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Abstract

Extensions of a result of Kuo et al. (Math. Comp., 79 (2010), 953–966) are presented which unify the
derivation of the Hoeffding–Sobol and Möbius decompositions of a multivariate function as a sum of terms
of increasing complexity.
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1. Introduction

The Hoeffding–Sobol and Möbius formulas are two common ways of expressing a real-valued function f
of d ≥ 2 variables acting on a domain D ⊆ Rd into a sum running over all subsets of {1, . . . , d}, viz.

f =
∑

u⊆{1,...,d}

fu . (1)

Both formulas are well-known and useful in statistics because the terms in representation (1) become
gradually simpler (in a specific sense) as the size |u| of the set u decreases from d to zero. While many
might have suspected that the two decompositions have a common origin, this suspicion does not appear
to have been ever confirmed, possibly because the two formulas have been developed and used by nearly
disjoint research communities. It is the purpose of this note to elucidate this connection.

The Hoeffding–Sobol decomposition goes back to the seminal work of Hoeffding on the theory of
U -statistics [9], and by analogy with analysis of variance, Sobol [22] used it to derive sensitivity in-
dices. This decomposition, which will be recalled in Section 2, has found many applications in statistics,
notably in global sensitivity analysis; see, e.g., [11, 2, 4, 10, 21, 17, 20]. In particular, the Hoeffding–
Sobol decomposition has been used extensively to compare the performance of Monte Carlo versus quasi-
Monte Carlo integration in high-dimensional integration problems, where the notion of effective dimension
reduces the dimension of the domain of integration; see, e.g., [18, 14, 19]. More recently, the Hoeffding–
Sobol decomposition has also been used to define and study the tail dependograph, a graphical tool which
captures the structure of asymptotic dependence within a multivariate random phenomenon; see [16, 15].

By comparison, the Möbius decomposition is relatively unknown and should not be confused with the
celebrated Möbius inversion formula. The Möbius decomposition was originally suggested by Deheuvels [3]
as a way to construct rank-based tests of independence among the components of a continuous random
vector. More specifically, an application of Möbius’ formula leads to a representation of an empirical

∗Corresponding author
Email address: mercadier@math.univ-lyon1.fr (Cécile Mercadier)

Preprint submitted to February 16, 2022



copula, and hence also of the empirical copula process, into a finite number of components which, under
the null hypothesis of independence, are asymptotically independent. Cramér–von Mises statistics derived
from the sub-processes prove to be very powerful, both asymptotically and in finite samples [8, 7, 6]. This
approach has since been extended to the problem of testing for independence between random vectors
[1, 12], and more recently to testing for dependence between arbitrary random variables [5].

In 2010, Kuo et al. [13] gave conditions which guarantee the existence and uniqueness of the general
decomposition (1) and described how their result applies to the Hoeffding–Sobol formula. These findings
will be summarized in Section 2. In Section 3, it will then be shown that the Möbius formula is also of
the form (1) but that its existence and uniqueness do not follow from the result of Kuo et al. [13], whose
conditions are too restrictive. This will lead us, in Sections 4 and 5, to state and prove two extensions of
the result by Kuo et al. [13] which encompasses both the Hoeffding–Sobol and Möbius decompositions as
special cases. Finally, Section 6 will highlight the intrinsic differences between the Hoeffding–Sobol and
Möbius decompositions when applied to a multivariate dependence function, namely a copula.

2. A general decomposition formula

Kuo et al. [13] give conditions to ensure both the existence and uniqueness of the decomposition (1).
They rely on projections P1, . . . , Pd which induce the decomposition upon setting, for each u ⊆ {1, . . . , d},

fu =

(∏
i∈u

(ID − Pi)
∏
i/∈u

Pi

)
(f). (2)

Their result holds provided that each projection eliminates the dependence on a specific input variable to
which the function is applied.

To describe their finding, let us introduce some notation. Let F be the linear space of real-valued
functions acting on a domain D ⊆ Rd and for each i ∈ {1, . . . , d}, let Pi : F → F be a projection,
i.e., a linear and idempotent operator, the latter term meaning that the composition of Pi with itself,
denoted PiPi, returns Pi. Further assume that these projections are commuting, i.e., for any distinct
i, j ∈ {1, . . . , d}, PiPj = PjPi, and let ID denote the identity operator on F . For each set u ⊆ {1, . . . , d},
let Fu denote the class of functions f ∈ F such that f(x1, . . . , xd) = f(y1, . . . , yd) when xj = yj for all
j ∈ u. Elements of Fu are then functions f ∈ F whose value at x = (x1, . . . , xd) ∈ D depends only on the
coordinates of x whose index is in u, and hence F∅ is the set of constant functions. To simplify notation,
write F−i = F{1,...,d}\{i} for all i ∈ {1, . . . , d} and, for every set u ⊆ {1, . . . , d}, write

Pu =
∏
i∈u

Pi and P−u(f) = P{1,...,d}\u(f) =
∏
i/∈u

Pi.

