information fusion[END_REF]) : i) completeness, or how to deal with missing data ; ii) imprecision (fuzziness, consistency, accuracy), or how to integrate the influence of accuracy on prediction ; iii) timeliness, the older the data the more uncertain (time impacts all other dimensions, see Decker, 2009 [4]); and iv) uncertainty (probability, credibility, reliability).

Completeness is a research field where numerous methods have been developed to deal with missing values (van Buuren 2018 [START_REF] Van Buuren | Flexible imputation of missing data[END_REF], Little and Rubin 2019 [START_REF] Roderick | Statistical analysis with missing data[END_REF]). These methods are globally based on assumptions such as MCAR (Missing Completely At Random), MNAR (Missing Not At Random), or MAR (Missing At Random). Imprecision can been seen as mismeasurement. In linear regressions, the mismeasured observations are seen as a shift from the "real" observations (Meijer 2000 [11], Abrevaya, 1999 [START_REF] Abrevaya | Semiparametric estimation with mismeasured dependent variables: an application to duration models for unemployment spells. Annales d[END_REF]). Haber 2020 [START_REF] Haber | Bias due to berkson error: issues when using predicted values in place of observed covariates[END_REF] shows that the regression coefficients are biased, dealing with Berkson error (Berkson 1950 [2]). In this setting, it is well known that the estimated coefficients are often lower than the true coefficients (the so-called "attenuation" in the econometric literature, see Hausman, 2001 [7]). Some authors estimate empirically this downward bias around 10-15% (Card, 2001 [3] and references therein). However the bias seems erratic, and mismeasurement sometimes leads to upward bias.

In this paper we focus on uncertainty, where the observation's uncertainty is quantified and is called quality index. Hereafter, the quality index at disposal is supposed to be perfectly measured, and refers to the uncertainty of the observed covariate value. On the contrary, the response is supposed to be perfectly observed. In our framework, the covariate value is generated by a latent variable model, whereas recent works dealt with uncertain data considering a mismeasurement approach, see Reis and Saraiva in 2005 [START_REF] Marco | Integration of data uncertainty in linear regression and process optimization[END_REF] for linear regression and Tami and al. 2018 [START_REF] Tami | Uncertain trees: Dealing with uncertain inputs in regression trees[END_REF] or [START_REF] Trabelsi | Handling uncertain attribute values in decision tree classifier using the belief function theory[END_REF] [START_REF] Trabelsi | Handling uncertain attribute values in decision tree classifier using the belief function theory[END_REF] for decision trees. We argue that given a multivariate dataset and its corresponding quality, it is possible to find the best set of regression coefficients. The main assumption is that the "wrong" observations have the same distribution as the "real" ones, in the same spirit as Muzellec and Joss 2020 [START_REF] Muzellec | Missing data imputation using optimal transport[END_REF]. The goal is now to answer the following question: Given an individualized quality index, how can it be used in a multivariate ordinary least squares regression? Indeed, this index is fundamental when extensively using external data. To the best of our knowledge, integrating such information in multivariate regression has never been investigated before. Our paper presents two main contributions. First, we quantify the impact of data quality on regression coefficients, as well as the corresponding consequences on bias and variance of the obtained estimators. Second, we introduce a new algorithm that allows to take into account the quality indexes in linear regressions and make robust predictions.

The paper is built as follows: Section 1 introduces the general idea, and shows how uncertainty is integrated within the covariate generating process. Section 2 describes the estimation method and introduces the algorithm that allows to make predictions using individual quality indexes. Section 3 the theoretical results underlying the bias correction of regression coefficients obtained through the algorithm previously mentioned. Section 4 is devoted to a simulation study that aims to confirm our theoretical results. Finally, Section 4.2 illustrates the applicability of the method in real-life settings, through toy examples.

Integration of data quality

Example

Suppose that the quality index is divided into "low" and "high" quality data, as in Figure 1a. Without having any information on this quality, a classical regression can easily be fitted (see Figure 1b). However, keeping in mind that the quality differs depending on observations, it makes sense to consider that this model should be adjusted. For instance, Figure 1c shows that fitting a model only on high quality data strongly modifies the previously obtained regression coefficients (e.g. the slope decreases from 1.22 to 1.06). Could we say that the latter model is better than the previous one ? The answer is not straightforward, but one clearly has the intuition that quality should be considered to avoid loosing some crucial information. 

Explanatory variables: a latent variable model integrating quality

To integrate the information on data quality in linear regressions, a primary idea could be to weigh the observations. However this is only feasible when a unique value refers to the overall quality for one given observation, through weighted likelihood optimization. In our setting, we would like to benefit from more comprehensive information provided by individualized quality indexes, referring to the confidence one has about the ith observation of the jth covariate.

