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Abstract. The short-time Fourier transform (STFT) is a time-
frequency representation widely used in applications, for example
in audio signal processing. Recently it has been shown that not
only the amplitude, but also the phase of this representation can be
successfully exploited for improved analysis and processing. In this
paper we describe a rather peculiar pole phenomenon in the phase
derivative, a recurring pattern that appears in a characteristic way
in the neighborhood around any of the zeros of the STFT, a nega-
tive peak followed by a positive one. We describe this phenomenon
numerically and provide a complete analytical explanation.

1. Introduction

The short-time Fourier transform (STFT) [5, 13] is a time-frequency
representation widely used in audio signal processing. A common def-
inition of the STFT1 is

V (f, g)(x, ω) =

∫
f(t)g(t− x)e−2πiωt dt.(1)

The STFT V (f, g)(x, ω) provides information about the frequency con-
tent of the signal f at time x and frequency ω. The analyzing window
g determines the resolution in time and frequency.

The interpretation of the modulus of the STFT is relatively easy, con-
sidering the fact that the spectrogram (defined as the square absolute
value of the STFT) can be interpreted as a time-frequency distribution
of the signal energy. This interpretation led to the important success of
the STFT in signal processing. In particular, it has been widely used
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for applications in speech processing and acoustics as a graphical tool
for signal analysis [21].

But the interpretation of the phase of the STFT is less obvious, and
was thus hardly considered in applications for some time.

The phase can be of particular interest for certain applications, as
illustrated by important applications such as phase vocoder [12, 7] or
reassignment [18, 2]. In digital image processing it is well known that
the phase information of the discrete Fourier transform is at least as
important as the amplitude information. In [19] it is shown that as
long as the phase of the discrete Fourier transform of an image is re-
tained and the amplitude is set to 1, the image can still be recognized.
Similar effects can also be shown for acoustic signal depending on the
parameters of the STFT [4].

For applications modifying the STFT coefficients, phase information
is essential again. For these types of applications, in particular for the
applications using Gabor frame multipliers [10, 3] which motivated the
present study, better understanding of the structure of the phase is
necessary to improve the processing possibilities.

The phase of the STFT is usually not considered directly. In fact, it is
more interesting to consider the phase derivative over time or frequency.
Indeed, these quantities appear naturally in the context of reassignment
[2] and manipulations of phase derivative over time is the idea behind
the phase vocoder [7]. Their interpretation is easier, as the derivative
of phase over time can be interpreted as local instantaneous frequency
while the derivative of the phase over frequency can be interpreted as
a local group delay.

To numerically compute the local instantaneous frequency, an un-
wrapping of the phase is needed to avoid discontinuities. This is the
classical method used in [7, 18]. Another method was found in [2]:

∂

∂x
arg(V (f, g)(x, ω)) = Im

(
V (f, g′)(x, ω)V (f, g)(x, ω)

|V (f, g)(x, ω)|2

)
,(2)

with g′(t) = dg
dt
(t). The benefit of this method is that is does not require

unwrapping, instead the phase derivative is computed by pointwise op-
erations using a second STFT based on the derivative of the window.

To understand the phase of the STFT more thoroughly, in particular
for applications dealing with multipliers, see for example [20, 22, 23],
we conducted related extensive numerical experiments. In the process
we observed a rather peculiar phenomenon in the phase derivative, a
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recurring pattern that appears in a similar way in the neighborhood
around any of the zeros of the STFT. The behaviour of the phase
derivative close to the singularity always shows the same characteristic
shape, i.e., a negative peak followed by a positive one. We describe
this phenomenon and provide a complete analytical explanation.

This paper is organized as follows: In Section 2 we report the nu-
merical results. In Section 3 we give a short, instructive, analytical
example for this behaviour. In Section 4 we give the full analytical
results.

Results in this paper have partly been reported at a conference [17],
and a preprint of this paper has already been cited in [1].

2. Numerical Observations

For noise, naturally only statistical properties of the phase are ac-
cessible. Some interesting results for the phase derivative have been
shown in the context of reassignment. In [8], the following result is
given: We consider a zero-mean Gaussian analytic white noise f such
that

E[Re(f(t)) · Re(f(s))] = E[Im(f(t)) · Im(f(s))] =
σ2

2
δ(t− s)(3)

and E[f(t)f(s)] = 0 for any (t, s) ∈ R2, with its real and imaginary
parts a Hilbert transform pair. Using a Gaussian window given by

g(t) = e−π t2

2σ2 , the phase derivative over time of V (f, g) is a random
variable with distribution of the form:

ρ(v) =
1

2(1 + v2)
3
2

.(4)

This distribution is shown in Figure 1. As can be seen, it is a quite
“peaky” distribution, indicating that the values of the phase derivative
are mainly values close to zero, with some rare values with higher
absolute values.

