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LINKING THE HOEFFDING–SOBOL AND MÖBIUS FORMULAS THROUGH A

DECOMPOSITION OF KUO, SLOAN, WASILKOWSKI, AND WOŹNIAKOWSKI

CÉCILE MERCADIER∗, OLIVIER ROUSTANT † , AND CHRISTIAN GENEST‡

Abstract. Extensions of a result of Kuo et al. (Math. Comp., 79 (2010), 953–966) are presented which unify the derivation

of the Hoeffding–Sobol and Möbius decompositions of a multivariate function as a sum of terms of increasing complexity.
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AMS subject classifications. Primary 41A63, Secondary 46N30

1. Introduction. The Hoeffding–Sobol and Möbius formulas are two common ways of expressing a

real-valued function f of d ≥ 2 variables acting on a domain D ⊆ Rd into a sum running over all subsets of

{1, . . . , d}, viz.

(1.1) f =
∑

u⊆{1,...,d}

fu .

Both formulas are well-known and useful in statistics because the terms in representation (1.1) become

gradually simpler (in a specific sense) as the size |u| of the set u decreases from d to zero. While many might

have suspected that the two decompositions have a common origin, this suspicion does not appear to have

been ever confirmed, possibly because the two formulas have been developed and used by nearly disjoint

research communities. It is the purpose of this note to elucidate this connection.

The Hoeffding–Sobol decomposition goes back to the seminal work of Hoeffding on the theory of U -

statistics [9], and by analogy with analysis of variance, Sobol [22] used it to derive sensitivity indices. This

decomposition, which will be recalled in Section 2, has found many applications in statistics, notably in global

sensitivity analysis; see, e.g., [2, 4, 10, 11, 17, 20, 21]. In particular, the Hoeffding–Sobol decomposition has

been used extensively to compare the performance of Monte Carlo versus quasi-Monte Carlo integration in

high-dimensional integration problems, where the notion of effective dimension reduces the dimension of the

domain of integration; see, e.g., [14, 18, 19]. More recently, the Hoeffding–Sobol decomposition has also been

used to define and study the tail dependograph, a graphical tool which captures the structure of asymptotic

dependence within a multivariate random phenomenon; see [15, 16].

By comparison, the Möbius decomposition is relatively unknown and should not be confused with the

celebrated Möbius inversion formula. The Möbius decomposition was originally suggested by Deheuvels [3]

as a way to construct rank-based tests of independence among the components of a continuous random

vector. More specifically, an application of Möbius’ formula leads to a representation of an empirical copula,

and hence also of the empirical copula process, into a finite number of components which, under the null

hypothesis of independence, are asymptotically independent. Cramér–von Mises statistics derived from the

sub-processes prove to be very powerful, both asymptotically and in finite samples [6, 7, 8]. This approach

has since been extended to the problem of testing for independence between random vectors [1, 12], and more

recently to testing for dependence between arbitrary random variables [5].

In 2010, Kuo et al. [13] gave conditions which guarantee the existence and uniqueness of the general

decomposition (1.1) and described how their result applies to the Hoeffding–Sobol formula. These findings
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will be summarized in Section 2. In Section 3, it will then be shown that the Möbius formula is also of

the form (1.1) but that its existence and uniqueness do not follow from the result of Kuo et al. [13], whose

conditions are too restrictive. This will lead us, in Sections 4 and 5, to state and prove two extensions of the

result by Kuo et al. [13] which encompasses both the Hoeffding–Sobol and Möbius decompositions as special

cases. Finally, Section 6 will highlight the intrinsic differences between the Hoeffding–Sobol and Möbius

decompositions when applied to a multivariate dependence function, namely a copula.

2. A general decomposition formula. Kuo et al. [13] give conditions to ensure both the existence and

uniqueness of the decomposition (1.1). They rely on projections P1, . . . , Pd which induce the decomposition

upon setting, for each u ⊆ {1, . . . , d},

(2.1) fu =

(∏
i∈u

(ID − Pi)
∏
i/∈u

Pi

)
(f).