In this view, we introduce the following latent variable model :

X = X real • Ω + Z • (J n,p+1 -Ω) (1) 
where • corresponds to the Hadamard product, J n,p+1 is the n × (p + 1)-identity matrix under Hadamard multiplication, X = (X i j ) ∈ M n×(p+1) (R) are the observed covariates, X real = (X real i j ) ∈ M n×(p+1) (R) are the "real" covariates, Z = (Z i j ) ∈ M n×(p+1) (R) are considered as the "wrong" covariate values (with same distribution as X real ), and Ω = (1, Ω j ) j=1,...,p = (ω i j ) ∈ M n×(p+1) (0, 1) is a binary mask indicating whether the ith observation of the jth covariate X i j is perfectly observed or not. In other words, Ω tells us if one observes the "real" observation or not, and ω i j can be seen as a Bernoulli random variable. In practice, the data at disposal is made of individualized quality indexes through some matrix

Q = (1, Q j ) j=1,...,p = (Q i j ) ∈ M n×(p+1) ([0, 1]), together with n iid replications (Y i , X i ) i=1,..,n where Y i ∈ R and X i = (1, X i1 , ..., X ip ) ∈ R p+1
. Each element Q i j of the matrix Q informs us on the quality related to the observed covariate value X i j . We use Q as the expectation of Ω, leading to define the quality index as a credibility index. This means that for all i = 1, ..., n, j = 1, ..., p, we have:

E(ω i j ) = P(ω i j = 1) = Q i j .
(

) 2 
This way, the variance of the quality is obtained straightforwardly, i.e.

Var(Ω) = Q • (J n,p+1 -Q). (3) 
We introduce the mean quality for covariate X j , i.e. Qj = (1/n) n i=1 Q i j , and assumes hereafter that for each covariate there is at least one individual strictly positive observed quality index, i.e. for all j = 1, ..., p, {i|q i j 0} ∅, hence Qj 0. This assumption is not restrictive, especially for real-life applications where such covariates would simply be removed from the data.

Regression model under consideration

We now consider the multivariate linear regression framework, i.e. the dependent response Y = (Y 1 , ..., Y n ), the explanatory variables X = (X 1 , ..., X n ), and the relationship

E[Y|X = x] = xβ, (4) 
with Y ∼ N(xβ, σ 2 ) and β = (β 0 , β 1 , ..., β p ) T ∈ R p+1 a vector of regression coefficients. In this work, the novelty lies in that X is not fully observed since it is governed by the latent variable model [START_REF] Abrevaya | Semiparametric estimation with mismeasured dependent variables: an application to duration models for unemployment spells. Annales d[END_REF], which has obvious consequences on the estimation of the regression coefficients. However, the information given by the individualized quality indexes (Q 1 , ..., Q n ), where Q i = (1, Q i1 , ..., Q ip ), is key to compensate this incomplete information.

Interactions in the latent variable model

When looking at the covariate generating process in [START_REF] Abrevaya | Semiparametric estimation with mismeasured dependent variables: an application to duration models for unemployment spells. Annales d[END_REF], several frameworks related to the correlation structure between X real , Z and Ω can be studied. They are connected with Rubin's nomenclature (Rubin,1976 [18]), namely the MCAR, MAR and MNAR settings. In what follows, we focus on an extension of the MCAR framework (Heitjan, 1996 [START_REF] Daniel | Distinguishing "missing at random" and "missing completely at random[END_REF]), in that MCAR would correspond to our setting where the quality indexes would only take value 0 or 1. More formally, for one given j ∈ {1, ..., p}, the real observations X real j , the wrong values Z j and the quality variable Ω j are independent. For all j k, the random variables Ω j and Ω k are independent, and Ω k is independent from X real j and Z j . Finally, X real j is also independent from Z k . In a nutschell, the sole potentially correlated variables are X real j with X real k , and Z j with Z k . In practice, the independence between the quality variables Ω j and Ω k (j k) suggests that each observation comes from unrelated sources.

Estimation process with quality indexes

Reducing the error by mitigating on quality patterns

In classical OLS regression, the solution β minimizes the Residual Mean Squared Error (RMSE), given by

RMSE(β|X, Y) = (1/n) i (Y i -X i β) 2 .
In our framework, we can put together two individuals with same quality indexes, i.e. Q i = Q i , and define a corresponding quality pattern K. Denote P(Q) the set of all observed quality patterns. By taking it into account, the cost metric can be improved since

RMSE( β|X, Y) ≥ (1/n) K∈P(Q) i\Q i =K (Y i -X i βK ) 2 = K∈P(Q) RMSE( βK |X, Y), ( 5 
)
where βK is the solution corresponding to individuals having quality pattern K. To seek such coefficients would lead to fit as many models as quality patterns, which is impossible in practice. To overcome this issue we introduce a strategy that is presented in Section 2.3, and that rely on theoretical results provided in Section 3.

Benchmark and models under study

When fitting a regression model in a classical context, the explanatory variables are considered as perfectly observed. This leads to the model (sometimes called "real-model" hereafter)

E[Y | X real ] = X real β,
where the coefficients are estimated based on the real (fully observed) data set X real , leading to the estimator β.

Hereafter, we need to figure out the impact of the covariate generating process. To this aim, we introduce the three following models :

• M 1 ("perfect quality" model) : fitted on the observed data set X, but representing the case when the covariates are perfectly observed, i.e. all the quality indexes Q i j equal 1:

E[Y | X, Q = J n,p+1 ] = Xβ M 1 .
Note that the estimator βM 1 differs from the classical estimator β.