The spatial distribution of the phase derivative seems to be difficult
to be solved analytically. Therefore we conducted systematic numerical
experiments to study this spatial distribution.

For this, we need to compute the derivative of the phase in discrete
settings. We used the expression (2) to compute the phase derivative.

We see on this formula that we will face numerical difficulties when
the denominator V (f, g)(x, ω) is close to zero. But using double preci-
sion, these problems only appear for really small values of the modulus
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Figure 1. Distribution of the values of the phase deriv-
ative over time of the STFT for a white Gaussian noise.

(on the order of 10−13), which allows us to reliably observe the values of
the phase derivative even close to the zeros of the STFT. In the figures
of this paper, the phase derivative values are ignored and represented
as white at the points where the value of the modulus is too small.

The results of our experiments are illustrated by Figure 2. The time-
frequency distribution of the values appears to be highly structure, as
e.g. noted in [15]. The values of the phase derivative with high absolute
values are concentrated around several time-frequency points, which
can be identified as the zeros of the transform when looking at the
modulus. Furthermore, the shape of the phase derivative seems to be
very similar in the neighbourhood of the zeros, with a typical pattern
repeating at each zero, see Figure 2. When going from low to high
frequencies, it presents a negative peak followed by a positive one.

This phenomenon is related to the fact that the STFT of white noise
is a correlated process, with a correlation determined by the window
through the reproducing kernel of the transform (see part 6.2.1 of [5]).
It is thus interesting to study the influence of the window choice on the
observed structure of the phase derivative, as illustrated in Figure 3.

We can observe that narrowing the window results in similar patterns
around the zeros, but with a scaled shape: the resulting pattern is
narrower over time, but wider over frequency. Figure 3 also shows the
influence of the window type. The structure is more complicated for
windows with bad time-frequency concentration. On the representation
using a Hamming window, we still observe repeating patterns at the
zeros of the transform, but the variability of the shape of this pattern
seems higher, and the pattern orientation slightly varies, whereas it is
fixed in the case of a Gaussian window. For the case of the rectangular
window, the zeros of the STFT form a more complicated, extended
structures. This leads to much more variable patterns. Yet, we still,
interestingly, observe that the values of the phase derivative with high
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Figure 2. Observation for a Gaussian white noise, us-
ing a Gaussian window. Top: modulus of the STFT.
Bottom-left: derivative over time of the phase of the
STFT using the definition (1). Bottom-right: mesh plot
of the derivative over time of the phase in the neighbour-
hood of a zero of the STFT.

absolute values concentrate around the zeros of the transform, whereas
the phase derivative is close to zero in the regions of the STFT where
the modulus is high.

¿From the experiments above, we expect those properties to be
highly correlated with co-orbit properties regarding the STFT, i.e. in-
clusion in certain modulation spaces [9]. In particular, choosing win-
dows in the Feichtinger algebra S0 [11] should result in a phase deriv-
ative behavior comparable to the Gaussian window. We also expect
results to be valid as in Section 4, for windows in S0. The systematic
investigation of the phase derivative behaviour for modulation spaces
is beyond the scope of this paper, and will be investigate in future work.

The behaviour that we observe is not specific to noise signals. Indeed,
further experiments on other synthesized and recorded complex sounds
showed that the same characteristics can be observed for all signals: the
values of the phase derivative of high absolute value are concentrated in
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Figure 3. Influence of the window when analyzing a
frozen Gaussian white noise. For three different windows,
on the left, modulus of the STFT, on the right, derivative
over time of the phase of the STFT using the definition
(1). From top to bottom, the windows are: a narrower
Gaussian window, a Hamming window, a rectangular
window.

the neighbourhood of the zeros of the STFT, and for “nice” windows,
a specific pattern appears in this neighbourhood.

3. A Simple Explicit Analytic Example

In this section we give a simple analytical example for which we can
explicitly compute the phase derivative.

6



Considering the signal given by

f(t) = e2πiω1t + e2πiω2t(5)

and using a Gaussian window g(t) = e−π t2

2σ2 , we can explicitly compute
the expression of the STFT, which results in the formula:

V (f, g)(x, ω) = e−2πix(ω−ω1)e−2πσ2(ω−ω1)2 + e−2πix(ω−ω2)e−2πσ2(ω−ω2)2 .