Their result holds provided that each projection eliminates the dependence on a specific input variable to

which the function is applied.

To describe their finding, let us introduce some notation. Let F be the linear space of real-valued

functions acting on a domain D ⊆ Rd and for each i ∈ {1, . . . , d}, let Pi : F → F be a projection, i.e.,

a linear and idempotent operator, the latter term meaning that the composition of Pi with itself, denoted

PiPi, returns Pi. Further assume that these projections are commuting, i.e., for any distinct i, j ∈ {1, . . . , d},
PiPj = PjPi, and let ID denote the identity operator on F . For each set u ⊆ {1, . . . , d}, let Fu denote the

class of functions f ∈ F such that f(x1, . . . , xd) = f(y1, . . . , yd) when xj = yj for all j ∈ u. Elements of Fu

are then functions f ∈ F whose value at x = (x1, . . . , xd) ∈ D depends only on the coordinates of x whose

index is in u, and hence F∅ is the set of constant functions. To simplify notation, write F−i = F{1,...,d}\{i}
for all i ∈ {1, . . . , d} and, for every set u ⊆ {1, . . . , d}, write

Pu =
∏
i∈u

Pi and P−u(f) = P{1,...,d}\u(f) =
∏
i/∈u

Pi.

.

The key assumption in Theorem 2.1 of Kuo et al. [13], formally stated below, means that for any

i ∈ {1, . . . , d} and f ∈ F , the value of Pi(f) at x ∈ D does not depend on the ith coordinate of x and that

if f does not depend at all on this coordinate, the projection Pi leaves the function unchanged.

Assumption 2.1. For all f ∈ F and i ∈ {1, . . . , d}, Pi(f) ∈ F−i and f ∈ F−i ⇒ Pi(f) = f .

In what follows, for any set u ⊆ {1, . . . , d} and vector x ∈ D, xu stands for a vector whose length is the

cardinality |u| of u and whose components are those of x whose indices are in u.

Theorem 2.2 (Theorem 2.1 of Kuo, Sloan, Wasilkowski, and Woźniakowski [13]). Let F be a linear

space of real-valued functions acting on a domain D ⊆ Rd and let P1, . . . , Pd be commuting projections on F
that satisfy Assumption 2.1. Then the following statements hold true.

Part A: Any function f ∈ F can be expressed in the form (1.1), where the function fu defined in (2.1) is

such that for any vector x ∈ D, fu(x) only depends on xu.

Part B: Suppose that every f ∈ F can be written in the form (1.1) and that fu ∈ Fu for every set u ⊆
{1, . . . , d}. Further assume that, for all i ∈ {1, . . . , d},

(2.2) Pi(fu) =

0 if i ∈ u,

fu if i /∈ u.

When this annihilating property holds, the term fu given in (2.1) satisfies the recursive relation

(2.3) fu = P−u(f)−
∑
v(u

fv.
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Furthermore, one has

(2.4) fu =
∑
v⊆u

(−1)|u\v|P−v(f).

As mentioned by Kuo et al. [13], the Hoeffding–Sobol decomposition is a special case of Theorem 2.2.

To be specific, let F = L2(D) be the collection of square integrable functions on D = [0, 1]d. For each

i ∈ {1, . . . , d}, let the projection Pi be defined through integration with respect to the ith variable. That is,

for every function f ∈ F and vector x = (x1, . . . , xd) ∈ [0, 1]d, set

(2.5) Pi(f)(x) =

∫ 1

0

f(x1, . . . , xi−1, z, xi+1, . . . , xd)dz.

Equivalently, the projection Pi could be defined as an expectation with respect to the ith component of

a vector Z = (Z1, . . . , Zd) of mutually independent random variables uniformly distributed on the interval

[0, 1]. Indeed, for every function f ∈ F and vector x = (x1, . . . , xd) ∈ [0, 1]d,

Pi(f)(x) = E[f(x1, . . . , xi−1, Zi, xi+1, . . . , xd)].