• M 2 ("naive" model) : fitted on the observed dataset X without taking into account the quality (X is considered as fully observed, although it is governed by (1) in reality):

E[Y | X] = Xβ M 2 .
• M 3 ("pattern-adjusted" model): based on X and Q, obtained from Algorithm 1 (see

Section 2.3): E[Y | X, Q] = Xβ M 3 .
When Q = J n,p+1 (or Q i j = 1 for all i, j), model M 3 is similar to M 1 and βM 3 = βM 1 .

Note that βM 3 consists of individualized regression coefficients in practice, since it is based on quality pattern adjustments. This means that for two individuals i and i having different quality patterns K = Q i and K = Q i , the vector βM 3 will differ. For this reason and to make the reading easier, βM 3 is denoted βK in the sequel.

Section 3 is devoted to the study of the link between estimators obtained when fitting M 1 and M 2 models. This way, we will be able to apply the right correction factor needed to infer the coefficients of model M 3 .

Algorithmic prediction using data quality

Algorithm 1, leading to setup the pattern-adjusted model M 3 , allows to take into account the data quality without increasing the number of parameters. It is based on theoretical results obtained in Section 3, and aims to predict the response given the information about the quality on the covariate values.

At the beginning, one first estimates M 2 from X. Then, considering an estimate of the covariance matrix Σ (given by Σ = (1/n) t XX, where t X denotes the matrix transpose) and the quality indexes Q, the covariance matrix related to X real (denoted further Σ real ) is estimated (steps [START_REF] Berkson | Are there two regressions[END_REF] and [START_REF] Card | Estimating the return to schooling: Progress on some persistent econometric problems[END_REF]). From Σreal , βM 2 and Y, the coefficients βM 1 are infered in step [START_REF] Decker | Modeling, measuring and monitoring the quality of information[END_REF] using a mean quality Q = (1, Q1 , ..., Qp ). This estimator is naturally unadapted to unperfectly observed dataset since it eclipses the heterogeneity of individual quality indexes. Finally, one adjusts the latter coefficients to take into account the individualized quality indexes.

To summarize, the algorithm unbiases the coefficients to estimate the "real" underlying ones, and then do the inverse process for each quality pattern to find the adapted set of coefficients. All the necessary theoretical results underlying the steps of this algorithm are given in Section 3. 

Q i = K do Ŷi = X i βK ; end end end

Theoretical results

Recall

that X j = X real j • Ω j + X real j • (J 1,n -Ω j ) with Ω j ∼ Bernoulli(Q j ).
Without loss of generality, we assume hereafter that X real j is centered (j = 1, ..., p). Therefore, both the random variables Z j and X j are centered. Moreover, for any random variable X, the notation X refers to the empirical mean, i.e. X = (1/n) n i=1 X i .

Assumptions

Assume that each covariate distribution has a finite second-order moment, and recall that Z j and X real j have the same distribution (j = 1, ..., p). We discuss here four assumptions underlying the correlation structure between the components of X real and those of Z:

(X-A1) All the random variables X real j ( j = 1, ..., p) are independent. (X-A2) Each variable X real j is at most correlated with another variable X real k (j k). (Z-A1) All the random variables Z j and Z k are independent. (Z-A2) The vector (Z j , Z k ) has the same correlation structure than (X real j , X real k ), j k.

Note that under (X-A1), considering either (Z-A1) and (Z-A2) is similar. Under (X-A2), the covariance Σ real is made of submatrices Σ real jk such that Σ real jk ∈ M 2×2 (R * ). Trivially, under (X-A1) and (Z-A1), submatrices Σ real jk are diagonal matrices. We consider pairwise correlated covariates at most, knowing that our results could be extended to correlation structures in higher dimension. However, the additional complexity in such contexts would lead to painful computations and unreadable formulas. Satisfying the aforementioned assumptions depends on how the covariates are collected. For instance, if they come from the same database extraction (and are thus based on the same underlying key), the correlation between Z j and Z k should be similar to the one between X real j and X real k . Of course, in this case, (X-A2) and (Z-A2) would be appropriate.

Relation between observed and real covariance matrices

We link here the observed and real covariance matrices, denoted respectively Σ and Σ real . In the sequel, we consider two covariates X j , X k (respectively X real j , X real k ), as well as their associated covariance Cov jk = Cov(X j , X k ) (respectively Cov real jk = Cov(X real j , X real k )).

Link between covariances

Given a dataset with two covariates and their joint quality (X i j , Q i j ) i=1,...,n , (X ik , Q ik ) i=1,...,n with j k, we now state the relation between observed and real covariance. Note that under (X-A1), all terms equal zero. We thus focus on the different cases under (X-A2). Lemma 3.1. Under (X-A2), the relation yields :

Under (Z-A1) : Cov jk = Q j Q k Cov real jk . (6) 
Under (Z-A2) :

Cov jk = (1 + 2Q j Q k -Q j -Q k ) Cov real jk . (7) 
Proof. See Appendix A.1.

Remark 3.1. Because Y is supposed perfectly observed, Cov(X j , Y) = Q j Cov(X real j , Y), for j = 1, ..., p.
Such results could be extended to other correlation structures between the components of Z and X. However, one would need to explicitly specify the correlation structure. Note that if X real j and Z j have the same distribution, then their standard deviations are equal. As a result, the Pearson's correlation has the same relation as the covariance.