(6)

The zeros of this STFT are the points of coordinates (xk, ωmid) in the
time-frequency plane, with ωmid =

ω1+ω2

2
and xk =

1+2k
2(ω1−ω2)

for k ∈ Z.

The expression of the phase derivative for this signal, given in part
VI-12 of [6], is:

∂

∂x
arg(V (f, g)(x, ω)) = 2π

(
ωmid − ω + δ tanh(s)

1 + tan2(2πδx)

1 + tan2(2πδx) tanh2(s)

)(7)

with δ = ω2−ω1

2
and s = 4πσ2(ω − ωmid)δ.

The plot of this function around one of the zeros is visible in Figure 4.
We see the pattern that was already observed in the previous section.
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Figure 4. Observation for the signal defined in (5).
Top: modulus of the STFT. Bottom: derivative over
time of the phase of the STFT according to (7) repre-
sented as an image (left) and as a mesh (right).
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For an extended treatment of this analytic example, see [1], where
the authors are already referring to a preprint of our present work.

4. Analytical Results

In this section, we denote by Mh the modulation operator Mh :
L2(R) → L2(R), f(t) 7→ Mhf(t) := e−2πihtf(t), and by Th the trans-
lation operator Th : L2(R) → L2(R), f(t) 7→ Thf(t) := f(t − h) (with
h ∈ R). The set S(R) is the Schwartz class of rapidly decaying func-
tions. The Fourier transform is denoted by F .

4.1. Regularity Properties of the STFT.

Definition 4.1. Define the (unbounded) operator P on L2(R) as the
multiplication operator

Pf(t) := 2πit · f(t)
with domain

Dom(P ) := {f ∈ L2(R) :
∫
R
|t f(t)|2 dt <∞} ⊂ L2(R).

Further, define the (unbounded) operator

Q := F−1PF
(where F denotes the Fourier transform) with domain

Dom(Q) := {f ∈ L2(R) : Ff ∈ Dom(P )} ⊂ L2(R).

In quantum mechanics, these operators are essentially the momen-
tum and position operator, respectively. The operator P (and thus also
Q) are clearly densely-defined, since S(R) ⊂ Dom(P ) (and F−1S(R) =
S(R) ⊂ Dom(Q)). It can be shown that P and Q are closed unbounded
operators and that iP and iQ are self-adjoint.

We collect basic properties of these operators in the following lemma.

Lemma 4.2. The operators P and Q have the following properties:

(i) FQ = PF on Dom(Q), QF = −FP on Dom(P );
(ii) Q is a (maximal extension of a) differential operator, more

precisely: if f ∈ S(R), then Qf(t) = d
dt
f(t).

The next lemma is in essence a well-known result from the theory
of operator (semi-)groups; it gives the infinitesimal generators of the
modulation and translation group, respectively, see e.g. [14, 16]. The
version below needed in this manuscript can be proved in a straight-
forward way.
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Lemma 4.3. Let f ∈ Dom(P ), then

∥1
h
(Mh − Id)f − Pf∥L2 → 0

for h→ 0.
Let f ∈ Dom(Q), then

∥1
h
(Th − Id)f +Qf∥L2 → 0

for h→ 0.

We can now prove a regularity result for the short-time Fourier trans-
form.

Proposition 4.4. Let f, g ∈ L2(R).

(i) If f belongs to Dom(P ), then V (f, g) has a continuous partial
derivative with respect to the second argument ω, and we have

∂

∂ω
V (f, g)(x, ω) = −V (Pf, g)(x, ω).

(ii) If g belongs to Dom(Q), then V (f, g) has a continuous partial
derivative with respect to the first argument x, and we have

∂

∂x
V (f, g)(x, ω) = −V (f,Qg)(x, ω).

Proof. Assume f ∈ Dom(P ). Then, by the preceding lemma,

1

h
(V (f, g)(x, ω + h)− V (f, g)(x, ω)) = ⟨f, Mh − Id

h
MωTxg⟩

= ⟨M−h − Id
h

f,MωTxg⟩
h→0−→ ⟨−Pf,MωTxg⟩ = −V (Pf, g)(x, ω),

which is a continuous function on R2.
If g ∈ Dom(Q), then, analogously,

1

h
(V (f, g)(x+ h, ω)− V (f, g)(x, ω)) = ⟨f,MωTx

Th − Id
h

g⟩
h→0−→ ⟨f,−MωTxQg⟩ = −V (f,Qg)(x, ω).