It is clear that the operators P1, . . . , Pd so defined are commuting projections that satisfy Assumption 2.1. The

well-known Hoeffding–Sobol decomposition then results upon injecting these projections into formula (2.1), as

ensured by Part A of Theorem 2.2. Indeed, given that the terms in expression (2.1) are mutually orthogonal

in the L2-sense, it is easily checked that

var[f(Z)] =
∑

u⊆{1,...,d}

var[fu(Z),

so that the total variance of f(Z) decomposes as a sum of contributive parts. Moreover, given that these

operators also satisfy the annihilating property (2.2), formulas (2.3) and (2.4) yield the same decomposition

by virtue of Part B of Theorem 2.2.

3. A look at the Möbius decomposition. Turning to the Möbius decomposition introduced by

Deheuvels [3] for testing mutual independence in a vector of continuous random variables, first introduce the

class C of d-variate copulas, i.e., d-variate cumulative distribution functions whose margins are uniform on

the interval [0, 1]. It is obviously included in the linear space F of real-valued functions acting on [0, 1]d.

When the focus is on dependence structures and the variables of interest are continuous, copulas are as

informative as cumulative distribution functions. This is because if X1, . . . , Xd are random variables with

continuous cumulative distribution functions F1, . . . , Fd, respectively, mutual independence between them

occurs if and only if the uniform random variables Z1 = F1(X1), . . . , Zd = Fd(Xd) are mutually independent,

i.e., their joint cumulative distribution function, which is a copula, coincides with the independence copula,

defined for all vectors (z1, . . . , zd) ∈ D = [0, 1]d, by Π(z1, . . . , zd) = z1 × · · · × zd.

For arbitrary set v ⊆ {1, . . . , d} and vector x = (x1, . . . , xd) ∈ [0, 1]d, let xv,1 denote the vector (t1, . . . , td)

such that ti = xi if i ∈ v and ti = 1 otherwise. The Möbius decomposition of a copula C is then given, for

all x ∈ [0, 1]d, by

(3.1) C(x) = Π(x) +
∑

u⊆{1,...,d},|u|≥2

Mu(C)(x)×
∏
k/∈u

xk,

where

(3.2) Mu(C)(x) =
∑
v⊆u

(−1)|u\v|C(xv,1)×
∏

k∈u\v

xk.

Note that the definition (3.2) also makes sense for sets u ⊆ {1, . . . , d} of cardinality 0 or 1, which yields

Mu(C) = 1 when |u| = 0 andMu(C) = 0 when |u| = 1. Therefore, formula (3.1) can be written alternatively,
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for all x ∈ [0, 1]d, as

C(x) =
∑

u⊆{1,...,d}

Cu(x)

with

(3.3) Cu(x) =Mu(C)(x)×
∏
k/∈u

xk =
∑
v⊆u

(−1)|u\v|C(xv,1)×
∏
k/∈v

xk.

To see that this representation can be expressed in the form (1.1) with components defined through

formula (2.1) in terms of commuting operators P1, . . . , Pd, it suffices to let, for all i ∈ {1, . . . , d}, C ∈ C, and

x = (x1, . . . , xd) ∈ [0, 1]d,

(3.4) PiC(x) = xi × C(x1, . . . , xi−1, 1, xi+1, . . . , xd).

The operators P1, . . . , Pd so defined are clearly commutative, and it follows from their definition that for any

set v ⊆ {1, . . . , d} with −v = {1, . . . , d} \ v and vector x ∈ [0, 1]d,

P−vC(x) = C(xv,1)Π(x−v).