.
The key assumption in Theorem 2.1 of Kuo et al. [13], formally stated below, means that for any

i ∈ {1, . . . , d} and f ∈ F , the value of Pi(f) at x ∈ D does not depend on the ith coordinate of x and
that if f does not depend at all on this coordinate, the projection Pi leaves the function unchanged.

Assumption 1. For all f ∈ F and i ∈ {1, . . . , d}, Pi(f) ∈ F−i and f ∈ F−i ⇒ Pi(f) = f .

In what follows, for any set u ⊆ {1, . . . , d} and vector x ∈ D, xu stands for a vector whose length is
the cardinality |u| of u and whose components are those of x whose indices are in u.

Theorem 1 (Theorem 2.1 of Kuo, Sloan, Wasilkowski, and Woźniakowski [13]). Let F be a linear space
of real-valued functions acting on a domain D ⊆ Rd and let P1, . . . , Pd be commuting projections on F
that satisfy Assumption 1. Then the following statements hold true.
Part A: Any function f ∈ F can be expressed in the form (1), where the function fu defined in (2) is
such that for any vector x ∈ D, fu(x) only depends on xu.
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Part B: Suppose that every f ∈ F can be written in the form (1) and that fu ∈ Fu for every set
u ⊆ {1, . . . , d}. Further assume that, for all i ∈ {1, . . . , d},

Pi(fu) =

{
0 if i ∈ u,

fu if i /∈ u.
(3)

When this annihilating property holds, the term fu given in (2) satisfies the recursive relation

fu = P−u(f)−
∑
v(u

fv. (4)

Furthermore, one has

fu =
∑
v⊆u

(−1)|u\v|P−v(f). (5)

As mentioned by Kuo et al. [13], the Hoeffding–Sobol decomposition is a special case of Theorem 1.
To be specific, let F = L2(D) be the collection of square integrable functions on D = [0, 1]d. For each
i ∈ {1, . . . , d}, let the projection Pi be defined through integration with respect to the ith variable. That
is, for every function f ∈ F and vector x = (x1, . . . , xd) ∈ [0, 1]d, set

Pi(f)(x) =

∫ 1

0
f(x1, . . . , xi−1, z, xi+1, . . . , xd)dz. (6)

Equivalently, the projection Pi could be defined as an expectation with respect to the ith component
of a vector Z = (Z1, . . . , Zd) of mutually independent random variables uniformly distributed on the
interval [0, 1]. Indeed, for every function f ∈ F and vector x = (x1, . . . , xd) ∈ [0, 1]d,

Pi(f)(x) = E[f(x1, . . . , xi−1, Zi, xi+1, . . . , xd)].

It is clear that the operators P1, . . . , Pd so defined are commuting projections that satisfy Assumption 1.
The well-known Hoeffding–Sobol decomposition then results upon injecting these projections into for-
mula (2), as ensured by Part A of Theorem 1. Indeed, given that the terms in expression (2) are mutually
orthogonal in the L2-sense, it is easily checked that

var[f(Z)] =
∑

u⊆{1,...,d}

var[fu(Z),

so that the total variance of f(Z) decomposes as a sum of contributive parts. Moreover, given that these
operators also satisfy the annihilating property (3), formulas (4) and (5) yield the same decomposition
by virtue of Part B of Theorem 1.

3. A look at the Möbius decomposition

Turning to the Möbius decomposition introduced by Deheuvels [3] for testing mutual independence
in a vector of continuous random variables, first introduce the class C of d-variate copulas, i.e., d-variate
cumulative distribution functions whose margins are uniform on the interval [0, 1]. It is obviously included
in the linear space F of real-valued functions acting on [0, 1]d.