□

Using V (f, g)(x, ω) = e−2πixωV (g, f)(−x,−ω), the partial deriva-
tives of V (f, g) exist if and only if those of V (g, f) exist. We may thus
change the roles of f and g.

Corollary 4.5. Let f, g ∈ L2(R).
9



(i) If g belongs to Dom(P ), then V (f, g) has a continuous partial
derivative with respect to the second argument ω, and we have

∂

∂ω
V (f, g)(x, ω) = V (f, Pg)(x, ω)− 2πix V (f, g)(x, ω).

(ii) If f belongs to Dom(Q), then V (f, g) has a continuous partial
derivative with respect to the first argument x, and we have

∂

∂x
V (f, g)(x, ω) = V (Qf, g)(x, ω)− 2πiω V (f, g)(x, ω).

If f (resp. g) belongs to Schwartz class S(R), then Pf,Qf (resp.
Pg,Qg) ∈ S(R), as well. Iterated application of Proposition 4.4 or
Corollary 4.5 gives the following smoothness result for the STFT.

Theorem 4.6. Let f, g ∈ L2(R), and at least one of them in Schwartz
class S(R). Then V (f, g)(x, ω) is infinitely partially differentiable in
both variables x and ω.

Although this result may be considered mathematical folklore, to
our knowledge it has not been stated and proved in the literature so
far. Note that this proves in particular that the STFT with Gaussian
window is smooth.

4.2. The Derivative of the Phase Around the Zeros of the
STFT. In this section we present an analytic explanation of the pe-
culiar behaviour of the phase derivatives of the STFT for a large class
of window functions. It turns out that the phenomenon is connected
to the smoothness and continuous differentiability of the STFT which,
as we have seen in the previous paragraph, is in turn connected to the
smoothness of the window.

Consider first the partial derivative of the phase of the STFT with
respect to the first variable (i.e., the ’time’ variable). For convergence
along a vertical path, we have

Theorem 4.7 (Phase derivatives of the STFT, part I). Let f, g ∈
L2(R). Assume that

• V (f, g) = V = U + i ·W ∈ C2(R2)
• V (x0, ω0) = 0
• det JV (x0, ω0) < 0, where

JV (x0, ω0) =


∂U

∂x
(x0, ω0)

∂U

∂ω
(x0, ω0)

∂W

∂x
(x0, ω0)

∂W

∂ω
(x0, ω0)
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denotes the Jacobian matrix of V at the point (x0, ω0)

Then the phase ψ(x, ω) of V (f, g)(x, ω) satisfies

∂ψ

∂x
(x0, ω) −→

{
+∞, if ω ↑ ω0 from below

−∞, if ω ↓ ω0 from above.

Proof. We have

∂ψ

∂x
(x0, ω) =

U(x0, ω) ·Wx(x0, ω)−W (x0, ω) · Ux(x0, ω)

U2(x0, ω) +W 2(x0, ω)
.

Since Wx and Ux are continuous and thus remain bounded in a neigh-
bourhood of (x0, ω0), both numerator and denominator tend to zero
for ω → ω0. However, both functions are differentiable, since V ∈
C2(R2,R2). So L’Hospital’s Rule is applicable and yields

lim
ω→ω0

U(x0, ω) ·Wx(x0, ω)−W (x0, ω) · Ux(x0, ω)

U2(x0, ω) +W 2(x0, ω)

L’Hosp.
= lim

ω→ω0

d
dω

(U(x0, ω) ·Wx(x0, ω)−W (x0, ω) · Ux(x0, ω))
d
dω

(U2(x0, ω) +W 2(x0, ω))

= lim
ω→ω0

(UωWx + UWxω −WωUx −WUxω) (x0, ω)

(2UUω + 2WWω) (x0, ω)

= lim
ω→ω0

(UWxω −WUxω) (x0, ω) + (UωWx −WωUx) (x0, ω)

(2UUω + 2WWω) (x0, ω)
.