Impact on information matrix under (Z-A1)

In linear regression, the information matrix (inverse of the empirical estimate of the covariance matrix) is a milestone to derive asymptotic results. We thus aim to link the "real" information matrix to the observed one.

We remind that under (X-A2) and (Z-A1), the covariance matrice Σ (respectively Σ real ) is made of 2x2 submatrices Σ jk (respectively Σ real jk ), corresponding to the covariance matrix between X j and X k (respectively X real j and X real k ). Its empirical estimate follows Σjk = (1/n) t (X j , X k )(X j , X k ). Lemma 3.2. Assume that the covariance matrix Σ real jk is not singular. Under (X-A1) and (Z-A1), Σ jk = Σ real jk . Under (X-A2) and (Z-A1),

Σ -1 jk = (1 -(ρ real jk ) 2 ) (1 -(ρ real jk ) 2 Q 2 j Q 2 k ) (Σ real jk ) -1 • 1 Q j Q k Q j Q k 1 , (8) 
with ρ real jk the Pearson correlation between X real j and X real k such that |ρ real jk | 1.

Proof. See Appendix A.2.

Using the law of lage number (LLN), we have Σ → Σ real and Σreal → Σ real , as n → +∞.

We now focus on the link between the estimators βM 2 (obtained when fitting M 2 based on X) and β (obtained when fitting the classical linear regression model, based on X real ).

Impact on regression coefficients, case of independence between covariates

Under (X-A1), to consider (Z-A1) or (Z-A2) makes no difference. Remind that M 2 is fitted on an unperfect dataset (observed covariates), contrary to M 1 which estimates the coefficients from the real dataset (thus fictive since not fully observed). Here, we quantify the bias and variance of the obtained estimators under M 1 . The coming results thus refer to steps [START_REF] Card | Estimating the return to schooling: Progress on some persistent econometric problems[END_REF]- [START_REF] Decker | Modeling, measuring and monitoring the quality of information[END_REF] of Algorithm 1 in Section 2.3.

Relation between M 1 and M 2 coefficients

We first study how the estimator of the regression coefficient is modified when going from model M 2 to model M 1 .

Theorem 3.3. Under (X-A1) and (Z-A1) or (Z-A2), we have for j = 1, ..., p :

βM 2 j / Qj → β j , . (10) 
The intercept remains unchanged, i.e. βM 2 0 → β 0 . Proof. See Appendix A.3. Remark 3.2. If the covariates were not centered, they would be a shift in the intercept. See Appendix A.3. The latter would equal to p j=1 E(X j )β j . Then, the expected difference would be

βM 2 0 → β 0 - p j=1 E(X j ) β M 2 j (1 -Q j ) Q j . ( 11 
)
This means that when the mean quality lowers, the model gives more credit to the global mean than the covariate value.

Once again, notice that βM 1 j differs from βj (see Section 2.2). Indeed, βM 1 and β are not based on the same dataset, meaning that the estimators have different variances (despite they have the same expectation, see the covariate generating process).

Remark 3.3. The variance of βM 2 is well known, given by Var( βM 2 ) = σ 2 ((1/n) t XX) -1 ,

Var( βM 1 ) = Var( βM 2 • D) = σ 2 ((1/n) t XX) -1 • D 2 ≥ Var( βM 2 ), ( 12 
)
where D is a diagonal matrix in which the jth (j > 1) term D j = (1/ Qj ), and D 1 = 1. The estimator βM 1 has therefore an higher variance than βM 2 .

Deduce βK involved in the predictive model M 3

As already mentioned in Section 2.2, the vector βK exactly matches βM 1 when all individualized quality indexes equal 1, i.e. when K = J 1,p+1 . In full generality, when K = Q i is made of terms Q i j 1, the coefficients βK need to be calculated.

Corollary 3.3.1. From Theorem 3.3, for any quality pattern K

= Q i = (Q i j ) j=1,...,p where Q i j ∈ [0, 1]: βK j = Q i j βM 1 = Q i j Qj βM 2 , j = 1, ..., p. ( 13 
)
Since the X j 's (j = 1, ..., p) are centered, the latter is not impacted. We thus have βK 0 = βM 1 0 = βM 2 0 . The coefficients βK provide an approximation of the coefficients β M 2 when the model M 2 is adapted to the individual quality pattern Q i = K. This way, they minimize RMSE( βK |X, Y) for a given quality pattern K, as required by Equation (5).

Pairwise correlated covariates

The case of total independence between covariates is often not realistic in real-life. One thus needs to extend our results to the setting where some correlation between X real j and X real k exists. In this view, we study the case of pairwise correlated explanatory variables. For a brief discussion on more general cases, the reader is referred to Appendix B. As previously, we first detail the modification on the regression coefficients themselves.

Relation between M 1 and M 2 coefficients

The following theorem enables to put in relation the estimators obtained when considering the quality indexes or not in the regression model. Under (Z-A1):

1 1 -ρ 2         βM 2 j Qj (1 -ρ 2 Qj Qk ) + Var(X k ) Var(X j ) βM 2 k Qk ρ ( Qj Qk -1)         → β j , Under (Z-A2): 1 1 -ρ 2         βM 2 j Qj (1 -ρ 2 (1 + 2 Qj Qk -Qj -Qk )) + Var(X k ) Var(X j ) βM 2 k Qk ρ (2 Qj Qk -Qj -Qk )         → β j . (14) 
Proof. See Appendix A.4.