When the focus is on dependence structures and the variables of interest are continuous, copulas are as
informative as cumulative distribution functions. This is because if X1, . . . , Xd are random variables with
continuous cumulative distribution functions F1, . . . , Fd, respectively, mutual independence between them
occurs if and only if the uniform random variables Z1 = F1(X1), . . . , Zd = Fd(Xd) are mutually indepen-
dent, i.e., their joint cumulative distribution function, which is a copula, coincides with the independence
copula, defined for all vectors (z1, . . . , zd) ∈ D = [0, 1]d, by Π(z1, . . . , zd) = z1 × · · · × zd.
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For arbitrary set v ⊆ {1, . . . , d} and vector x = (x1, . . . , xd) ∈ [0, 1]d, let xv,1 denote the vector
(t1, . . . , td) such that ti = xi if i ∈ v and ti = 1 otherwise. The Möbius decomposition of a copula C is
then given, for all x ∈ [0, 1]d, by

C(x) = Π(x) +
∑

u⊆{1,...,d},|u|≥2

Mu(C)(x)×
∏
k/∈u

xk, (7)

where
Mu(C)(x) =

∑
v⊆u

(−1)|u\v|C(xv,1)×
∏

k∈u\v

xk. (8)

Note that the definition (8) also makes sense for sets u ⊆ {1, . . . , d} of cardinality 0 or 1, which
yields Mu(C) = 1 when |u| = 0 and Mu(C) = 0 when |u| = 1. Therefore, formula (7) can be written
alternatively, for all x ∈ [0, 1]d, as

C(x) =
∑

u⊆{1,...,d}

Cu(x)

with
Cu(x) =Mu(C)(x)×

∏
k/∈u

xk =
∑
v⊆u

(−1)|u\v|C(xv,1)×
∏
k/∈v

xk. (9)

To see that this representation can be expressed in the form (1) with components defined through
formula (2) in terms of commuting operators P1, . . . , Pd, it suffices to let, for all i ∈ {1, . . . , d}, C ∈ C,
and x = (x1, . . . , xd) ∈ [0, 1]d,

PiC(x) = xi × C(x1, . . . , xi−1, 1, xi+1, . . . , xd). (10)

The operators P1, . . . , Pd so defined are clearly commutative, and it follows from their definition that for
any set v ⊆ {1, . . . , d} with −v = {1, . . . , d} \ v and vector x ∈ [0, 1]d,

P−vC(x) = C(xv,1)Π(x−v).

It then follows from definition (9) that for every set u ⊆ {1, . . . , d} and vector x ∈ [0, 1]d,

Cu(x) =
∑
v⊆u

(−1)|u\v|P−vC(x). (11)

Observe that with operators of the form (10) for all i ∈ {1, . . . , d}, the first term in the Möbius
decomposition corresponds to the independence copula, Π, and that all first-order terms vanish. That is,
for all x ∈ [0, 1]d, one has

C∅(x) = P{1,...,d}C(x) = Π(x)

and for all i ∈ {1, . . . , d},

C{i}(x) = P−i(C)(x)− P{1,...,d}C(x) = C(xi,1)Π(x−i)−Π(x) = 0.

Note, however, that Assumption 1 does not hold for the operators defined in (10). Yet the term (11)
in the Möbius decomposition is consistent with representation (5). This suggests that Theorem 1 of Kuo
et al. [13] is valid in a more general setting, as will be shown in Section 4.

Before proceeding, note that the restriction to a copula is actually unnecessary, as the above mentioned
identity extends to any cumulative distribution function H whose support is [0, 1]d. Indeed, Lemma 6
of [12] ensures that for any such cumulative distribution function and all x ∈ [0, 1]d, one has

H(x) =
∑

u⊆{1,...,d}

Hu(x)
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with
Hu(x) =

∑
v⊆u

(−1)|u\v|P−vH(x).

In this more general setting, formula (10) is no longer appropriate and should be replaced by

PiH(x) = H(1, . . . , 1, xi, 1, . . . , 1)×H(x1, . . . , xi−1, 1, xi+1, . . . , xd).

Thus, the operator Pi is no longer linear, even though the decomposition is still valid. Again, this suggests
that Theorem 1 remains valid under a weaker set of conditions than that assumed by Kuo et al. [13].

4. An extension of Theorem 1 by Kuo et al. (2010)

The following result relaxes Assumption 1 in Theorem 1, so that the Hoeffding–Sobol decomposition
and the Möbius decompositions can both be derived from a common representation of functions of several
variables. This generalization is stated below in extenso to facilitate understanding and referencing.
For internal consistency, however, the equation numbers appearing therein are repeated from their first
occurrence above. Recall that for any u ⊆ {1, . . . , d}, Pu =

∏
i∈u Pi and P−u = P{1,...,d}\u.