Concerning this limit, we clearly have

(UWxω −WUxω) (x0, ω)→ 0,

since U(x0, ω) → U(x0, ω0) = 0, W (x0, ω) → W (x0, ω0) = 0, and Wxω

and Uxω are continuous and thus remain bounded in a neighborhood
of (x0, ω0). Furthermore,

(UωWx −WωUx) (x0, ω)→ (UωWx −WωUx) (x0, ω0)

= − det JV (x0, ω0) ̸= 0,

by assumption. Hence the numerator tends to a nonzero number, in
this case (det JV (x0, ω0) < 0) a positive one. For the denominator, we
find

(2UUω + 2WWω) (x0, ω) =
d

dω

(
U2 +W 2

)
(x0, ω)

=

{
< 0, if ω < ω0

> 0, if ω > ω0

since the function ω 7→ (2UUω + 2WWω) (x0, ω) has a strict local min-
imum in ω0. At the same time,

(2UUω + 2WWω) (x0, ω)→ 0
11



for ω → ω0, hence the denominator goes to zero from below for ω ↑ ω0

and from above for ω ↓ ω0. This concludes the proof. □

Note that for simplicity we have only considered the case that the
Jacobian determinant det JV (x0, ω0) is negative; this case corresponds
to the examples we presented above. For positive Jacobian determi-
nant, the situation is completely analogous, although reversed in the
sense that the positive and negative singularities switch roles. Apart
from this, the general behaviour remains the same.

For convergence along a horizontal path, we need slightly more reg-
ularity:

Theorem 4.8 (Phase derivatives of the STFT, part II). Let f, g ∈
L2(R). Assume that

• V (f, g) = V = U + i ·W ∈ C3(R2)
• V (x0, ω0) = 0
• det JV (x0, ω0) < 0, where J is the Jacobian as in Theorem 4.7

Then there exists a number c ∈ R such that the phase ψ(x, ω) of
V (f, g)(x, ω) satisfies

lim
x→x0

∂ψ

∂x
(x, ω0) = c.

Proof. The assumptions allow us to apply L’Hospital’s Rule twice, giv-
ing

lim
x→x0

∂ψ

∂x
(x, ω0)

= lim
x→x0

U(x, ω0) ·Wx(x, ω0)−W (x, ω0) · Ux(x, ω0)

U2(x, ω0) +W 2(x, ω0)

L’Hosp.
= lim

x→x0

d
dx

(U(x, ω0) ·Wx(x, ω0)−W (x, ω0) · Ux(x, ω0))
d
dx

(U2(x, ω0) +W 2(x, ω0))

= lim
x→x0

(UxWx + UWxx −WxUx −WUxx) (x, ω0)

(2UUx + 2WWx) (x, ω0)

= lim
x→x0

(UWxx −WUxx) (x, ω0)

(2UUx + 2WWx) (x, ω0)

L’Hosp.
= lim

x→x0

d
dx

(UWxx −WUxx) (x, ω0)
d
dx

(2UUx + 2WWx) (x, ω0)

= lim
x→x0

(UxWxx + UWxxx −WxUxx −WUxxx) (x, ω0)

2 (U2
x + UUxx +W 2

x +WWxx) (x, ω0)
.
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For the denominator,

(UUxx +WWxx) (x, ω0)→ (UUxx +WWxx) (x0, ω0) = 0

for x→ x0, but(
U2
x +W 2

x

)
(x, ω0)→

(
U2
x +W 2

x

)
(x0, ω0) > 0

converges to a nonzero number, since not both Ux(x0, ω0) andWx(x0, ω0

can be zero because of det JV (x0, ω0) = (UxWω − UωWx) (x0, ω0) ̸= 0.
The numerator obviously converges:

(UxWxx + UWxxx −WxUxx −WUxxx) (x, ω0)

→ (UxWxx −WxUxx) (x0, ω0) ∈ R,
thus

lim
x→x0

∂ψ

∂x
(x, ω0) =

(UxWxx −WxUxx) (x0, ω0)

2 (U2
x +W 2

x ) (x0, ω0)
=: c ∈ R.

□

Concerning the partial derivatives of the phase of the STFT with
respect to the second variable (i.e., the ’frequency’ variable), we can
argue almost identically and thus find the following analogous results:

Theorem 4.9 (Phase derivatives of the STFT, part III). Let f, g ∈
L2(R). Assume that

• V (x0, ω0) = 0
• det JV (x0, ω0) < 0

Let V (f, g) = V = U + i · W ∈ C2(R2). Then the phase ψ(x, ω) of
V (f, g)(x, ω) satisfies

lim
x→x0

∂ψ

∂ω
(x, ω0) =

{
+∞, if x→ x0 from the left

−∞, if x0 ← x from the right.

Let V (f, g) = V = U + i ·W ∈ C3(R2), then

lim
ω→ω0

∂ψ

∂ω
(x0, ω) = c′ ∈ R, if ω → ω0,

converges to some real number c′ ∈ R. □
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