The relation thus depends on both the correlation between the two covariates and their respective qualities. The shift of the intercept remains the same as under (X-A1). In the same spirit as previously, βM 1 is actually used instead of β in practice.

Remark 3.4. Under (X-A1) and (X-A2), we know that the regression coefficients βM 2 are asymptotically unbiased. Their variance is well known, given by

V( βM 2 ) = σ 2 ((1/n)X T X) -1 .
Then, each block of matrix tends to :

σ 2 (1 -ρ 2 ) (1 -ρ 2 Q j Q k ) (Σ real jk ) -1 • 1 Q j Q k Q j Q k 1 .
By using (A.7) in Appendix A.4, knowing ρ, we get

V( βM 1 j ) = σ 2 (1 -ρ 2 ) 2 (1 -ρ 2 Qj Qk ) 2 Q2 j Σ j; j + Var(X k ) Var(X j ) ( Qj Qk -1) 2 ρ 2 Q2 k Σ k;k + 2 (1 -ρ 2 Qj Qk )( Qj Qk -1)ρ Qj Qk Σ j;k Var(X k ) Var(X j ) .
where Σ j;k is the j th -row and k th -column element of Σ. Here, the interpretation is slightly more complex. Indeed, it depends on the correlation structure and the quality relation between the correlated covariates.

3.4.2. Deduce βK to make adjusted predictions in M 3 In the same spirit as in Section 3.3.2, we now deduce the best coefficients βK , adapted to the quality pattern

K = Q i = (Q i j ) j=1,...,p .
Corollary 3.4.1. Under (X-A2) and (Z-A1) and from Theorem 3.4, we have

βK k = Q ik 1 -Q 2 i j Q 2 ik ρ 2         βM 1 k (1 -Q 2 i j ρ 2 ) + Var(X j ) Var(X k ) βM 1 j ρ(1 -Q 2 i j )         . ( 15 
)

Illustrations

We aim here to check our theoretical results. More precisely, we would like to confirm the correction factors needed to unbias the estimation of the regression coefficients when taking into account data quality. In this view, all the simulated examples are designed using a common matrix Q, where Q is drawn once for all from some specified distribution (in real-life, the matrix Q would be given as input). Each simulated dataset is now built as follows:

Step 1: X real is simulated given the marginals and assumptions (either (X-A1) or (X-A2));

Step 2: Z is simulated given the marginals of X real and assumptions (either (Z-A1) or (Z-A2));

Step 3: Ω is simulated from Q through Bernoulli trials;

Step 4: X is deduced from the latent variable model (1);

Step 5: Y is deduced from the linear relationship with X real .

The study is performed using R ([14]) statistical software.

Simulation study with correlated covariates

Consider the theoretical model

Y = 50 + 4X real 1 + 4X real 2 + , (16) 
with such that ∼ N(0, √ 5), and where X real 1 and X real 2 are correlated covariates respectively following N(2, √ 5) and Γ(2, 3). The correlation structure is given by a Gaussian copula with parameter ρ = 0.2. Given that X real 1 and X real 2 are known since they are simulated, the theoretical model ( 16) and the corresponding regression coefficients (β = (β 0 , β 1 , β 2 ) = (50, 4, 4)) can thus be estimated, leading to the vector β. In real-life, X real 1 and X real 2 are obviously unknown. We only observe n iid replications of X 1 and X 2 , i.e. X 1 = (X i1 ) i=1,...,n and X 2 = (X i2 ) i=1,...,n , where each observation is built from

X ik = ω ik X real ik + (1 -ω ik )Z ik with ω ik ∼ Bernoulli(Q ik ) (k = 1, 2).
Here, the (Q ik ) i=1,...,n; j=1,2 's are drawn from independent discrete uniform distributions on {0,0.5,1}. A standard regression model, fitted on (Y, X), should thus come up with estimators impacted by the quality. As it can be seen in Table 1, focusing on the estimator of β 1 , the results show that the model M 2 strongly underestimates the real impact of X 1 on the response. On the contrary, the coefficient βM 1 has been rightly corrected using Theorem 3.4 (similar results are observed for the estimators of β 2 ). Figure 2 represents the estimators of β 1 in the different models, where means and medians are overlapping, and where the 5% and 95%-quantiles are plotted to represent the variability of the estimators. Of course, the confidence intervals narrow when the sample size increases. Figure 2 also allows to illustrate that the estimators in model M 1 have higher variances than others, as expected (due to the quality, see Remark 3.3). Figure 3 shows that the maximum likelihood properties still seem to hold (asymptotically gaussian unbiased coefficients). From Table 2, note that the variance of βM 1 is increasing when the correlation between covariates increases (especially from threshold |ρ| = 0.8).

Estimator mean

Estimator variance ρ β1 βM2 

Practical illustration through toy examples

To remain in a real-life context, we simulate only one dataset X and use bootstrap resampling with 500 bootstrap samples used to get the distribution of estimators. Once again, the matrix Q remains unchanged. Each bootstrapped is splitted into a learning and a testing sample (70%-30%) so as to evaluate the predictive power of models.