It then follows from definition (3.3) that for every set u ⊆ {1, . . . , d} and vector x ∈ [0, 1]d,

Cu(x) =
∑
v⊆u

(−1)|u\v|P−vC(x).(3.5)

Observe that with operators of the form (3.4) for all i ∈ {1, . . . , d}, the first term in the Möbius decom-

position corresponds to the independence copula, Π, and that all first-order terms vanish. That is, for all

x ∈ [0, 1]d, one has

C∅(x) = P{1,...,d}C(x) = Π(x)

and for all i ∈ {1, . . . , d},

C{i}(x) = P−i(C)(x)− P{1,...,d}C(x) = C(xi,1)Π(x−i)−Π(x) = 0.

Note, however, that Assumption 2.1 does not hold for the operators defined in (3.4). Yet the term (3.5)

in the Möbius decomposition is consistent with representation (2.4). This suggests that Theorem 2.2 of Kuo

et al. [13] is valid in a more general setting, as will be shown in Section 4.

Before proceeding, note that the restriction to a copula is actually unnecessary, as the above mentioned

identity extends to any cumulative distribution function H whose support is [0, 1]d. Indeed, Lemma 6 of [12]

ensures that for any such cumulative distribution function and all x ∈ [0, 1]d, one has

H(x) =
∑

u⊆{1,...,d}

Hu(x)

with

Hu(x) =
∑
v⊆u

(−1)|u\v|P−vH(x).

In this more general setting, formula (3.4) is no longer appropriate and should be replaced by

PiH(x) = H(1, . . . , 1, xi, 1, . . . , 1)×H(x1, . . . , xi−1, 1, xi+1, . . . , xd).

Thus, the operator Pi is no longer linear, even though the decomposition is still valid. Again, this suggests

that Theorem 2.2 remains valid under a weaker set of conditions than that assumed by Kuo et al. [13].
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4. An extension of Theorem 2.2 by Kuo et al. (2010). The following result relaxes Assumption 2.1

in Theorem 2.2, so that the Hoeffding–Sobol decomposition and the Möbius decompositions can both be

derived from a common representation of functions of several variables. This generalization is stated below in

extenso to facilitate understanding and referencing. For internal consistency, however, the equation numbers

appearing therein are repeated from their first occurrence above. Recall that for any u ⊆ {1, . . . , d}, Pu =∏
i∈u Pi and P−u = P{1,...,d}\u.

Proposition 4.1. Let F be a linear space of real-valued functions acting on a domain D of Rd and let

P1, . . . , Pd be commuting and idempotent operators on F . Then, the following statements hold true.

Part A: Any function f ∈ F can be written as

(1) f =
∑

u⊆{1,...,d}

fu,

in which the term fu, defined by

(2) fu =

(∏
i∈u

(ID − Pi)
∏
i/∈u

Pi

)
(f),

is such that the annihilating property is satisfied, meaning that, for all i ∈ {1, . . . , d},

(5) Pi(fu) =

0 if i ∈ u,

fu if i /∈ u.

Part B: Suppose that every function f ∈ F can be expressed as in (1.1) and that the annihilating prop-

erty (2.2) holds for the operators P1, . . . , Pd, which are further assumed to be linear. Then the term fu is

given by

(6) fu = P−u(f)−
∑
v(u

fv,

which is equivalent to

(7) fu =
∑
v⊆u

(−1)|u\v|P−v(f),

and hence also to formula (2.1).

Proof. To recover the desired decomposition, first call on the multinomial formula to see that

d∏
i=1

ID =

d∏
i=1

{(ID − Pi) + Pi} =
∑

u⊆{1,...,d}

(∏
i∈u

(ID − Pi)

)(∏
i/∈u

Pi

)
.

Accordingly, one finds

(4.1) f =

(
d∏

i=1

ID

)
(f) =

∑
u⊆{1,...,d}

(∏
i∈u

(ID − Pi)

)(∏
i/∈u

Pi

)
(f) =

∑
u⊆{1,...,d}

fu ,

with fu defined as in Eq. (2.1). Furthermore, note that for whatever u ⊆ {1, . . . , d}, the function fu satisfies

the annihilating property. Indeed, if k ∈ u, then

Pk(fu) =

 ∏
i∈u\{k}

(ID − Pi)

(∏
i/∈u

Pi

)
Pk(ID − Pk)(f) = 0
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while if k /∈ u, then

(ID − Pk)(fu) =

(∏
i∈u

(ID − Pi)

) ∏
i/∈u,i6=k

Pi

Pk(ID − Pk)(f) = 0.