Proposition 1. Let F be a linear space of real-valued functions acting on a domain D of Rd and let
P1, . . . , Pd be commuting and idempotent operators on F . Then, the following statements hold true.
Part A: Any function f ∈ F can be written as

f =
∑

u⊆{1,...,d}

fu, (1)

in which the term fu, defined by

fu =

(∏
i∈u

(ID − Pi)
∏
i/∈u

Pi

)
(f), (2)

is such that the annihilating property is satisfied, meaning that, for all i ∈ {1, . . . , d},

Pi(fu) =

{
0 if i ∈ u,

fu if i /∈ u.
(3)

Part B: Suppose that every function f ∈ F can be expressed as in (1) and that the annihilating prop-
erty (3) holds for the operators P1, . . . , Pd, which are further assumed to be linear. Then the term fu is
given by

fu = P−u(f)−
∑
v(u

fv, (4)

which is equivalent to

fu =
∑
v⊆u

(−1)|u\v|P−v(f), (5)

and hence also to formula (2).

Proof. To recover the desired decomposition, first call on the multinomial formula to see that

d∏
i=1

ID =

d∏
i=1

{(ID − Pi) + Pi} =
∑

u⊆{1,...,d}

(∏
i∈u

(ID − Pi)

)(∏
i/∈u

Pi

)
.
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Accordingly, one finds

f =

(
d∏

i=1

ID

)
(f) =

∑
u⊆{1,...,d}

(∏
i∈u

(ID − Pi)

)(∏
i/∈u

Pi

)
(f) =

∑
u⊆{1,...,d}

fu , (12)

with fu defined as in Eq. (2). Furthermore, note that for whatever u ⊆ {1, . . . , d}, the function fu satisfies
the annihilating property. Indeed, if k ∈ u, then

Pk(fu) =

 ∏
i∈u\{k}

(ID − Pi)

(∏
i/∈u

Pi

)
Pk(ID − Pk)(f) = 0

while if k /∈ u, then

(ID − Pk)(fu) =

(∏
i∈u

(ID − Pi)

) ∏
i/∈u,i 6=k

Pi

Pk(ID − Pk)(f) = 0.

This proves Part A, namely the existence of the decomposition.
To establish uniqueness under the added assumption that P1, . . . , Pd are linear stated in Part B, write

f =
∑

v⊆{1,...,d}

fv,

and apply the linearity of P−u. It follows from the annihilating property (3) that

P−u(f) =
∑
v⊆u

fv = fu +
∑
v(u

fv,

which gives the recursive formula. The well-known Möbius inversion then implies formula (5). Finally,
the product version can be deduced from

fu =
∑
v⊆u

(−1)|u\v|P−v(f) =
∑
v⊆u

(−1)|u\v|

 ∏
i∈u\v

Pi

(∏
i/∈u

Pi

)
(f) =

(∏
i∈u

(ID − Pi)

)(∏
i/∈u

Pi

)
(f),

which concludes the argument.

In view of Part A of Proposition 1, the Möbius decomposition can also be derived for any cumulative
distribution function whose support is [0, 1]d from a set of maps and its terms can be computed from (5)
or equivalently from (2) or (4). This observation does not appear to have been documented previously.

5. Another extension of Theorem 1 by Kuo et al. (2010)

While Proposition 1 achieves the main objective of providing a common representation for the Hoeffding–
Sobol and Möbius decompositions, the need to impose linearity in Part B implies that existence and
uniqueness are no longer obtained under a common set of assumptions. The following result, which re-
mains valid for non-linear operators, shows that one can find a unique assumption and can even bypass
the idempotence assumption.
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Proposition 2. Any real-valued function f acting on a domain D ⊆ Rd can be written in a unique way
in the form

f =
∑

u⊆{1,...,d}

fu, (1)

under the assumption that for all u ∈ {1, . . . , d},∑
v⊆u

fv = P−u(f) (13)

for P1, . . . , Pd a set of commuting operators. Furthermore, the three following identities hold for all subsets
u ⊆ {1, . . . , d}:

fu =

∏
i∈u

(ID − Pi)
∏
j /∈u

Pj

 (f), (2)

fu = P−u(f)−
∑
v(u

fv, (4)

and
fu =

∑
v⊆u

(−1)|u\v|P−v(f). (5)

Proof. First invoke the multinomial identity to deduce Eq. (12) as detailed at the beginning of the proof
of Proposition 1. This equation shows that the decomposition (1) holds with fu defined by Eq. (2) for all
u ⊆ {1, . . . , d}. Next observe that for this choice of functions and any u ⊆ {1, . . . , d}, one has

f =
∏
j∈u
{(ID − Pj) + Pj}(f) =

∑
v⊆u

∏
j∈v

(ID − Pj)
∏

k∈u\v

Pk

 (f)

and hence

P−u(f) =
∏
i/∈u

Pi(f) =
∏
i/∈u

Pi

∏
j∈u
{(ID − Pj) + Pj}(f)

=

∏
i/∈u

Pi

∑
v⊆u

∏
j∈v

(ID − Pj)
∏

k∈u\v

Pk

 (f) .