Impact of quality on coefficients

Let be given the model

Y = 10 + X real 1 + X real 2 + , (17) 
with such that ∼ N(0, √ 5), and where X real 1 and X real 2 are correlated random variables respectively following Γ(2, 1) Γ(2, 3) distributions. The correlation structure is defined by a Gaussian copula, with correlation ρ. To begin with, we set ρ = 0.7. The qualities Q 1 and Q 2 , related to X 1 and X 2 , follow independent continuous uniform distributions such that Q 1 ∼ Q 2 ∼ U(0.7, 1). Figure 4 shows the bootstrapped regression coefficients obtained in models M 2 and the estimators β1 and β2 of (β 1 , β 2 ) = (1, 1) (respectively dotted and plain areas). Because the covariates are strongly correlated, the lost information on X 1 due to unperfect quality is partially offset by X 2 . This phenomenon is well illustrated by the fact that all the regression coefficients have not necessarily decreased, contrary to what one could anticipate.

Suppose now that ρ = 0.3 and that Q i j ∼ discrete U(0, 0.3, 0.7, 1). Figure 5 shows the results of the bootstrapped RMSE evaluated on each of the models under study. On the one hand, the estimator of the theoretical model ( 17) -fitted on X real -is of course the best one according to the RMSE metric. On the other hand, the model M 1 -using βM 1 -is fitted on the observed data set, but the RMSE is still computed using X real to ensure comparability (mandatory to use β and βM 1 ).

Denote by RMSE k the RMSE of the model k, and RMSE real the one of the real model. Not surprisingly, Figure 5 confirms that the real model (using β evaluated thanks to X real ) is the best one. Nonetheless, because there is not a significant gap between β and βM 1 , RMSE 1 is very close to RMSE real ((RMSE 1 -RMSE real )/RMSE real ≤ 0.5%). Indeed, both are estimators of β. Because in practice X real is unknown, β cannot be used for prediction on X. RMSE 2 and RMSE 3 (using X) are significantly higher than RMSE 1 , due to the imperfectly observed data set. Without quality indexes, the loss of RMSE due to the quality is the difference between RMSE real = RMSE( β|X real ) and RMSE 2 = RMSE( βM 2 |X). In this simulation, RMSE 2 is 94% higher than RMSE real . The use of Q helps to recover a significant amount of information corresponding to the difference between RMSE 2 and RMSE 3 : here, precisely a recovery of (RMSE 2 -RMSE 3 )/RMSE real = 21%. Moreover, the improvement depends on the quality pattern K for each individual. The model M 3 provides each individual with the best estimator corresponding to its quality indexes as illustrated by figure 6. Actually, this figure shows the observed and prediction responses for individuals wrapped by pattern of quality indexes. The model M 3 converges to the real one when (Q 1 , Q 2 ) are getting closer to (1, 1) and converges to a constant when (Q 1 , Q 2 ) are getting closer to (0, 0). Figure 6: The quality is taken from a uniform sampling between (0, 0.3, 0.7, 1). ρ is taken equal to 0.3. The green points corresponds to the predicted value using M 1 with X real . The red square corresponds to the predicted value using M 2 with X.

The orange cross correspond to the predicted value using M 3 with X.

Link to missing values

Consider the model

Y = 10 + 4X real 1 + 2X real 2 + 3X real 3 + 4X real 4 + ,
where is a Gaussian random noise such that ∼ N(0, √ 5), and X real 1 , X real 2 , X real 

), E(2), Γ(2, 1) and Γ(2, 3) distributions. The correlation structure is defined by a Gaussian copula, with correlation matrix

            1 0.3 0 0 0.3 1 0 0 0 0 1 0.6 0 0 0.6 1            
The corresponding quality indexes Q 1 , Q 2 , Q 3 and Q 4 follow independent discrete uniform distributions in {0;1}. When the Q i j = 0, it is similar to a missing value replaced by a random observation drawn from the empirical distribution of X real j . Algorithm 1 determines M 1 coefficients and allows the model to adapt the coefficients to the different quality patterns, as shown in Figure 7. If all the values are missing, the model M 3 predicts the mean of Y, which is indeed the best estimator without any information on the individual. We can see on Figure 8 that for each quality pattern, the RMSE is lower using M 3 than using M 2 . However, the lower the quality, the lower the performance.

Conclusion

In this work, we introduce a new method to take into account individualized quality indexes in OLS regressions. These indexes can be either qualitative or quantitative indicators, including the case of missing values. Our paper shows in an easy way how to deal with such information, relying on theoretical results. Basically, one needs to define a new coefficient by applying a correction factor on the original estimated regression coefficient. These results are likely to be very useful for practitioners, knowing that more and more studies use open data which are naturally linked to quality issues. Furthermore, as the Pareto Principle suggests in missing values theory, missing values are never uniformly distributed over the covariates characteristics. We hereby enjoin in complex case to limit the number of covariates. Further developments are needed like relaxing the different assumptions or apply this framework to GLM methods. They are left for future works. Several issues remain wide open considering regularised regressions -Should the regularisation be on the 'true' coefficients or on the observed one ? -, or on the impact of the quality on Machine Learning methods. 