This proves Part A, namely the existence of the decomposition.

To establish uniqueness under the added assumption that P1, . . . , Pd are linear stated in Part B, write

f =
∑

v⊆{1,...,d}

fv,

and apply the linearity of P−u. It follows from the annihilating property (2.2) that

P−u(f) =
∑
v⊆u

fv = fu +
∑
v(u

fv,

which gives the recursive formula. The well-known Möbius inversion then implies formula (2.4). Finally, the

product version can be deduced from

fu =
∑
v⊆u

(−1)|u\v|P−v(f) =
∑
v⊆u

(−1)|u\v|

 ∏
i∈u\v

Pi

(∏
i/∈u

Pi

)
(f) =

(∏
i∈u

(ID − Pi)

)(∏
i/∈u

Pi

)
(f),

which concludes the argument.

In view of Part A of Proposition 4.1, the Möbius decomposition can also be derived for any cumulative

distribution function whose support is [0, 1]d from a set of maps and its terms can be computed from (2.4)

or equivalently from (2.1) or (2.3). This observation does not appear to have been documented previously.

5. Another extension of Theorem 2.2 by Kuo et al. (2010). While Proposition 4.1 achieves the

main objective of providing a common representation for the Hoeffding–Sobol and Möbius decompositions,

the need to impose linearity in Part B implies that existence and uniqueness are no longer obtained under a

common set of assumptions. The following result, which remains valid for non-linear operators, shows that

one can find a unique assumption and can even bypass the idempotent assumption.

Proposition 5.1. Let P1, . . . , Pd be commuting operators. Then any real-valued function f acting on a

domain D ⊆ Rd can be written in a unique way in the form

(1) f =
∑

u⊆{1,...,d}

fu,

under the assumption that for all u ∈ {1, . . . , d},

(5.1) P−u(f) =
∑
v⊆u

fv.

Furthermore, the three following identities hold for all subsets u ⊆ {1, . . . , d}:

(2) fu =

∏
i∈u

(ID − Pi)
∏
j /∈u

Pj

 (f),

(6) fu = P−u(f)−
∑
v(u

fv,

and

(7) fu =
∑
v⊆u

(−1)|u\v|P−v(f).
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Proof. First invoke the multinomial identity to deduce Eq. (4.1) as detailed at the beginning of the proof

of Proposition 4.1. This equation shows that the decomposition (1.1) holds with fu defined by Eq. (2.1) for

all u ⊆ {1, . . . , d}. Next observe that for this choice of functions and any u ⊆ {1, . . . , d}, one has

f =
∏
j∈u
{(ID − Pj) + Pj}(f) =

∑
v⊆u

∏
j∈v

(ID − Pj)
∏

k∈u\v

Pk

 (f)

and hence

P−u(f) =
∏
i/∈u

Pi(f) =
∏
i/∈u

Pi

∏
j∈u
{(ID − Pj) + Pj}(f)

=

∏
i/∈u

Pi

∑
v⊆u

∏
j∈v

(ID − Pj)
∏

k∈u\v

Pk

 (f) .

Further note that if v ⊆ u, then k /∈ v if and only if k ∈ u \ v or if k /∈ u. Therefore,

P−u(f) =

∑
v⊆u

∏
j∈v

(ID − Pj)
∏
k/∈v

Pk

 (f) =
∑
v⊆u

fv ,

which is Eq. (5.1). This identity immediately implies Eq. (2.3). Moreover, Eq. (2.4) results from the fact

that

fu =

(∏
i∈u

(ID − Pi)

)∏
j /∈u

Pj

 (f) =
∑
v⊆u

(−1)|u\v|

 ∏
i∈u\v

Pi

∏
j /∈u

Pj

 (f) =
∑
v⊆u

(−1)|u\v|P−v(f).