Further note that if v ⊆ u, then k /∈ v if and only if k ∈ u \ v or if k /∈ u. Therefore,

P−u(f) =

∑
v⊆u

∏
j∈v

(ID − Pj)
∏
k/∈v

Pk

 (f) =
∑
v⊆u

fv ,

which is Eq. (13). This identity immediately implies Eq. (4). Moreover, Eq. (5) results from the fact that

fu =

(∏
i∈u

(ID − Pi)

)∏
j /∈u

Pj

 (f) =
∑
v⊆u

(−1)|u\v|

 ∏
i∈u\v

Pi

∏
j /∈u

Pj

 (f) =
∑
v⊆u

(−1)|u\v|P−v(f).

This concludes the argument.
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Assumption (13), which is new, implies that for any fixed set u ⊆ {1, . . . , d} of indices, an application
of the operator P−u to f retains the terms in the decomposition (1) whose variables have indices contained
in u and filters out the others. This condition is very intuitive when the terms do not overlap: in particular,
it precludes a term fu associated to a set u to be considered as (part of) a term of higher complexity that
would involve variables whose indices belong to a larger set v ⊃ u. In effect, the no-overlap condition (13)
is equivalent to Eq. (4), which makes it possible to define the terms fu recursively in a unique way, starting
from the terms of smallest complexity.

In their paper, Kuo et al. (2021) assumed that the operators P1, . . . , Pd are both idempotent and
linear, and that they satisfy the annihilating property (3). In that situation, the no-overlap condition is
equivalent to the annihilating property. More precisely, the following statements hold true:

(i) Condition (3) holds for each idempotent operator Pi when fu is defined as per Eq. (2) for all
u ⊆ {1, . . . , d}.

(ii) If the operators P1, . . . , Pd are linear, then Condition (3) implies Eq. (13).

For a proof of claim (i), refer to the proof of Part A of Proposition 1. To establish claim (ii), fix any
set u ⊆ {1, . . . , d} and invoke the linearity of the operators to write

P−u(f) =
∑

v⊆{1,...,d}

P−u(fv) =
∑
v⊆u

P−u(fv) +
∑
v 6⊆u

P−u(fv).

Next observe that if v 6⊆ u, there exists i ∈ v such that i /∈ u and that for such an index i, one has
Pi(fv) = 0 by the first item of the annihilating property (3) and therefore

P−u(fv) =
∏
i/∈u

Pi(fv) = 0.

The second item of the annihilating property allows us to conclude since P−u(fv) = fv for any v ⊆ u.

6. Discussion and perspectives

The Hoeffding–Sobol and Möbius formulas are two well-known ways of decomposing a function of
several variables as a sum of terms of increasing complexity. As they were developed and used by distinct
research communities, their suspicious resemblance had never been investigated. In this paper, a link
between these two formulas was uncovered using an extension of a result due to Kuo et al. [13].

Beyond its intrinsic interest, the existence of a relation between these two famous formulas opens the
door to cross-fertilization in their respective domains of application. Dependence modeling is a domain
where this could happen, as both decompositions could be applied to copulas. In this context, the
projection Pu (6) associated to the Hoeffding–Sobol decomposition cancels the influence of variables in
the subset u through integration. The terms are of increasing complexity with |u| in the sense that fu
depends on a vector xu whose length grows with |u|. In that decomposition, f∅ is a constant.

In contrast, the projection Pu associated with the Möbius decomposition (11) erases the stochastic
dependence between the variables with indices belonging to the set u. More precisely, if a random vector
Z has distribution Pu(C), the subvectors Zu and Z−u are then independent. While there is no increasing
complexity in the terms of the decomposition, in the sense that the value of Cu at any x ∈ D depends on
both xu and x−u, it is noteworthy that only the stochastic dependence embodied within xu is retained.
It can be said, therefore, that the terms in the Möbius decomposition are also increasing in complexity,
but in the sense of probabilistic dependence. Further note that while the term f∅ does not vanish in this
decomposition, it does not contain any information about dependence given that f∅ = Π.

Beyond the relative degree of complexity of their terms, the Hoeffding–Sobol and Möbius decompo-
sitions each have their comparative advantage. One key feature of the Hoeffding–Sobol decomposition is
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that it provides orthogonal terms, so that the structure of the function of interest can be analyzed through
variances. In contrast, the terms in the Möbius decomposition are not generally orthogonal. However, a
strong point of the Möbius decomposition is the ease with which any term can be computed as a simple
alternate combination of evaluations of the function C.
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