Σ -1 jk = 1 Var(X j )Var(X k ) -Q 2 j Q 2 k (Cov real jk ) 2
Var(X j )

-Q j Q k Cov real jk -Q j Q k Cov real jk
Var(X k ) .

To lighten the notation, we denote ρ real jk the Pearson correlation between the two covariates X real j and X real k . To find a relation between (Σ real jk ) -1 and Σ -1 jk , denote (Σ -1 ) kk the k th diagonal term and (Σ -1 ) jk the element on the j th row and k th column. We can now easily state the following relations :

(Σ -1 ) kk -(Σ real ) -1 kk = -(Σ real ) -1 kk × (ρ real jk ) 2 (1 -Q 2 j Q 2 k ) (1 -(ρ real jk ) 2 Q 2 j Q 2 k ) , (Σ -1 ) jk -(Σ real ) -1 jk = -(Σ real ) -1 jk × (1 - Q 2 j Q 2 k 1 -(ρ real jk ) 2 ) (1 -(ρ real jk ) 2 Q 2 j Q 2 k )
.

Then :

Σ -1 jk = (Σ real jk ) -1 •            (1-(ρ real jk ) 2 ) (1-(ρ real jk ) 2 Q 2 j Q 2 k ) Q j Q k (1-(ρ real jk ) 2 ) (1-(ρ real jk ) 2 Q 2 j Q 2 k ) Q j Q k (1-(ρ real jk ) 2 ) (1-(ρ real jk ) 2 Q 2 j Q 2 k ) (1-(ρ real jk ) 2 ) (1-(ρ real jk ) 2 Q 2 j Q 2 k )            = (1 -(ρ real jk ) 2 ) (1 -(ρ real jk ) 2 Q 2 j Q 2 k ) (Σ real jk ) -1 • 1 Q j Q k Q j Q k 1 .

  • x + 0.23 (c) Regression on "High quality" observations.

Figure 1 :

 1 Figure 1: Different regression models depending on data quality.

Theorem 3 . 4 .

 34 For all j k, if |ρ| = |ρ real jk | 1, we have under (X-A2) and as n → +∞ :

Figure 2 :

 2 Figure 2: Asymptotic convergence of estimators in M 1 and M 2 (1000 simulations), with confidence bands.

Figure 3 :

 3 Figure 3: Density of β1 , β2 with sample size n = 7500, obtained from 1,000,000 simulations.

Figure 4 :

 4 Figure 4: Distribution of bootstrapped OLS coefficients in the classical model (based on X real and in M 2 (based on X). The quality index Q i is simulated by a Uni f orm(0.7, 1) for i ∈ 1, 2. The correlation ρ 1,2 is equal to 0.7.

Figure 5 :

 5 Figure 5: Dispersion of RMSE (500 bootstrap samples, n = 7000, Q i j ∼ discrete U(0, 0.3, 0.7, 1).

Figure 7 :

 7 Figure 7: Predictions wrapped by number of missing values under (X-A2). Predicted values by M 2 (red squares) and M 1 using βM 1 (green circles) against the true values ones. Orange triangles are the predictions using M 3 .

Figure 8 :

 8 Figure 8: RMSE plot wrapped according to (1/p) p j=1 Q i j for each individual i. RMSE 3 is always lower than RMSE 2 whatever the quality pattern.

Algorithm 1 :

 1 Quality-based prediction Data: X with corresponding quality matrix Q, and response Y. Result: Prediction of Y i given (X i1 , . . . , X ip ) and (Q i1 , . . . , Q ip ).

	begin
	[1] Estimate βM 2 from X and Y ;
	[2] Estimate the covariance matrix Σ from X ;
	[3] Estimate Σreal from Σ and Q doing : (Lemma 3.2) ;
	for j = 1, ..., p and k = 1, ..., p do
	Estimate Cov(X real j , X real k ) (Lemma 3.1);
	end
	[4] Estimate βM 1 from βM 2 , Σreal and Y (Theorem 3.3 and 3.4);
	[5] Prediction of Y;

for each quality pattern K ∈ P(Q) do Estimate βK from βM 1 , Σreal and K (Corollary 3.3.1 and 3.4.1) ; for For each individual i such that

Table 1 :

 1 Estimators in models M 1 and M 2 . Means and variances are obtained from 1000 simulations.

		Estimator mean	Estimator variance
	n	β1	βM 2 1	βM 1 1	β1	βM 2 1	βM 1 1
	100 3.993 2.572 4.149	0.1216 0.6724 1.2472
	500 4.001 2.124 3.933	0.0603 0.3069 0.6743
	1000 4.001 2.213 4.021	0.0419 0.2124 0.4466
	5000 4.000 2.229 4.068	0.0173 0.0998 0.2060
	7500 4.001 2.232 3.990	0.0133 0.0810 0.1675

Table 2 :

 2 Estimators of β 1 . Empirical means and variances obtained from 1000 simulations (n = 10 000).

Appendix A. Proofs

Appendix A.1. Proof of Lemma 3.1 Proof. Thanks to the equation [START_REF] Abrevaya | Semiparametric estimation with mismeasured dependent variables: an application to duration models for unemployment spells. Annales d[END_REF], the expected value remains unchanged. Consider two covariates and their joint quality (X j , Q j ) , (X k , Q k ) ( j k). The qualities Q j and Q k corresponds to the expectation of the quality variables Ω j and Ω k , where Ω j and Ω k are Bernoulli random variables. Introduce Ω jk = (Ω j , Ω k ) and denote w m the realization of Ω jk . Clearly, w m ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. We can therefore write :