This concludes the argument.

Assumption (5.1), which is new, implies that for any fixed set u ⊆ {1, . . . , d} of indices, an application

of the operator P−u to f retains the terms in the decomposition (1.1) whose variables have indices contained

in u and filters out the others. This condition is very intuitive when the terms do not overlap: in particular,

it precludes a term fu associated to a set u to be considered as (part of) a term of higher complexity that

would involve variables whose indices belong to a larger set v ⊃ u. In effect, the no-overlap condition (5.1) is

equivalent to Eq. (2.3), which makes it possible to define the terms fu recursively in a unique way, starting

from the terms of smallest complexity.

In their paper, Kuo et al. (2021) assumed that the operators P1, . . . , Pd are both idempotent and linear,

and that they satisfy the annihilating property (2.2). In that situation, the no-overlap condition is equivalent

to the annihilating property. More precisely, the following statements hold true:

(i) Condition (2.2) holds for each idempotent operator Pi when fu is defined as per Eq. (2.1) for all

u ⊆ {1, . . . , d}.
(ii) If the operators P1, . . . , Pd are linear, then Condition (2.2) implies Eq. (2.1).

For a proof of claim (i), refer to the proof of Part A of Proposition 4.1. To establish claim (ii), fix any

set u ⊆ {1, . . . , d} and invoke the linearity of the operators to write

P−u(f) =
∑

v⊆{1,...,d}

P−u(fv) =
∑
v⊆u

P−u(fv) +
∑
v 6⊆u

P−u(fv).

Next observe that if v 6⊆ u, there exists i ∈ v such that i /∈ u and that for such an index i, one has Pi(fv) = 0

by the annihilating property and therefore

P−u(fv) =
∏
i/∈u

Pi(fv) = 0.

This concludes the argument.
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6. Discussion and perspectives. The Hoeffding–Sobol and Möbius formulas are two well-known

ways of decomposing a function of several variables as a sum of terms of increasing complexity. As they

were developed and used by distinct research communities, their suspicious resemblance had never been

investigated. In this paper, a link between these two formulas was uncovered using an extension of a result

due to Kuo et al. [13].

Beyond its intrinsic interest, the existence of a relation between these two famous formulas opens the door

to cross-fertilization in their respective domains of application. Dependence modeling is a domain where this

could happen, as both decompositions could be applied to copulas. In this context, the projection Pu (2.5)

associated to the Hoeffding–Sobol decomposition cancels the influence of variables in the subset u through

integration. The terms are of increasing complexity with |u| in the sense that fu depends on a vector xu

whose length grows with |u|. In that decomposition, f∅ is a constant.

In contrast, the projection Pu associated with the Möbius decomposition (3.5) erases the stochastic

dependence between the variables with indices belonging to the set u. More precisely, if a random vector

Z has distribution Pu(C), the subvectors Zu and Z−u are then independent. While there is no increasing

complexity in the terms of the decomposition, in the sense that the value of Cu at any x ∈ D depends on both

xu and x−u, it is noteworthy that only the stochastic dependence embodied within xu is retained. It can

be said, therefore, that the terms in the Möbius decomposition are also increasing in complexity, but in the

sense of probabilistic dependence. Further note that while the term f∅ does not vanish in this decomposition,

it does not contain any information about dependence given that f∅ = Π.

Beyond the relative degree of complexity of their terms, the Hoeffding–Sobol and Möbius decompositions

each have their comparative advantage. One key feature of the Hoeffding–Sobol decomposition is that it

provides orthogonal terms, so that the structure of the function of interest can be analyzed through variances.

In contrast, the terms in the Möbius decomposition are not generally orthogonal. However, a strong point

of the Möbius decomposition is the ease with which any term can be of computed as a simple alternate

combination of evaluations of the function C.
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