(A.1)

Cov jk = P(Ω jk = (0, 0)) Cov(X j , X k |Ω jk = (0, 0)) + E(X j |Ω jk = (0, 0))E(X k |Ω jk = (0, 0))

Then, the final expression depends on the assumptions about the correlation structure between the covariates

Under (X-A2) and (Z-A1), Cov(Z j , Z k ) = 0. We always have in our framework Cov(X real j , Z k ) = 0. We thus obtain that Cov jk = Q j Q k Cov real jk . Similarly, under (X-A2) and (Z-A2), the covariance can be written

Using the strong law of large number, we can replace Q j and Q k by the empirical estimator Qj and Qk which ends the proof. Proof. For each covariate X j (j = 1, ..., p), Z j has the same distribution as X real j . Given the latent variable model (equation 1) and under (X-A1) and (Z-A1), it is straightforward to show that :

Then, the covariance matrix Σ jk equals to :

Let now focus on the covariance matrix Σ jk under (X-A2) and (Z-A1). As mentioned before, the variance remains unchanged. However, we know from Lemma 3.1 that the covariance is changing proportionally to the mean quality under (Z-A1) :

We remind that the quality Q j corresponds to E(Ω j ) for j = 1, ..., p, where Ω j is a Bernoulli random variable. Recall that we assume the non singularity of the real information matrix, i.e. |Cor(X real j , X real k )| 1 (and thus |Cor(X j , X k )| 1) and notice that we state (Σ real jk ) -1 = Proof. Remind that the covariates are supposed centered and that we are under (X-A1). Using our notations, the classical OLS regression coefficient β satisfies :

As the sample size tends to infinity, β is the solution of

When focusing on M 2 , we have for j = 1, ..., p :

According to Lemma 3.2, Σ = Σ real , i.e, Var(X j ) = Var(X real j ). Moreover, using the Lemma 3.1, Cov(X j , Y) = Q j Cov(X real j , Y) = Q j β j Var(X real j ). We remind that the quality Q j corresponds to E(Ω j ), where Ω j is a Bernoulli random variable. Finally, the difference easily follows:

for each covariate X j . The other coefficients stay unchanged by centering. Indeed, without loss of generality, let E(X 1 ) 0 and X c 1 = X 1 -E(X 1 ). The shift is easily found

Therefore, only the intercept in the centered case shifts (by E(X 1 )β 1 ) due to X 1 centering. We will first center the variable and uncenter it afterwards. First we center the variable X 1 for the model M 2 . The intercept shifts by E(X 1 )β M 2 1 then we can apply the previous results in the centered case. Finally, we recenter the variable X 1 for the real model, with a shift of E(X 1 )β 1 . Therefore, the global shift is equal to E(X 1 )β M 2 1 -E(X 1 )β 1 . We finish this part of proof for the intercept by replacing β 1 by

To end the proof, we know that Qj and βM2 j converges in probability to β M2 j and Q j (using LLN and the maximum likelihood properties). Therefore,

Appendix A.4. Proof of Theorem 3.4 Proof. Remind that the covariates are supposed centered. The proof with uncentered covariates would only modify the intercept values (see the previous proof). The ordinary OLS regression coefficient β satisfies :

As n tends to infinity, the regression coefficient β is the solution of Σβ = t Cov(X, Y).

Then using Gauss-Jordan elimination, for two correlated, |ρ| 1, covariates X k , X j , k j in linear regression, we can state :

Thanks to the lemma 3.1, under the assumption (X-A2) and (Z-A1), we can write

We remind that the quality Q j corresponds to E(Ω j ) for j = 1, ..., p, where Ω j is a Bernoulli random variable. Using the Cramer system and D 0 due to the assumption {i|q i j 0} ∅ for j = 1, ..., n, the system can be solved.

A relation between β and β M 2 immediately follows:

The relation between β and β M 2 depends on the correlation between the two variables. The shift of the intercept is the same as in the (X -A1) statement. By replacing the values by the corresponding estimator,

which ends the proof. (The proof under (Z-A2) is done in the same way.) In the other way round for the corollary, for given mean quality indexes, (Q k , Q j ), we can find β M 2 according to the β.

Indeed, in the same way to the equation A.6, with similar notation,

Then :

To end the proof, we need to replace the different value by their empirical estimator.

Appendix B. Multivariate case

Until now, we have studied the case of pairwise correlated covariates. The ordinary OLS regression coefficient β foolows : t XX β = t XY ⇐⇒ (1/n) t XX β = (1/n) t XY.

As n tends to ∞, β is the solution of Σβ = t Cov(X, Y).

If Σ is invertible, different methods exist as the Gauss-Jordan elimination to find a solution. However, one could remark that the relation between β M 2 k and β k depends only on the Pearson correlation ρ real jk and Q j and Q k for all covariates k correlated to covariate k. The different proofs on the OLS coefficient could be extended with this method.